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Abstract: Evidence of antibody-dependent enhancement (ADE) of other viruses has raised concerns
about the safety of SARS-CoV-2 vaccines and antibody therapeutics. In vitro studies have shown
ADE of SARS-CoV-2 infection. In this study, we also found that vaccination/convalescent sera and
some approved monoclonal antibodies can enhance SARS-CoV-2 infection of FcR-expressing B cells
in vitro. However, the enhancement of SARS-CoV-2 infection can be prevented by blocking Fc–FcR
interaction through the addition of human serum/IgG or the introduction of mutations in the Fc
portion of the antibody. It should be noted that ADE activity observed on FcR-expressing cells
in vitro may not necessarily reflect the situation in vivo; therefore, animal and clinical data should be
included for ADE evaluation.

Keywords: antibody-dependent enhancement; COVID-19; SARS-CoV-2; vaccination serum; conva-
lescent serum

1. Introduction

The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus-2
(SARS-CoV-2), has spread to over 200 countries, causing widespread morbidity and mor-
tality, as well as massive economic losses [1,2]. To control the pandemic and prevent the
recurrence of SARS-CoV-2, several vaccines designed by different platforms have been de-
veloped and approved, in addition to other immediate treatments, such as antibody-based
therapies [3,4]. However, one of the biggest safety concerns with vaccines and antibody-
based therapeutics is the antibody-dependent enhancement (ADE) of viral infections [5–9].

SARS-CoV-2 relies on angiotensin-converting enzyme 2 (ACE2) as its primary cell
surface receptor to enter host cells. Neutralizing antibodies can effectively block the
entry of the virus by inhibiting the binding of the SARS-CoV-2 Spike (S) to ACE2 [10,11].
However, certain antibodies could bind to Fc receptors (FcRs) on immune cells and be
internalized, leading to an enhancement in virus entry [12]. This ADE phenomenon has
been observed in the past with SARS-CoV, MERS-CoV, dengue virus (DENV), respiratory
syncytial virus (RSV), and measles [13–18], raising concerns about the risk of ADE for
SARS-CoV-2 vaccines and antibody-based therapies. Due to the great similarity between
several bat coronaviruses and SARS-CoV-2, previous exposure to such viruses may lead to
ADE of SARS-CoV-2 [19,20]. Higher antibody titers in patients with SARS-CoV-2 infection
have been reported to associate with more severe disease, suggesting a possible link with
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ADE [21]. Several in vitro studies have demonstrated that the ADE infection of SARS-CoV-
2 [22–24] and the emergence of new SARS-CoV-2 variants may increase the likelihood of
ADE [25].

However, it remains unclear if in vitro ADE of infection can accurately predict en-
hanced infection in vivo. Using FcR-expressing B cells, we also observed enhanced viral
infections induced by vaccination/convalescent sera and monoclonal antibodies (mAbs)
in vitro. However, it is important to note that this ADE phenomenon could be eliminated
through the addition of human serum/IgG or the introduction of mutations in the anti-
body’s Fc region. These results suggest that the observed in vitro ADE may not be a true
predictor of ADE in real-life scenarios in the complex in vivo environment.

2. Materials and Methods
2.1. Cell Lines

Expi293F cells (Thermo Fisher, Waltham, MA, USA, Cat# A14527) were cultured in
the serum-free SMM 293-TI medium (Sino Biological Inc., Beijing, China) at 37 ◦C with
8% CO2 on an orbital shaker platform. HEK293T cells (Cat# CRL-3216) and Vero-E6 cells
(cat# CRL-1586) were acquired from ATCC and cultured in 10% Fetal Bovine Serum (FBS,
GIBCO cat# 16140071) supplemented with Dulbecco’s Modified Eagle Medium (DMEM,
ATCC cat# 30-2002) at 37 ◦C, 5% CO2. Raji cells (Cat# CCL-86) and THP-1 cells (cat#
TIB-202) were acquired from ATCC and cultured in 10% FBS supplemented with Roswell
Park Memorial Institute (RPMI) 1640 medium (Thermo Fisher, cat# 31870-082) at 37 ◦C,
5% CO2. I1 mouse hybridoma cells (ATCC, cat# CRL-2700) were cultured in Eagle’s
Minimum Essential Medium (EMEM, ATCC cat# 30-2003) with 20% FBS.

