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Abstract: Considering the solutions of a class of noncooperative Kirchhoff-type p(x)-Laplacian
elliptic systems with nonlinear boundary conditions, we derive a sequence of solutions utilizing both
the variational method and limit index theory under certain underlying assumptions. The novelty of
this study is that we verify the (PS)∗c condition using another method, diverging from the approaches
cited in the previous literature.
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1. Introduction

In this paper, we delve into an exploration of the existence and multiplicity of solutions
to the Kirchhoff p(x)–Laplacian elliptic system:



M
( ∫

Ω

|∇u|p(x) + |u|p(x)

p(x)
dx
)
(∆p(x)u − |u|p(x)−2u) = Fu(x, u, v), in Ω,

M
( ∫

Ω

|∇v|p(x) + |v|p(x)

p(x)
dx
)
(−∆p(x)v + |v|p(x)−2v) = Fv(x, u, v), in Ω,

|∇u|p(x)−2 ∂u
∂ν

= |u|p∗(x)−2u, |∇v|p(x)−2 ∂v
∂ν

= |v|p∗(x)−2v, on ∂Ω,

(1)

where Ω ⊂ RN is a smooth bounded domain, p(x) is Lipschitz-continuous and radially
symmetric on Ω and fulfills 1 < p− < p(x) < p+ < N with p+ = sup

x∈Ω
p(x), p− = min

x∈Ω
p(x),

p∗(x) = (N−1)p(x)
N−p(x) , ∆p(x)u := div(|∇u|p(x)−2∇u) is a p(x)-Laplacian operator, F = F(x, u, v),

Fu = ∂F
∂u , Fv = ∂F

∂v , and ∂
∂ν is the outer normal derivative.

Assuming that M : R+
0 := [0,+∞) → R+ := (0,+∞) is a continuous Kirchhoff

function, which fulfills the following conditions:

(M1) If m0 > 0 exists, then
M(t) ⩾ m0, ∀t ∈ R+

0 ;

(M2) There exists θ ∈ [p−, p−∗
p+ ) such that θM̂(t) := θ

∫ t
0 M(τ)dτ ⩾ M(t)t ⩾ p−M̂(t) for

any t ∈ R+
0 .

The nonlinearity F satisfies the following:

(F1) F ∈ C1(Ω × R2,R+), F(x, s, t) = F(x,−s,−t) and F(x, s, t) = F(|x|, s, t) for every
(x, s, t) ∈ Ω ×R2;

(F2) sFs(x, s, t) ⩾ 0 for every (x, s, t) ∈ Ω ×R2;
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(F3) There exist C1, C2 > 0, θp+ < r(x) < p∗(x), where p∗(x) = Np(x)/(N − p(x))
such that

|F(x, s, t)| ⩽ C1

(
|s|r(x) + |t|r(x)

)
+ C2;

(F4) 0 < F(x, s, t) ⩽ 1
p− sFs(x, s, t) + 1

p−∗
tFt(x, s, t), for every (x, s, t) ∈ Ω ×R2;

(F5) there exist L, m1, C3, C4 > 0 (where L, m1, C3, C4 will be determined later) and ξ <

|Ω|−1{( 1
θp+ − 1

p−∗
)m1 − C3

(p−)θ − C4} such that, for every (x, s, t) ∈ Ω ×R2, F(x, s, t) ⩾

L|t|θp+ − ξ.

A typical example for M is given in M(t) = m0 + b1tθ−1 with θ > p−, m0 ∈ R+ and
b1 > 0, and an example for F is F(x, s, t) = C1

(
|s|p− + |t|p−

)
+ C2, where C1, C2 > 0.

We now present our significant conclusion.

Theorem 1. Assuming F(x, u, v) meets conditions (F1)–(F5) and M(t) satisfies conditions
(M1)–(M2), then there exists k0 > 1 such that the problem (1) possesses at least k0 − 1 pairs of
nontrivial weak solutions.

Exploring the realm of differential equations that feature variable exponents, alongside
the challenges posed by variational issues, proves to be a captivating area of interest. This
field finds its roots in nonlinear elastic theory and electrorheological fluids, among other
examples. Over the preceding few years, the study of variable exponential problems has
received increased interest, particularly the nonlinear problem with variable exponentials,
which not only extends beyond the traditional constant exponential problem but also
reflects the physical phenomenon of “point-by-point anisotropy”. This type of problem is
broadly applicable to mathematics and physics, where it is used to model elastomechanical
or electrorheological fluids (alternatively known as “smart fluids”).

Variable exponent Lebesgue spaces were first proposed in 1931 by the Polish math-
ematician Orlicz [1], who considered the variable exponent space Lp(x)([a, b]) on a line
on which he proved that Hölder inequality still holds, but he did not pursue this further.
In 1961, Tsenov [2] presented the following problem: how to find the minimum value of

∫ b

a
|u(x)− v(x)|p(x)dx.

Based on this problem, Sharapudinov [3] proved that the space Lp(x)([a, b]) is reflexive un-
der the condition that the variable exponential function p(t) satisfies 1 < p− ⩽ p+ < +∞.
After that, Zhikov [4] studied Lavrentiev’s phenomenon (that is, the lower certainty of an
integral functional on a Sobolev space is strictly smaller than its lower certainty on a smooth
function space) of variational problems with variable exponents against the background
of problems in nonlinear elasticity, proposing the famous Zhikov conjecture. This also
reflects an essential difference between the variable exponential problem and the constant
exponential problem. In fact, for the constant exponential case, Lavrentiev’s phenomenon
does not occur at all. In the early 1990s, Czech mathematicians Kováčik and Rákosnik [5]
made a major breakthrough in the theory of variable exponential spaces, establishing the
fundamental theory of Lebesgue and Sobolev spaces in RN . Fan and Alkhutov continued
Zhikov’s work later, around 1995, enriching the fundamental theory of Lebesgue and
Sobolev spaces [6–9].

Around the year 2000, rapid advancements in various fields caused the variational
exponential space to undergo a systematic and intense phase of research, and scholars were
aware of the inextricative links between variational problems of variational exponents and
some models in electronic rheological fluids. Among them, ref. [10] is a monograph on
the application background of the variable index problem in electronic rheological fluids,
which is considered a milestone in the in-depth development of the research on variable
exponent problems.
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There has been an abundance of interest in variable exponent problems that involve
nonstandard p(x) growth conditions, and much progress has been achieved. For the
problem with a p(x)-Laplacian operator, we usually study the definite solution problem,
initial value problem, initial boundary value problem, boundary value problem, free boundary
value problem, eigenvalue problem, and regularity problem. This kind of problem can be
used to describe the dynamic phenomena of circuit variable fluid and elastic mechanics.
Systems with a p(x)-Laplacian operator reflect the physical phenomenon of “point-by-point
anisotropy”. Traditional theories and techniques like Sobolev space theory are not suitable,
so variable exponential space theory is widely used. Under the condition of p(x) growth,
the established basic theories of generalized Lebesgue space Lp(x) and Sobolev space Wk,p(x)

provide sufficient theoretical basis for the study of the above problems.
The Kirchhoff equation studied in this paper is a typical example of an elliptic par-

tial differential equation. In 1883, German physicist Kirchhoff proposed the following
model [11] when studying the problem of string length change caused by the vibration of
elastic strings

ρ
∂2u
∂t2 =

(
P0

h
+

E
2L

∫ L

0

∣∣∣∣∂u
∂x

∣∣∣∣2dx

)
∂2u
∂x2 .