2.2. Serum Samples

Sera from 7 individuals who received three doses of inactivated vaccine, or 7 indi-
viduals who were infected with the BA.5 variant after receiving three doses of inactivated
vaccine, were recruited at the Nanjing Hospital of Chinese Medicine. For all COVID-19
participants, the clinical diagnosis criteria were based on the ninth National COVID-19
guidelines. The SARS-CoV-2 infection of all the subjects was confirmed by polymerase
chain reaction (PCR) and sequencing. All participants involved in this study showed mild
symptoms, or were asymptomatic. Two healthy individuals with no history of vaccina-
tion or infection were enrolled before the onset of the COVID-19 pandemic as controls at
Huashan Hospital, Fudan University.

2.3. Monoclonal Antibodies

Monoclonal antibodies tested in this study were constructed and produced at
Fudan University. For each antibody, variable genes were optimized for human cell
expression and synthesized by HuaGeneTM (Shanghai, China). VH and VL were
inserted separately into plasmids (gWiz or pcDNA3.4) that encode the constant region
for the H chain and L chain. Monoclonal antibodies were expressed in Expi293F
(Thermo Fisher, A14527) by co-transfection of the H chain and L chain expressing
plasmids using polyethylenimine and cultured at 37 ◦C with shaking at 125 rpm and
8% CO2. On day 5, antibodies were purified using MabSelectTM PrismA (Cytiva,
Marlborough, MA, USA, 17549801) affinity chromatography.

2.4. Construction and Production of Variant Pseudoviruses

Plasmids encoded with the WT (D614G) SARS-CoV-2 spike and Omicron XBB.1.5
spike were constructed. HEK293T cells were transfected with the indicated spike gene
using polyethylenimine (Polyscience). Cells were cultured overnight at 37 ◦C with 5% CO2,
and VSV-G pseudo-typed ∆G-luciferase (G*∆G-luciferase, Kerafast, Winston-Salem, NC,
USA) was used to infect the cells in DMEM at a multiplicity of infection of 5 for 4 h before
washing the cells with 1 × DPBS three times. The next day, the transfected supernatant
was collected and clarified by centrifugation at 3000× g for 10 min. Each viral stock was
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then incubated with 20% I1 hybridoma (anti-VSV-G; ATCC, CRL-2700) supernatant for 1 h
at 37 ◦C to neutralize the contaminating VSV-G pseudotyped ∆G-luciferase virus before
measuring titers and making aliquots to be stored at −80 ◦C.

2.5. Pseudovirus Neutralization Assays

Neutralization assays were performed by incubating pseudoviruses with serial dilu-
tions of monoclonal antibodies or serum, and scored by the reduction in luciferase gene
expression. In brief, Vero-E6 cells were seeded in a 96-well plate at a concentration of
2 × 104 cells per well. A total of 750 TCID50 pseudoviruses were incubated the next day
with serial dilutions of the test samples in triplicate for 60 min at 37 ◦C. The mixture was
added to cultured cells and incubated for an additional 24 h. The luminescence was mea-
sured by the Luciferase Assay System (Beyotime, Shanghai, China). IC50 was defined as
the dilution that resulted in a 50% reduction in relative light units compared to the control
wells containing only the virus and cells. This measurement was taken after subtracting
the background observed in control wells with cells alone. The IC50 values were calculated
using nonlinear regression in GraphPad Prism.

2.6. Antibody-Dependent Enhancement (ADE) Assay

The ADE assays were performed using Raji cells. A total of 50 µL of serially diluted
mAbs or mAbs combinations were mixed with 50 µL of supernatant containing 750 TCID50
of pseudovirus. The mixture was incubated for 60 min at 37 ◦C, and then supplied with
5% CO2. A total of 100 µL cells at a density of 2 × 106 cells/mL were added to the
mixtures of pseudoviruses and mAbs for an additional 24 h incubation. Then, the same
volume of luciferase-detecting regents (Beyotime) was added to each well. After 2 min of
incubation, the luciferase activity was measured by the Luciferase Assay System (Beyotime).
The maximum ADE infectivity fold-change was calculated by comparing the peak ADE
luciferase levels to those in the virus control wells (containing the virus and cells). This
calculation was made after subtracting the background levels observed in the control
groups containing cells only.

2.7. Generation of Mutated mAbs

For preparation of mutated mAbs to abolish their binding to FcRs, the heavy chain
L234A/L235A combined mutations (LALA) were introduced to the parental hIgG1 mAbs.
For preparation of mutated mAbs with increased binding to FcγRIIB, the heavy chain
G117A, S120D, A211L, and I213E combined mutations (GASDALIE) were introduced to
the parental hIgG1 mAbs. Mutated mAbs were expressed and purified by the method
described above. Primer sequences used for cloning and mutations are listed in Table 1.

Table 1. List of the primers used in this study.

Primer a Sequence (5′–3′) b

L234A/L235A-F TTGTCCCGCCCCTGAGTTTGAGGGCGGACCTTCCGT
L234A/L235A-R ACGGAAGGTCCGCCCTCAAACTCAGGGGCGGGACAA
G117A/S120D-F CTGAGCTTCTGGCCGGACCTGATGTGTTCCTGTTCCC
G117A/S120D-R GGGAACAGGAACACATCAGGTCCGGCCAGAAGCTCAG
A211L/I213E-F CAACAAGGCCCTGCCCCTACCCGAGGAGAAAACCATCAG
A211L/I213E-R CTGATGGTTTTCTCCTCGGGTAGGGGCAGGGCCTTGTTG

a F, forward primer; R, reverse primer. b Antibody sequences were downloaded from PDB.

2.8. Quantitative and Statistical Analysis

The statistical analyses for the pseudovirus virus neutralization assessments were
performed using GraphPad Prism for the calculation of the mean value for each data
point. Each specimen was tested in triplicate. Antibody neutralization IC50 values were
calculated using a five-parameter dose–response curve in GraphPad Prism. For comparison
of the serum neutralization titers, statistical analysis was performed using multiple Mann–
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Whitney tests. Two-tailed p values are reported. No statistical methods were used to
determine whether the data met the assumptions of the statistical approach.

3. Results
3.1. Vaccination and Convalescent Sera from COVID-19 Patients Induced ADE of SARS-CoV-2
Pseudoviral Infection on Raji Cells In Vitro

We first tested the impact of serum antibodies on SARS-CoV-2 entry into different
cells. The SARS-CoV-2 D614G pseudovirus was used to infect the ACE2-expressing Vero-
E6 cells or the FcR-expressing Raji cells in the presence of vaccination (n = 7), convalescent
(n = 7), or healthy donor (n = 2) sera. All convalescents had reported mild symptoms or
were asymptomatic. On Vero-E6 cells, we observed significantly lower luciferase levels
in vaccination (Figure 1A, red lines) or convalescent (Figure 1B, red lines) sera compared
to healthy control sera (black lines), indicating the viral neutralization activities of
the vaccination/convalescent sera, similar to what we previously reported [26–29].
However, when we tested them on Raji cells, which are cloned B cells highly expressing
FcγRIIB [30], we found that both vaccination and convalescent sera (Figure 1C,D, red
lines), at certain concentrations, significantly increased luciferase signals compared to
control sera (black lines) using the same SARS-CoV-2 D614G pseudovirus. Although
the convalescent group had higher neutralization titers than the vaccination group on
Vero-E6 cells (Supplementary Figure S1A), the maximum increase in pseudovirus entry
of the convalescent group was lower than that of the vaccination group on Raji cells
(Supplementary Figure S1B). No correlation was observed between the maximum ADE
infectivity fold change and serum neutralization ID50 value (p = 0.6457, R2 = 0.4845)
(Supplementary Figure S1C). These results indicated that polyclonal sera from COVID-19
vaccinees and convalescents could induce ADE of SARS-CoV-2 pseudoviral infection on
FcR-expressing cells in vitro.