This model studies the free vibration of an elastic string. The coefficients on the right side
of the model contain global integral terms, and the coefficients depend on the average

kinetic energy 1
2L
∫ L

0

∣∣∣ ∂u
∂x

∣∣∣2dx. As a result, the Kirchhoff equation is no longer a point-by-
point identity, so the Kirchhoff equation is also called a class of non-local problems. This
kind of problem comes from the phenomena produced via non-local mechanics, non-local
quantum mechanics, etc., and it has a wide range of practical applications. As an important
method to study Kirchhoff-type problems, the variational method has been applied by
many scholars. Its basic idea is to transform a large number of variational problems into
critical point problems or extreme value problems of a corresponding function under certain
conditions. The non-local variational problem has a wide range of practical applications
when it is limited due to various boundary value conditions. It not only promotes the study
and calculation of nonlinear partial differential equations but also has a certain reference
value for nonlinear problems in the fields of imaging, electromagnetism, optics, quantum
mechanics, climate, and so on.

Over the past few years, there has been an increased focus on investigating noncooperative
elliptic systems. In 2009, Lin and Li [12] studied the noncooperative elliptic system

△u = |u|2∗−2u + Fu(x, u, v), in Ω,
−△v = |v|2∗−2v + Fv(x, u, v), in Ω,
u|∂Ω = 0, v|∂Ω = 0,

where Ω ⊂ RN . They overcame the difficulty with the embedding H1
0(Ω) ↪→ L2∗(Ω)

not being compact. By making assumptions about the nonlinear part, they identified the
existence of solutions.

The next year, Fang and Zhang [13] extended the above results to (p, q)-Laplacian
operators. By employing the same method as above, the multiplicity results for the solutions
were obtained.

In 2012, utilizing the concentration–compactness principle, Liang and Zhang [14]
conducted an in-depth investigation into the noncooperative p-Laplace elliptic system.

∆pu − |u|p−2u = Fu(x, u, v), in Ω,
−∆pv + |v|p−2v = Fv(x, u, v), in Ω,
|∇u|p−2 ∂u

∂ν = |u|p∗−2u, |∇v|p−2 ∂v
∂ν = |v|p∗−2v, on ∂Ω,
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where 1 < p < N, N ⩾ 3. Also, using the same methods, they obtained a sequence
of solutions.

In 2020, similar results were also obtained by N. T. Chung [15] for the Kirchhoff-type
system with a p-biharmonic operator.

Furthermore, with the help of [16], Liang [17] carried out further research in the field
of variable exponential space and obtained multiple solutions for the problem below:

∆p(x)u − |u|p(x)−2u = |u|p∗(x)−2u + Fu(x, u, v), in Ω,
−∆p(x)v + |v|p(x)−2v = |v|p∗(x)−2v + Fv(x, u, v), in Ω,
u = 0, v = 0, on ∂Ω,

where Ω ⊆ RN(N ⩾ 3) is a smooth-bounded, radially symmetric domain, while 0 /∈ Ω.
Afterwards, in 2013, Liang [18] extended the above system to RN. In 2017, Liang and

Zhang [19] investigated a class of noncooperative Schrödinger–Kirchhoff-type systems with
critical nonlinearities in RN .

Motivated by the references mentioned above, we consider a similar problem concerning
the p(x)-Laplacian operator with nonlinear boundary conditions involving the Kirchhoff
function. The novelty of this paper is as follows: in all the aforementioned papers, limit
index theory [16] was applied, but the (PS)∗c condition, which is described in Definition 2,
should be considered. However, in the papers of Chung [15,20], Chems Eddine [21], Liang
and Shi [17], Liang and Zhang [14,18,19], Li and Song [22], Sun and Bai et al. [23], and Song
and Shi [24], with the concentration–compactness principle [25], the boundness of the (PS)∗c
sequence {(unk , vnk)} was determined by applying

c + ok(1)
∥∥unk

∥∥
E ⩾ Jnk

(
unk , 0

)
− 1

p∗∗
〈

J′nk

(
unk , vnk

)
,
(
unk , 0

)〉
,

c + o(1)
∥∥vnk

∥∥
p ⩾ Jnk

(
0, vnk

)
− 1

τ

〈
J′nk

(
unk , vnk

)
,
(
0, vnk

)〉
,

(2)

and the strong convergence of {(unk , vnk )} was achieved by discussing〈
−dJnk

(
unk − u, vnk

)
,
(
unk − u, 0

)〉
→ 0 as n → ∞,〈

dJnk

(
0, vnk − v0

)
,
(
0, vnk − v0

)〉
→ 0 as n → ∞,

ok(1) =
〈
−J′nk

(
unk , vnk − v

)
,
(
0, vnk − v

)〉
.

(3)

In this paper, applying the suitable assumptions concerning F, we do not use the concentration–
compactness principle to confirm the (PS)∗c condition. In fact, we provide another way
without (2) and (3), which is solved in Section 5; then, the solutions for problem (1) are
obtained.

The structure of this paper is outlined below: Section 2 revisits essential preliminaries
and key technical lemmas. Section 3 lays out pertinent definitions and propositions associ-
ated with limit index theory. The construction of the index is delineated in Section 4. In
Section 5, we complete the proof of the (PS)∗c condition. Finally, the paper culminates with
a thorough proof of Theorem 1 in the concluding section.

2. Preliminaries and Some Technical Lemmas

We review some basic definitions of the variable exponent Lebesgue–Sobolev space
Lp(·)(Ω) and W1,p(·)(Ω) [26]. Let

C+(Ω) =

{
h ∈ C(Ω) : min

x∈Ω
h(x) > 1

}
.
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For p ∈ C+(Ω),

Lp(x)(Ω) =

{
u : u is a measurable, real-valued function such that

∫
Ω
|u(x)|p(x)dx < ∞

}
,

which is equipped with the norm via

∥u∥Lp(x)(Ω) = ∥u∥p(x) = inf

{
µ > 0 :

∫
Ω

∣∣∣∣u(x)
µ

∣∣∣∣p(x)
dx ⩽ 1

}
.

The variable exponent Lebesgue space W1,p(x)(Ω) is defined as follows

W1,p(x)(Ω) :=
{

u ∈ Lp(x)(Ω) | |∇u| ∈ Lp(x)(Ω)
}

,

and it can be equipped with the norm

∥u∥ = ∥u∥p(x) + ∥∇u∥p(x), ∀u ∈ W1,p(x)(Ω).

The equivalent norm for W1,p(x)(Ω) is used in this paper

∥u∥1,p(x) = inf

{
µ > 0 :

∫
Ω

(∣∣∣∣∇u
µ

∣∣∣∣p(x)
+

∣∣∣∣uµ
∣∣∣∣p(x)

)
dx ⩽ 1

}
.

In the following discussion, we refer to the boundary measure of ∂Ω with dS. We
define the variable exponent Lebesgue space Lz(x)(∂Ω) with

Lz(x)(∂Ω) =

{
u : ∂Ω → R is measurable and

∫
∂Ω

|u(x)|z(x)dS < ∞
}

,

for any z ∈ C(∂Ω) with z(x) ⩾ 1. The corresponding Luxemburg norm is determined with

∥u∥r(x),∂Ω = inf
{

λ > 0 :
∫

∂Ω

∣∣∣ u
λ

∣∣∣r(x)
dS ⩽ 1

}
.

The embedding results in the corresponding space are given below.

Proposition 1 ([26,27]). Let Ω ⊆ RN be an open-bounded domain with a Lipschitz boundary.
Then,

(i) if p, z ∈ C(Ω̄) is such that 1 < p(x) < N and 1 ⩽ z(x) < p∗(x) on Ω̄, there exists a
continuous and compact embedding, W1,p(x)(Ω) ↪→ Lz(x)(Ω);

(ii) if p ∈ C(Ω̄) is such that 1 < p(x) < N on Ω̄, then there is a continuous boundary trace
embedding, W1,p(x)(Ω) ↪→ Lp∗(x)(∂Ω); and

(iii) for each h ∈ C(∂Ω) with 1 ⩽ h(x) < p∗(x) on ∂Ω, there is a compact boundary trace
embedding, W1,p(x)(Ω) ↪→ Lh(x)(∂Ω).

Remark 1. We define the following:

S = inf
u∈W1,p(x)(Ω)\{0}

∥u∥1,p(x)

∥u∥p∗(x),∂Ω
. (4)

Proposition 2 ([28]). Let I(u) =
∫

Ω(|∇u|p(x) + |u|p(x))dx. If u, un ∈ W1,p(x)(Ω); then, the
relationships listed below are valid:

(i) ∥u∥1,p(·) < 1(= 1;> 1) ⇔ I(u) < 1(= 1;> 1);

(ii) ∥u∥1,p(·) > 1 ⇒ ∥u∥p−

1,p(·) ⩽ I(u) ⩽ ∥u∥p+

1,p(·);
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(iii) ∥u∥1,p(·) < 1 ⇒ ∥u∥p+

1,p(·) ⩽ I(u) ⩽ ∥u∥p−

1,p(·);

(iv) ∥un − u∥1,p(·) → 0 ⇔ I(un − u) → 0.

In 2001, Fan and shen [26] et al., proved the following Hölder inequality.

Proposition 3 ([26]). If 1
p(x) +

1
p′(x) = 1, then for each u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω), the

ensuing inequality can be established:∣∣∣∣∫Ω
uvdx

∣∣∣∣ ⩽ ( 1
p−

+
1

(p−)′

)
∥u∥p(x)∥v∥p′(x).

Remark 2. Similar to Propositions 2 and 3, the above inequalities are also true for
∫

∂Ω |u(x)|z(x)dS.

Proposition 4 ([29]). Assume 1 ⩽ p(x), r(x) < ∞, f ∈ C(Ω ×R2) and

f (x, s, t) ⩽ c1

(
|s|

p(x)
r(x) + |t|

p(x)
r(x)

)
.

Then, for every (u, v) ∈
(

Lp(x)(Ω)
)2

, f (·, u, v) ∈ Lr(x)(Ω) and the operator

T1 :
(

Lp(x)(Ω)
)2

→ Lr(x)(Ω) : (u, v) 7→ f (x, u, v)

is continuous.

3. Limit Index Theory

To solve the problem, we have to recall limit index theory [16]. Set Z is a G-Banach
space; for detailed descriptions of both space Z and topological group G, refer to [30].
To understand the definition of index i, we direct our attention to reference [31]. The
definitions and propositions introduced below play an important role in this paper, which
are related to the index.

Definition 1 ([30]). An index is considered to conform to the d-dimension property when a positive
integer d exists, ensuring that

i(Vdk ∩ S1) = k,

for all dk-dimensional subspaces Vdk ∈ Σ such that Vdk ∩ FixG = {0}, where S1 is the unit
sphere in Z.

Suppose that U and V are closed subspaces of Z, both of which are invariant under
the action of G. Now, consider that

Z = U ⊕ V,

where V is infinite dimensional and

V =
∞⋃

j=1

Vj,

where Vj is a dnj-dimensional G-invariant subspace of V, j = 1, 2, · · · , and V1 ⊂ V2 ⊂
· · ·Vn ⊂ · · · . Set

Zj = U ⊕ Vj,

and ∀A ∈ Σ, and set

Aj = A ⊕ Zj.
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Proposition 5 ([16]). If A, B ∈ Σ, i∞ meets the following conditions:

(i) A = ∅ ⇒ i∞ = −∞;
(ii) A ⊂ B ⇒ i∞(A) ⩽ i∞(B);
(iii) i∞(A

⋃
B) ⩽ i∞(A) + i∞(B);

(iv) i∞(Sp
⋂

V) = 0 if V
⋂

FixG = {0}, where Sp = {z ∈ Z : ∥z∥ = ρ};
(v) If Y0 = Ỹ0 are G-invariant closed subspaces of V, where V = Y0

⊕
Ỹ0 and Ỹ0 ⊂ Vj0 for some

j0, with dimỸ0 = dm, then the i∞(Sp
⋂

Y0) ⩾ −m.

Definition 2 ([16]). A functional J ∈ C1(Z, R) is said to satisfy the (PS)∗c condition if every
sequence {unk} satisfying

unk ∈ Znk , J
(
unk

)
→ c, dJnk

(
unk

)
→ 0, as k → ∞, (5)

possesses a subsequence that converges in Z to a critical point of J, where Znk is the nk-dimension
subspace of Z, Jnk = J|Znk

.

Theorem 2 ([16]). Suppose that

(A1) J ∈ C1(Z, R) is G-invariant.
(A2) If U and V are G-invariant, closed subspaces, then V is infinite-dimensional, where Z =

U ⊕ V.
(A3) If there is a sequence of G-invariant, finite-dimensional subspaces V1 ⊂ V2 ⊂ · · · ⊂ Vj ⊂

· · · , dim Vj = dnj, then V = ∪∞
j=1Vj.

(A4) An index theory, i on Z, exists that satisfies the property of the d-dimension.
(A5) If Y0, Ỹ0, Y1 of V are G-invariant subspaces, then V = Y0 ⊕ Ỹ0, Y1, Ỹ0 ⊂ Vj0 for some j0 and

dim Ỹ0 = dm < dk = dim Y1.
(A6) If there exist α and β, α < β, then J fulfills (PS)∗c , ∀c ∈ [α, β].
(A7) 

(1) either Fix G ⊂ U ⊕ Y1, or Fix G ∩ V = {0},
(2) there is ρ > 0 such that ∀u ∈ Y0 ∩ Sρ, J(u) ⩾ α,
(3) ∀z ∈ U ⊕ Y1, J(z) ⩽ β,

If the limit index that corresponds to i is i∞, then the numbers

cj = inf
i∞(A)⩾j

sup
z∈A

J(u), −k + 1 ⩽ j ⩽ −m,

are critical values of J, and α ⩽ c−k+1 ⩽ · · · ⩽ c−m ⩽ β. Furthermore, while c = cl = · · · =
cl+r, r ⩾ 0, i(Kc) ⩾ r + 1, where Kc = {z ∈ Z : dJ(z) = 0, J(z) = c}.