3.2. Approved mAbs Induced ADE of SARS-CoV-2 Pseudoviral Infection on Raji Cells

We next performed similar experiments with mAbs. From a panel of approved SARS-
CoV-2 mAbs, Brii-196 (amubarvimab) [31] and LY-CoV1404 (bebtelovimab) [32], as well
as two mAb cocktails: COV2-2130 (cilgavimab) + COV2-2196 (tixagevimab) [33], and
REGN10987 (imdevimab) + REGN10933 (casirivimab) [34], with high neutralization potency
against the prototype virus, were selected. All four mAbs/cocktails could inhibit SARS-CoV-
2 entry into Vero-E6 cells (Figure 1E), but when tested on FcR-expressing Raji cells, different
degrees of ADE activities were observed. LY-CoV1404 showed the strongest ADE activity,
with apparent enhanced infection even at the highest concentration tested (5 µg/mL), while
COV2-2130 + COV2-2196 showed much weaker enhancement of SARS-CoV-2 infection
compared to other mAbs (Figure 1F). To investigate whether the ADE of SARS-CoV-2
infection could be seen on other immune cells, we tested the same four mAbs/cocktails on
viral infection using THP-1, a human monocytic cell line. No ADE activity was observed
for all four mAbs/cocktails on THP-1 cells (Supplementary Figure S2), probably due to
the much lower FcγRIIB expression level on this cell line [35]. Again, no correlation was
observed between the maximum ADE infectivity fold change and mAbs neutralization IC50
(p = 0.4647, R2 = 0.2865) (Supplementary Figure S1D). Taken together, ADE of SARS-CoV-2
infection can be detected in vitro, but is highly dependent on the FcR expression levels of
the target cells.
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Neutralization of SARS-CoV-2 D614G pseudovirus by mAbs on Vero-E6 cells. (F) ADE of SARS-
CoV-2 infection by mAbs on Raji cells. Luciferase activity in the cell lysates was determined at 24 
hpi. The experiment was performed in triplicate; means and standard deviations are shown. 
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Figure 1. Polyclonal and monoclonal antibodies enhanced SARS-CoV-2 entry into FcR-expressing
cells. (A) Neutralization of SARS-CoV-2 D614G pseudovirus by sera from seven vaccinated indi-
viduals and (B) seven convalescent individuals on Vero-E6 cells. (C) ADE of SARS-CoV-2 infection
by sera from seven vaccinated individuals and (D) seven convalescent individuals on Raji cells.
(E) Neutralization of SARS-CoV-2 D614G pseudovirus by mAbs on Vero-E6 cells. (F) ADE of
SARS-CoV-2 infection by mAbs on Raji cells. Luciferase activity in the cell lysates was determined at
24 hpi. The experiment was performed in triplicate; means and standard deviations are shown.