4. Construction of the Index

The definiton of an energy function related to problem (1) is as follows:

J̃(u, v) =− M̂

(∫
Ω

|∇u|p(x) + |u|p(x)

p(x)
dx

)
+ M̂

(∫
Ω

|∇v|p(x) + |v|p(x)

p(x)
dx

)

−
∫

∂Ω

1
p∗(x)

|u|p∗(x)dS −
∫

∂Ω

1
p∗(x)

|v|p∗(x)dS −
∫

Ω
F(x, u, v)dx,

(6)
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for (u, v) ∈ W1,p(x)(Ω)× W1,p(x)(Ω).〈
dJ̃(u, v), (û, v̂)

〉
= −M

(∫
Ω

|∇u|p(x) + |u|p(x)

p(x)
dx

) ∫
Ω
(|∇u|p(x)−2∇u∇û + |u|p(x)−2uû)dx

+ M

(∫
Ω

|∇v|p(x) + |v|p(x)

p(x)
dx

) ∫
Ω
(|∇v|p(x)−2∇v∇v̂ + |v|p(x)−2vv̂)dx

−
∫

∂Ω
|u|p∗(x)−2uûdS −

∫
∂Ω

|v|p∗(x)−2vv̂dS

−
∫

Ω
Fu(x, u, v)ûdx −

∫
Ω

Fv(x, u, v)v̂dx,

(7)

for every (û, v̂) ∈ W1,p(x)(Ω)× W1,p(x)(Ω).

Now, take G1 to be the group of orthogonal linear transformations in RN , where
G1 = O(N).

EG1 := W1,p(x)
O(N)

(Ω) =
{

u ∈ W1,p(x)(Ω) : gu(x) = u(g−1x) = u(x), g ∈ O(N)
}

.

Denote X = EG1 × EG1 . The condition (F1) indicates that J̃ is O(N)-invariant. According
to [32], we may deduce that (u, v) is a critical point of J̃ precisely when it is a critical
point for J = J̃|X . Therefore, demonstrating the existence of critical points of J within X is
sufficient.

In accordance with [33], there exists a Schauder basis, {e′n}
∞
n=1, for W1,p(x)(Ω). Let

en =
∫

O(N) e′n(g(x))dµg, selecting one in identical elements where necessary. It is obvious
that {en}∞

n=1 is a Schauder basis for EG1 , since EG1 is reflexive, and

e∗n(em) = δn,m =

{
1, if n = m,
0, if n ̸= m,

forms a basis for E∗
G1

. Set

E(n)
G1

= span{e1, . . . , en}, E(n)⊥
G1

= span{en+1, . . .}

and

E∗(n)
G1

= span{e∗1 , . . . , e∗n}.

Let Pn : EG1 → E(n)
G1

be the projector corresponding to decomposition EG1 = E(n)
G1

⊕

E(n)⊥
G1

and let P∗
n : E∗

G1
→ E∗(n)

G1
be the projector corresponding to the decomposition, and

E∗
G1

= E∗(n)
G1

⊕ E∗(n)⊥
G1

. Then, Pnu → u, P∗
n v∗ → v∗ for any u ∈ EG1 , v∗ ∈ E∗

G1
as n → ∞ and

⟨P∗
n v∗, u⟩ = ⟨v∗, Pnu⟩.

Now, Denote Xn = EG1 × E(n)
G1

. Through setting τ(u, v) = (−u,−v), we then define a
group action, G2 = {1, τ} ∼= Z2; thus, fix G = {0} × {0}. Define the following:

Σ := {A ⊂ X\{0} : A is closed in X and (u, v) ∈ A ⇒ (−u,−v) ∈ A}.

Define an index γ on Σ with

γ(A) =


min

{
N ∈ Z : ∃h ∈ C(A,RN\{0}) such that h(−u,−v) = h(u, v)

}
,

0, if A = ∅,
+∞, if suchanhdoes not exist.
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After that, we derive the statement from reference [34]: We ascertain that γ is an index
that aligns with the attributes outlined in Definition 5.9 in reference [31]. Furthermore, γ
meets the conditions of a one-dimension property. By applying Definition 2.4 in [16], we
derive a limit index, γ∞, in relation to (Xn) from γ.

5. Local Palais–Smale Condition

Lemma 1. Suppose that conditions (M1) − (M2),(F1) − (F3) hold;
{(

unk , vnk

)}
is a (PS)∗c

sequence that satisfies (5), and then
{(

unk , vnk

)}
is bounded in X.

Proof. Let
∥∥unk

∥∥
1,p(x) > 1 and

∥∥vnk

∥∥
1,p(x) > 1 for any integer n. Using conditions

(M1), (F2) and Proposition 2, we have

o(1)
∥∥unk

∥∥
1,p(x)

⩾ −
〈
dJnk

(
unk , vnk

)
,
(
unk , 0

)〉
= M

(∫
Ω

|∇unk |p(x) + |unk |p(x)

p(x)
dx

) ∫
Ω
(
∣∣∇unk

∣∣p(x)
+
∣∣unk

∣∣p(x)
) dx +

∫
∂Ω

∣∣unk

∣∣p∗(x) dS

+
∫

Ω
Fu
(

x, unk , vnk

)
unk dx

⩾ m0

∫
Ω
(
∣∣∇unk

∣∣p(x)
+
∣∣unk

∣∣p(x)
) dx +

∫
∂Ω

∣∣unk

∣∣p∗(x) dS

⩾ m0
∥∥unk

∥∥p−

1,p(x) +
∫

∂Ω

∣∣unk

∣∣p∗(x) dS,

since p− > 1, we can infer that
∥∥unk

∥∥
1,p(x) is bounded. Based on (M1), (M2), and (F3),

we have

c +
∥∥unk

∥∥
1,p(x) +

∥∥vnk

∥∥
1,p(x)

⩾ J
(
unk , vnk

)
− ⟨dJnk

(
unk , vnk

)
, (

1
p−

unk ,
1

p−∗
vnk )⟩

= −M̂

(∫
Ω

|∇unk |p(x) + |unk |p(x)

p(x)
dx

)
+ M̂

(∫
Ω

|∇vnk |p(x) + |vnk |p(x)

p(x)
dx

)

−
∫

∂Ω

1
p∗(x)

|unk |
p∗(x)dS −

∫
∂Ω

1
p∗(x)

|vnk |
p∗(x)dS −

∫
Ω

F(x, unk , vnk )dx

+
1

p−
M

(∫
Ω

|∇unk |p(x) + |unk |p(x)

p(x)
dx

) ∫
Ω
(|∇unk |

p(x) + |unk |
p(x))dx

− 1
p−∗

M

(∫
Ω

|∇vnk |p(x) + |vnk |p(x)

p(x)
dx

) ∫
Ω
(|∇vnk |

p(x) + |vnk |
p(x))dx

+
1

p−

∫
∂Ω

|unk |
p∗(x)dS +

1
p−∗

∫
∂Ω

|vnk |
p∗(x)dS

+
1

p−

∫
Ω

Fu(x, unk , vnk )unk dx +
1

p−∗

∫
Ω

Fv(x, unk , vnk )vnk dx.

Since
∥∥unk

∥∥
1,p(x) is bounded,

M̂

(∫
Ω

|∇unk |p(x) + |unk |p(x)

p(x)
dx

)
,

M

(∫
Ω

|∇unk |p(x) + |unk |p(x)

p(x)
dx

) ∫
Ω
(|∇unk |

p(x) + |unk |
p(x))dx
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are also bounded. Thus, there exists C > 0, and we can obtain

1
p−

M

(∫
Ω

|∇unk |p(x) + |unk |p(x)

p(x)
dx

) ∫
Ω
(|∇unk |

p(x) + |unk |
p(x))dx

− M̂

(∫
Ω

|∇unk |p(x) + |unk |p(x)

p(x)
dx

)
⩾ −C.

Therefore,

c +
∥∥unk

∥∥
1,p(x) +

∥∥vnk

∥∥
1,p(x)

⩾
1
θ

M

(∫
Ω

|∇vnk |p(x) + |vnk |p(x)

p(x)
dx

) ∫
Ω

|∇vnk |p(x) + |vnk |p(x)

p(x)
dx

− 1
p−∗

M

(∫
Ω

|∇vnk |p(x) + |vnk |p(x)

p(x)
dx

) ∫
Ω
(|∇vnk |

p(x) + |vnk |
p(x))dx

− 1
p−∗

∫
∂Ω

|unk |
p∗(x)dS +

1
p−

∫
∂Ω

|unk |
p∗(x)dS − 1

p−∗

∫
∂Ω

|vnk |
p∗(x)dS

+
1

p−∗

∫
∂Ω

|vnk |
p∗(x)dS −

∫
Ω

F(x, unk , vnk )dx +
∫

Ω
F(x, unk , vnk )dx − C

⩾ (
1

θp+
− 1

p−∗
)m0

∥∥vnk

∥∥p−

1,p(x) − C.

This implies that {vnk} is bounded in EG1 since p− > 1. Thus,
{(

unk , vnk

)}
is bounded

in X.

Due to the boundedness of {unk} and {vnk} in EG1 , up to a subsequence,

unk ⇀ u, vnk ⇀ v in EG1 ,

unk → u a.e. on Ω,

vnk → v a.e. on Ω.

(8)

In addition, we can presume that

∫
Ω

|∇unk |p(x) + |unk |p(x)

p(x)
dx → t1 ⩾ 0, as k → ∞,

∫
Ω

|∇vnk |p(x) + |vnk |p(x)

p(x)
dx → t2 ⩾ 0, as k → ∞.

Accordingly, we obtain the next lemma:

Lemma 2. Assume that (F1)− (F3) hold; then, for every (û, v̂) ∈ X, we can get

(1) ∫
Ω
|∇unk |

p(x)−2∇unk∇ûdx →
∫

Ω
|∇u|p(x)−2∇u∇ûdx,∫

Ω
|∇vnk |

p(x)−2∇vnk∇v̂dx →
∫

Ω
|∇v|p(x)−2∇v∇v̂dx.

(9)

(2) ∫
Ω

Fu
(
x, unk , vnk

)
ûdx →

∫
Ω

Fu(x, u, v)ûdx,∫
Ω

Fv
(
x, unk , vnk

)
v̂dx →

∫
Ω

Fv(x, u, v)v̂dx.
(10)
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(3)

− M(t1)
∫

Ω
(|∇u|p(x)−2∇u∇û + |u|p(x)−2uû)dx + M(t2)

∫
Ω
(|∇v|p(x)−2∇v∇v̂ + |v|p(x)−2vv̂)dx

−
∫

∂Ω
|u|p∗(x)−2uûdS −

∫
∂Ω

|v|p∗(x)−2vv̂dS −
∫

Ω
Fu(x, u, v)ûdx −

∫
Ω

Fv(x, u, v)v̂dx = 0.
(11)

Proof. (1) To verify (9), we recognize renowned inequalities
〈
|x|p(x)−2x − |y|p(x)−2y, x − y

〉
⩾ C|x − y|p(x), if p(x) ⩾ 2,

(|x|+ |y|)2−p(x)
〈
|x|p(x)−2x − |y|p(x)−2y, x − y

〉
⩾ C|x − y|2, if 1 < p(x) < 2.

for a constant C > 0. Define

P1(x) =
〈
|∇unk |

p(x)−2∇unk − |∇u|p(x)−2∇u,∇unk −∇u
〉
(x) ⩾ 0,

P2(x) =
〈
|∇vnk |

p(x)−2∇vnk − |∇v|p(x)−2∇v,∇vnk −∇v
〉
(x) ⩾ 0.

Let ψ be a C∞ function such that 0 ⩽ ψ ⩽ 1; then, for every R > 0,

ψ ≡ 1 in BR(0) and ψ ≡ 0 in Ω \ B2R(0).

Observing that
〈
dJ(unk , vnk ), ((unk − u)ψ, 0)

〉
→ 0, we have〈

dJ(unk , vnk ), ((unk − u)ψ, 0)
〉

= −M

(∫
Ω

|∇unk |p(x) + |unk |p(x)

p(x)
dx

) ∫
Ω

(
|∇unk |

p(x)−2∇unk∇(unk − u)ψ

+ |∇unk |
p(x)−2∇unk (unk − u)∇ψ + |unk |

p(x)−2unk (unk − u)ψ
)

dx

−
∫

∂Ω
|unk |

p∗(x)−2unk (unk − u)ψdS −
∫

Ω
Fu(x, unk , vnk )(unk − u)ψdx

= −M

(∫
Ω

|∇unk |p(x) + |unk |p(x)

p(x)
dx

) ∫
Ω

(
P1(x)ψ + |∇u|p(x)−2∇u∇(unk − u)ψ

+ |∇unk |
p(x)−2∇unk (unk − u)∇ψ + |unk |

p(x)−2unk (unk − u)ψ
)

dx

−
∫

∂Ω
|unk |

p∗(x)−2unk (unk − u)ψdS −
∫

Ω
Fu(x, unk , vnk )(unk − u)ψdx → 0.

From the Hölder inequality, the boundedness of unk in EG1 , and Remark 1, we derive
the following: ∫

Ω
|∇unk |

p(x)−2∇unk (unk − u)∇ψdx

⩽
∥∥∥∣∣∇unk

∣∣p(x)−1
∥∥∥

Lp′(x)

∥∥unk − u
∥∥

Lp(x)∥∇ψ∥∞

⩽ C′∥∥unk − u
∥∥

Lp(x) → 0.

Similarly, we can also get ∫
Ω
|unk |

p(x)−2unk (unk − u)ψdx → 0,∫
∂Ω

|unk |
p∗(x)−2unk (unk − u)ψdS → 0.
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From Proposition 2, the assumptions of continuity for F, and (F3), we have the following:∫
Ω

Fu(x, unk , vnk )(unk − u)ψdx

⩽
∫

Ω
Fu(x, unk , vnk )(unk − u)dx

⩽
∫

Ω
C1

(
|unk |

r(x) + |vnk |
r(x)
)(

unk − u
)
dx + C2

∫
Ω

(
unk − u

)
dx

⩽ C1

∫
Ω
|unk |

r(x)(unk − u
)
dx + C1

∫
Ω
|vnk |

r(x)(unk − u
)
dx

+ C2

∫
Ω

(
unk − u

)
dx

⩽ C1

∥∥∥|unk |
r(x)
∥∥∥

Lp′(x)

∥∥unk − u
∥∥

Lp(x) + C1

∥∥∥|vnk |
r(x)
∥∥∥

Lp′(x)

∥∥unk − u
∥∥

Lp(x)

+ C2

∫
Ω

(
unk − u

)
dx → 0.