3.3. In Vitro ADE Activities Could Be Eliminated by Adding Human Serum/IgG

As our above results indicated that the in vitro ADE relies on antibody Fc interaction
with FcRs expressed on immune cells, we then examined whether the ADE Activities would
be affected by blocking the Fc–FcR interactions. Serum samples from healthy human adults
had been collected before the COVID-19 pandemic and were used as SARS-CoV-2 antibody
negative human serum (NHS). First, in order to see the optimal NHS concentration in
the cell culture medium sufficient to eliminate mAb-induced ADE activity in vitro, we
detected the ADE of LY-CoV1404 on Raji cells cultured in a medium with serially diluted
NHS. As the NHS concentration increased, the ADE activity of LY-CoV1404 decreased in a
dose-dependent manner and the activity was almost completely abolished when incubated
with 5–10% NHS (Supplementary Figure S3). We then measured the ADE of SARS-CoV-2
pseudoviral infection mediated by the four above-tested mAbs/cocktails on Raji cells
cultured in a medium with either 5% or 10% NHS. As shown in Figure 2, the enhancement
of infection by these antibodies was reduced in the presence of 5% NHS, but was totally
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abolished in the presence of 10% NHS. We posited that IgG in the serum blocked the
interaction of Fc–FcγR and mediated the reduction in ADE. Therefore, we purified human
IgG from NHS and performed the experiments in the presence of IgG (100 µg/mL). Weak
ADE activities of COV2-2130 + COV2-2196 and Brii-196 could be largely eliminated by IgG,
while stronger ADE activities of LY-CoV1404 and REGN10987 + REGN10933 were also
greatly reduced (Figure 2). These results indicated that the ADE activities detected in vitro
could be eliminated by adding human serum/IgG in the cell culture.
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Figure 2. In vitro ADE activities of SARS-CoV-2 neutralizing mAbs could be eliminated by adding hu-
man serum/IgG. ADE of SARS-CoV-2 pseudoviral infection on Raji cells mediated by (A) REGN10987
+ REGN10933, (B) COV2-2130 + COV2-2196, (C) Brii-196, and (D) LY-CoV1404. Cells were cultured
without or with human IgG (100 µg/mL), 5% or 10% NHS, and luciferase activity in the cell lysates
was determined at 24 hpi. The experiment was performed in triplicate; means and standard deviations
are shown.

3.4. In Vitro ADE Activities Could Be Eliminated by Modification of Antibody Fc Region

To further prove the observed ADE depend on the Fc–FcR interactions, we introduced
mutations in the antibody Fc region to abolish its binding to FcRs. L234A/L235A (LALA)
mutations, known to abolish Fc-mediated effector functions by preventing mAbs from
binding to FcRs but without impacting mAbs’ neutralizing ability [36], were selected. The
ADE activity of COV2-2130 + COV2-2196 and LY-CoV1404 was completely abolished by
introducing the LALA mutation in the Fc portion of the antibodies (Figure 3A,B). On the
other hand, we also generated mAbs with G117A, S120D, A211L, and I213E combined
mutations (GASDALIE), known to enhance the antibody-binding affinity to FcγR [37]. As
expected, the ADE activity of LY-CoV1404/GASDALIE was further enhanced compared
to the WT antibody (Figure 3C). It is noteworthy that when we detected the ADE activity
with the most recently emerged Omicron subvariants, XBB.1.5, neither LY-CoV1404 nor
LY-CoV1404/GASDALIE showed any ADE activity on Raji cells (Figure 3D). This could
be explained by the complete loss of binding and neutralization activity of LY-CoV1404
against XBB.1.5 [38]. These results indicated that the in vitro ADE activities dependent on
antibodies’ Fc interaction with FcRs could be abolished by mutating the Fc region.
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Figure 3. In vitro ADE activities of SARS-CoV-2 mAbs could be abolished by modifying Fc region.
ADE of SARS-CoV-2 D614G infection by (A) COV2-2130 + COV2-2196 and COV2-2130/LALA + COV2-
2196/LALA, (B) LY-CoV1404 and LY-CoV1404/LALA, (C) LY-CoV1404 and LY-CoV1404/GASDALIE
on Raji cells. (D) ADE of SARS-CoV-2 XBB.1.5 infection by LY-CoV1404 and LY-CoV1404/GASDALIE
on Raji cells. Luciferase activity in the cell lysates was determined at 24 hpi. The experiment was
performed in triplicate; means and standard deviations are shown.