In addition, since unk ⇀ u in EG1 ,∫
Ω
|∇u|p(x)−2∇u∇(unk − u)ψdx → 0.

From (M1), we can obtain ∫
Ω

P1(x)ψdx → 0.

Then,

0 ⩽
∫

BR(0)
P1(x)dx ⩽

∫
Ω

P1(x)ψdx → 0.

Hence, we can get∫
BR(0)

(
|∇unk |

p(x)−2∇unk − |∇u|p(x)−2∇u
)(

∇unk −∇u
)
dx → 0.

If p(x) ⩾ 2, we can obtain∫
BR(0)

|∇unk −∇u|p(x)dx ⩽ C
∫

BR(0)

(
|∇unk |

p(x)−2∇unk − |∇u|p(x)−2∇u
)(

∇unk −∇u
)
dx → 0.

If 1 < p(x) < 2, from Proposition 3, we have∫
BR(0)

|∇unk −∇u|p(x)dx ⩽ C∥gn∥
L

2
p(x) (BR(0))

∥hn∥
L

2
2−p(x) (BR(0))

,

where

gn(x) =
|∇unk (x)−∇u(x)|p(x)

(|∇unk (x)|+ |∇u(x)|)
p(x)(2−p(x))

2

,

hn(x) = |∇unk (x) +∇u(x)|
p(x)(2−p(x))

2 ,

and C > 0. By computing directly, we note that

{
∥hn∥

L
2

2−p(x) (BR(0))

}
is a bounded se-

quence, and ∫
BR(0)

|gn|
2

p(x) dx ⩽ C
∫

BR(0)
P1(x)dx.

Thus,

lim
n→∞

∫
BR(0)

|∇unk −∇u|p(x)dx = 0.
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Therefore, ∇unk → ∇u in (Lp(x)(BR(0)))N . Hence, up to a subsequence, ∇unk → ∇u a.e.
in BR(0). Since R is arbitrary, up to a subsequence, we have ∇unk → ∇u a.e. in Ω. Because(
|∇unk |p(x)−2∇unk

)
is bounded in (L

p(x)
p(x)−1 (Ω))N , up to a subsequence, |∇unk |p(x)−2∇unk ⇀

|∇u|p(x)−2∇u in (L
p(x)

p(x)−1 (Ω))N . Similarly, we can deduce that

|∇vnk |p(x)−2∇vnk ⇀ |∇v|p(x)−2∇v in (L
p(x)

p(x)−1 (Ω))N . Thus, (9) holds.
(2) From (8), we can get

(unk , vnk ) → (u, v) in
(

Lp(x)(Ω) ∩ Lm1(x)(Ω)
)
×
(

Lp(x)(Ω) ∩ Lm2(x)(Ω)
)

.

From Hölder inequality,∫
Ω

∣∣Fu
(

x, unk , vnk

)
û − Fu(x, u, v)û

∣∣dx ⩽ 2
∣∣Fu
(
x, unk , vnk

)
− Fu(x, u, v)

∣∣
m′

1
|û|m1 ,∫

Ω

∣∣Fv
(

x, unk , vnk

)
û − Fv(x, u, v)û

∣∣dx ⩽ 2
∣∣Fv
(
x, unk , vnk

)
− Fv(x, u, v)

∣∣
m′

2
|v̂|m2 ,

where 1
m′

1(x) +
1

m1(x) = 1, 1
m′

2(x) +
1

m2(x) = 1, m1(x), m2(x) < p∗(x).

From (F3) and Proposition 4, we have

lim
n→∞

Fu
(
x, unk , vnk

)
= Fu(x, u, v),

lim
n→∞

Fv
(
x, unk , vnk

)
= Fv(x, u, v).

Then, (10) holds. Using (F3), we can also obtain∫
Ω

Fu(x, unk , vnk )unk dx →
∫

Ω
Fu(x, u, v)udx, as n → ∞,∫

Ω
Fv(x, unk , vnk )vnk dx →

∫
Ω

Fv(x, u, v)vdx, as n → ∞.
(12)

(3) Since unk ⇀ u, vnk ⇀ v in EG1 , we also have∫
Ω
|unk |

p(x)−2unk ûdx →
∫

Ω
|u|p(x)−2uûdx,∫

Ω
|vnk |

p(x)−2vnk v̂dx →
∫

Ω
|v|p(x)−2vv̂dx,∫

∂Ω
|unk |

p∗(x)−2unk ûdS →
∫

∂Ω
|u|p∗(x)−2uûdS,∫

∂Ω
|vnk |

p∗(x)−2vnk v̂dS →
∫

∂Ω
|v|p∗(x)−2vv̂dS.

Observing the continuity of M(t), we can get

M

(∫
Ω

|∇unk |p(x) + |unk |p(x)

p(x)
dx

)
→ M(t1) ⩾ m0 > 0, as k → ∞,

M

(∫
Ω

|∇vnk |p(x) + |vnk |p(x)

p(x)
dx

)
→ M(t2) ⩾ m0 > 0, as k → ∞.
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From (7), it is evident that

− M

(∫
Ω

|∇unk |p(x) + |unk |p(x)

p(x)
dx

) ∫
Ω
(|∇unk |

p(x)−2∇unk∇û + |unk |
p(x)−2unk û)dx

+ M

(∫
Ω

|∇vnk |p(x) + |vnk |p(x)

p(x)
dx

) ∫
Ω
(|∇vnk |

p(x)−2∇vnk∇v̂ + |vnk |
p(x)−2vnk v̂)dx

−
∫

∂Ω
|unk |

p∗(x)−2unk ûdS −
∫

∂Ω
|vnk |

p∗(x)−2vnk v̂dS

−
∫

Ω
Fu(x, unk , vnk )ûdx −

∫
Ω

Fv(x, unk , vnk )v̂dx → 0,

and then (11) holds.
Set (û, v̂) = (u, 0) in (11); then, the following equation holds:

M(t1)
∫

Ω
(|∇u|p(x) + |u|p(x))dx +

∫
∂Ω

|u|p∗(x)dS

+
∫

Ω
Fu(x, u, v)udx = 0.

(13)

Similarly,

M(t2)
∫

Ω
(|∇v|p(x) + |v|p(x))dx −

∫
∂Ω

|v|p∗(x)dS

−
∫

Ω
Fv(x, u, v)vdx = 0.

(14)

Lemma 3. Suppose that
{(

unk , vnk

)}
is a (PS)∗c sequence; if

c ∈
(
−∞,

(
1

θp+
− 1

p−∗

)
m1

)
,

where m1 = min

m
p+∗

p+∗ −p−
0 S

p− p+∗
p+∗ −p− , m

p+∗
p+∗ −p+

0 S
p+ p+∗

p+∗ −p+ , m
p−∗

p−∗ −p−
0 S

p− p−∗
p−∗ −p− , m

p−∗
p−∗ −p+

0 S
p+ p−∗

p−∗ −p+

, then

unk → u, vnk → v in X.

Proof. From (7)

〈
dJnk

(
unk , vnk

)
,
(
unk , 0

)〉
=− M

(∫
Ω

|∇unk |p(x) + |unk |p(x)

p(x)
dx

) ∫
Ω
(|∇unk |

p(x) + |unk |
p(x))dx

−
∫

∂Ω
|unk |

p∗(x)dS −
∫

Ω
Fu(x, unk , vnk )unk dx → 0.

(15)

Thus, according to the Brézis–Lieb lemma [35], let ωnk = unk − u; (15) can be changed
to

− M

(∫
Ω

|∇unk |p(x) + |unk |p(x)

p(x)
dx

) ∫
Ω
(|∇ωnk |

p(x) + |ωnk |
p(x))dx

− M

(∫
Ω

|∇unk |p(x) + |unk |p(x)

p(x)
dx

) ∫
Ω
(|∇u|p(x) + |u|p(x))dx

−
∫

∂Ω
|ωnk |

p∗(x)dS −
∫

∂Ω
|u|p∗(x)dS −

∫
Ω

Fu(x, unk , vnk )unk dx → 0.

(16)
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It follows from (12), (13), and (16) that

M

(∫
Ω

|∇unk |p(x) + |unk |p(x)

p(x)
dx

) ∫
Ω
(|∇ωnk |

p(x) + |ωnk |
p(x))dx +

∫
∂Ω

|ωnk |
p∗(x)dS → 0,

which yields

M

(∫
Ω

|∇unk |p(x) + |unk |p(x)

p(x)
dx

) ∫
Ω
(|∇ωnk |

p(x) + |ωnk |
p(x))dx → 0,

so unk → u in EG1 .
In addition,

〈
dJnk

(
unk , vnk

)
,
(
0, vnk

)〉
=M

(∫
Ω

|∇vnk |p(x) + |vnk |p(x)

p(x)
dx

) ∫
Ω
(|∇vnk |

p(x) + |vnk |
p(x))dx

−
∫

∂Ω
|vnk |

p∗(x)dS −
∫

Ω
Fv(x, unk , vnk )vnk dx → 0.

(17)

Let ζnk = vnk − v, and (17) can be changed to

M

(∫
Ω

|∇vnk |p(x) + |vnk |p(x)

p(x)
dx

) ∫
Ω
(|∇ζnk |

p(x) + |ζnk |
p(x))dx

+ M

(∫
Ω

|∇vnk |p(x) + |vnk |p(x)

p(x)
dx

) ∫
Ω
(|∇v|p(x) + |v|p(x))dx

−
∫

∂Ω
|ζnk |

p∗(x)dS −
∫

∂Ω
|v|p∗(x)dS −

∫
Ω

Fv(x, unk , vnk )vnk dx → 0.

(18)

It follows from (12), (14), and (18) that

M

(∫
Ω

|∇vnk |p(x) + |vnk |p(x)

p(x)
dx

) ∫
Ω
(|∇ζnk |

p(x) + |ζnk |
p(x))dx −

∫
∂Ω

|ζnk |
p∗(x)dS → 0. (19)

From (19), we may assume

lim
n→∞

M

(∫
Ω

∣∣∇vnk

∣∣p(x)
+
∣∣vnk

∣∣p(x)

p(x)
dx

) ∫
Ω

(
|∇ζnk

∣∣p(x)
+
∣∣ζnk

∣∣p(x)
)dx

= M(t2) lim
n→∞

∫
Ω

(
|∇ζnk

∣∣p(x)
+
∣∣ζnk

∣∣p(x)
)dx = m,

lim
n→∞

∫
∂Ω

∣∣ζnk

∣∣p∗(x)dS = m.

If m = 0, then vnk → v in EG1 , and the proof is done. If not, we claim the following:

m ⩾ m1 = min

m
p+∗

p+∗ −p−
0 S

p− p+∗
p+∗ −p− , m

p+∗
p+∗ −p+

0 S
p+ p+∗

p+∗ −p+ , m
p−∗

p−∗ −p−
0 S

p− p−∗
p−∗ −p− , m

p−∗
p−∗ −p+

0 S
p+ p−∗

p−∗ −p+

.

In fact, from Remark 1, Proposition 2, and Remark 2, we have

(i) if
∥∥ζnk

∥∥
1,p(x) > 1,

∥∥ζnk

∥∥
p∗(x),∂Ω > 1.

m = M(t2) lim
n→∞

∫
Ω

(
|∇ζnk

∣∣p(x)
+
∣∣ζnk

∣∣p(x)
)dx

⩾ m0 lim
n→∞

Sp−∥∥ζnk

∥∥p−

p∗(x),∂Ω

⩾ m0Sp−m
p−

p+∗ ,
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then m ⩾ m
p+∗

p+∗ −p−
0 S

p− p+∗
p+∗ −p− .

(ii) if
∥∥ζnk

∥∥
1,p(x) < 1,

∥∥ζnk

∥∥
p∗(x),∂Ω > 1.

m = M(t2) lim
n→∞

∫
Ω

(
|∇ζnk

∣∣p(x)
+
∣∣ζnk

∣∣p(x)
)dx

⩾ m0 lim
n→∞

Sp+∥∥ζnk

∥∥p+

p∗(x),∂Ω

⩾ m0Sp+m
p+

p+∗ ,

then m ⩾ m
p+∗

p+∗ −p+

0 S
p+ p+∗

p+∗ −p+ .
(iii) if

∥∥ζnk

∥∥
1,p(x) > 1,

∥∥ζnk

∥∥
p∗(x),∂Ω < 1.

m = M(t2) lim
n→∞

∫
Ω

(
|∇ζnk

∣∣p(x)
+
∣∣ζnk

∣∣p(x)
)dx

⩾ m0 lim
n→∞

Sp−∥∥ζnk

∥∥p−

p∗(x),∂Ω

⩾ m0Sp−m
p−

p−∗ ,

then m ⩾ m
p−∗

p−∗ −p−
0 S

p− p−∗
p−∗ −p− .

(iv) if
∥∥ζnk

∥∥
1,p(x) < 1,

∥∥ζnk

∥∥
p∗(x),∂Ω < 1.

m = M(t2) lim
n→∞

∫
Ω

(
|∇ζnk

∣∣p(x)
+
∣∣ζnk

∣∣p(x)
)dx

⩾ m0 lim
n→∞

Sp+∥∥ζnk

∥∥p+

p∗(x),∂Ω

⩾ m0Sp+m
p+

p−∗ ,

then m ⩾ m
p−∗

p−∗ −p+

0 S
p+ p−∗

p−∗ −p+ .