4. Discussion

In this study, we showed that both polyclonal sera from COVID-19 vaccinees and
convalescents, as well as approved mAbs for SARS-CoV-2, can induce ADE of pseudoviral
infection in vitro. When the vaccination and convalescent sera were tested on Vero-E6
cells that express ACE2, which is the receptor utilized by SARS-CoV-2 for entry, viral
neutralization activities were observed, confirming the expected protective effects of the
sera. However, on Raji cells that express FcγRIIB, which is a receptor for the Fc portion of
antibodies, the sera increased the pseudovirus entry at certain concentrations, indicating
the ADE phenomenon. Similarly, approved mAbs for SARS-CoV-2 could also induce ADE
of pseudoviral infection on Raji cells. LY-CoV1404 showed the strongest ADE activity, while
COV2-2130 + COV2-2196 showed much weaker enhancement of infection compared to
other mAbs. No ADE activity was observed on THP-1 cells, probably due to their lower
FcγRIIB expression levels compared to Raji cells. This indicates that the susceptibility
to ADE activity might be dependent on the FcR expression levels of the target cells. It
is worth noting that LY-CoV1404 exhibited the most robust ADE activity with the WT
virus on Raji cells, but showed no ADE activity with the XBB.1.5 variant. This indicates
that the susceptibility to ADE activity is also influenced by the antibodies’ binding to the
virus; therefore, different variants of SARS-CoV-2 may exhibit distinct ADE behaviors.
The observed variation in ADE phenomena between vaccinees and convalescents could
potentially be attributed to the fact that the vaccination group may have a higher proportion
of binding antibodies relative to neutralizing antibodies compared to the convalescent
group. As a result, the vaccination group may facilitate greater pseudovirus entry into
immune cells at specific concentrations. One limitation of our study is the limited number of
donors in each group, particularly the inclusion of only two healthy donors. Nevertheless,
our results, together with several other studies [35,39–42], suggested that we can indeed
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observe ADE activities of SARS-CoV-2 polyclonal and monoclonal antibodies in certain
circumstances in vitro. More importantly, our study is the first to demonstrate that the
observed in vitro ADE activities of SARS-CoV-2 can be eliminated by adding human serum
or IgG. The enhancement of infection by the tested mAbs was reduced in the presence of
5% human serum, but was totally abolished in the presence of 10% human serum. The
addition of purified human IgG also effectively reduced ADE activity, which supports the
notion that human IgG in the serum can block the Fc–FcγR interaction and mediate the
reduction in ADE. Moreover, this activity can be abolished by introducing mutations in
the Fc region that prevent the antibodies from binding to FcRs. As the presence of human
IgG in the circulation of individuals provides a natural buffer against ADE activity by
blocking the Fc–FcγR interaction, the potential for ADE activity of SARS-CoV-2 sera and
mAbs in the real world may not be as high as observed in vitro. The absence of enhanced
respiratory diseases or excessive proinflammatory response in SARS-CoV-2 vaccine animal
studies and clinical trials [43–45], as well as the real-world data involving billions of
vaccinated individuals, supports this notion. However, as the number of COVID-19
infections continues to increase globally, particularly with the emergence of new variants,
it remains important to monitor the ongoing development of COVID-19 vaccines and
neutralizing antibody drugs for potential adverse effects, including ADE. It is crucial
to remain vigilant and continue studies to fully understand the role of ADE in human
COVID-19 pathology, both in laboratory conditions and in clinical practice.

5. Conclusions

In summary, our study highlights that ADE is a complex process that cannot be fully
accounted for in vitro. Further research is necessary to assess the occurrence and extent
of ADE during actual viral infections. This requires the comprehensive evaluation of
preclinical data, as well as clinical trials in humans and animal models. Additionally,
monitoring the emergence of new SARS-CoV-2 variants and their potential impact on ADE
is essential in ensuring the safety and efficacy of vaccines and antibody therapies.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/pathogens12091108/s1, Figure S1: Correlation of the maximum ADE
infectivity fold change at which the maximum viral entry with the antibody neutralization ID50; Figure
S2: No ADE of SARS-CoV-2 infection by mAbs was observed on THP-1 cells; Figure S3: Determination
of the optimal NHS concentration in cell culture medium.
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