Note that

m1 = min

m
p+∗

p+∗ −p−
0 S

p− p+∗
p+∗ −p− , m

p+∗
p+∗ −p+

0 S
p+ p+∗

p+∗ −p+ , m
p−∗

p−∗ −p−
0 S

p− p−∗
p−∗ −p− , m

p−∗
p−∗ −p+

0 S
p+ p−∗

p−∗ −p+

;

then, m ⩾ m1.
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According to (F4) and (M2), we obtain

c = lim
n→∞

[J(unk , vnk )− ⟨dJnk (unk , vnk ), (
1

p−
unk ,

1
p−∗

vnk )⟩]

⩾ lim
n→∞

[
− M̂

(∫
Ω

|∇unk |p(x) + |unk |p(x)

p(x)
dx

)

+
1

p−
M

(∫
Ω

|∇unk |p(x) + |unk |p(x)

p(x)
dx

) ∫
Ω
(|∇unk |p(x) + |unk |p(x))dx

+
1
θ

M

(∫
Ω

|∇vnk |p(x) + |vnk |p(x)

p(x)
dx

) ∫
Ω

|∇vnk |p(x) + |vnk |p(x)

p(x)
dx

− 1
p−∗

M

(∫
Ω

|∇vnk |p(x) + |vnk |p(x)

p(x)
dx

) ∫
Ω
(|∇vnk |p(x) + |vnk |p(x))dx

− 1
p−∗

∫
∂Ω

|unk |p∗(x)dS +
1

p−

∫
∂Ω

|unk |p∗(x)dS − 1
p−∗

∫
∂Ω

|vnk |p∗(x)dS

+
1

p−∗

∫
∂Ω

|vnk |p∗(x)dS −
∫

Ω
F(x, unk , vnk )dx +

1
p−

∫
Ω

Fu(x, unk , vnk )unk dx

+
1

p−∗
Fv(x, unk , vnk )vnk dx

]

⩾ lim
n→∞

[
(

1
θp+

− 1
p−∗

)M

(∫
Ω

|∇vnk |p(x) + |vnk |p(x)

p(x)
dx

) ∫
Ω
(|∇ζnk |p(x) + |ζnk |p(x))dx

+
∫

Ω
(|∇v|p(x) + |v|p(x))dx

]

⩾ (
1

θp+
− 1

p−∗
)m

⩾ (
1

θp+
− 1

p−∗
)m1.

This is a contradiction. Consequently, we have finished proving Lemma 3.

6. Proof of Theorem 1

Next, we begin the proof of Theorem 2.
Denote

X = U ⊕ V, U = EG1 × {0}, V = {0} × EG1 ,

Y0 = {0} × Em⊥
G1

, Y1 = {0} × E(k)
G1

,

where m and k are to be determined. Obviously, (A1), (A2), and (A4) in Theorem 2 are
fulfilled. Let Vj = E(j)

G1
= span

{
e1, e2, · · · , ej

}
; then, (A3) holds. Since 1 = dimỸ0 < k0 <

dimY1, (A5) is true. Now, we verify (2), (3) of (A7).
(i) From condition (M2), it is guaranteed that there are constants C3, C4 > 0, ensuring that

M̂(t) ⩽ C3tθ + C4, ∀t ⩾ 0. (20)
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For every (u, v) ∈ U
⊕

Y1, from (20), (F5), we have

J(u, v) = −M̂

(∫
Ω

|∇u|p(x) + |u|p(x)

p(x)
dx

)
+ M̂

(∫
Ω

|∇v|p(x) + |v|p(x)

p(x)
dx

)

−
∫

∂Ω

1
p∗(x)

|u|p∗(x)dS −
∫

∂Ω

1
p∗(x)

|v|p∗(x)dS −
∫

Ω
F(x, u, v)dx

⩽ C3

(∫
Ω

|∇v|p(x) + |v|p(x)

p(x)
dx

)θ

+ C4 −
∫

Ω
(L|v|θp+ − ξ)dx

⩽
C3

(p−)θ

(∫
Ω
|∇v|p(x) + |v|p(x)dx

)θ

−
∫

Ω
(L|v|θp+ − ξ)dx + C4.

If ∥v∥1,p(x) < 1, then

J(u, v) ⩽
C3

(p−)θ
∥v∥θp−

1,p(x) − L|v|θp+

p(x) + ξ|Ω|+ C4

⩽
C3

(p−)θ
+ ξ|Ω|+ C4.

If ∥v∥1,p(x) > 1, it follows from the equivalence of all norms on the finite-dimensional
space Y1; then, a constant C5 > 0 can be found such that ∥v∥1,p(x) ⩽ C5|v|p(x). From (F5),
we derive

J(u, v) ⩽
C3

(p−)θ
∥v∥θp+

1,p(x) − L|v|θp+

p(x) + ξ|Ω|+ C4

⩽
C3C5

(p−)θ
|v|θp+

p(x) − L|v|θp+

p(x) + ξ|Ω|+ C4

= (C6 − L)|v|θp+

p(x) + ξ|Ω|+ C4,

where C6 = C3C5
(p−)θ . By taking L ⩾ C6, we obtain J(u, v) ⩽ ξ|Ω|+ C4.

Let β = C3
(p−)θ + ξ|Ω|+ C4, so we obtain (3) in (A7).

(ii) If (0, v) ∈ Y0
⋂

Bρ(0) (where ρ is to be determined), then using (M1), (M2), (F2), (F3)
and Proposition 1, we have

J(0, v) = M̂

(∫
Ω

|∇v|p(x) + |v|p(x)

p(x)
dx

)
−
∫

∂Ω

1
p∗(x)

|v|p∗(x)dS −
∫

Ω
F(x, 0, v)dx

⩾
1
θ

M

(∫
Ω

|∇v|p(x) + |v|p(x)

p(x)
dx

) ∫
Ω

|∇v|p(x) + |v|p(x)

p(x)
dx − 1

p−∗

∫
∂Ω

|v|p∗(x)dS

−
∫

Ω

(
C1|v|r(x) + C2

)
dx

⩾
m0

θp+
min

{
∥v∥p−

1,p(x), ∥v∥p+

1,p(x)

}
− C7

p−∗
max

{
∥v∥p−∗

1,p(x), ∥v∥p+∗
1,p(x)

}
− C8 max

{
∥v∥r−

1,p(x), ∥v∥r+
1,p(x)

}
− C2|Ω|.

Let t = ∥v∥1,p(x), and analyze the function h : (0,+∞) → R, which is provided via

h(t) =
m0

θp+
min

{
tp− , tp+

}
− C7

p−∗
max

{
tp−∗ , tp+∗

}
− C8 max

{
tr− , tr+

}
− C2|Ω|,

and since p− < p+ < p−∗ < p+∗ , we have h(t) → −∞, as t → +∞. Choose α < β; then, if
t0 > 0 exists, J(0, v) ⩾ h(t0) = α < β for ∥v∥1,p(x) = t0 = ρ holds. That is (2) of (A7).
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On the basis of Lemma 3, J(u, v) meets the (PS)∗c condition for any c ∈ [α, β], which
means that (A6) in Theorem 2 holds. Thus, in accordance with Theorem 2,

cj = inf
i∞(A)⩾j

sup
(u,v)∈A

J(u, v), −k0 + 1 ⩽ j ⩽ −1

are critical values of J, α ⩽ c−k0+1 ⩽ · · · ⩽ c−1 ⩽ β; then, J has at least k0 − 1 pairs of
critical points.

7. Conclusions

In this paper, we have mainly dealt with a class of noncooperative Kirchhoff-type vari-
able exponent elliptic systems with nonlinear boundary conditions. Using the variational
method, the solutions to the problem (1) correspond to the critical points of the functional
J. Combining the (PS)∗c condition without the concentration compactness principle, we
used limit index theory for the functional J and got at least k0 − 1 pairs of critical points;
that is, a multiplicity of solutions for problem (1) can be obtained.

Nevertheless, there are still many challenging problems to be addressed. For instance,
we can try to add the nonlinear terms with parameters to the elliptic system. Furthermore,
problem (1) can be extended to fractional elliptic systems. These problems will be further
investigated in our future work.
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