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Abstract: Eutrophication caused by excessive discharging of phosphorus is a global water pollution
problem. To further improve the phosphorus adsorption capacity of natural palygorskite and easy
separation from liquid, magnetic thermal modified palygorskite nanocomposite (MTPG) was firstly
fabricated and then characterized by XRD and SEM-EDS. The characterization results showed Fe3O4

in nano-diameters was prosperously immobilized on the surface of thermal modified palygorskite
(TPG) calcinated at a temperature of 700 ◦C. Abundant nano-scale Fe3O4 loading almost doubled
the specific surface area (SSA) of TPG. The adsorption of phosphate onto MTPG was highly pH-
dependent and slightly influenced by ionic strength. According to the results from the Langmuir
model, the maximum adsorptive quantity of 400.00 mg/g was counted at 298 K. The regeneration ratio
was 80.98% after three regeneration cycles. The process of phosphate adsorption was confirmed to be
an endothermic and spontaneous chemisorption. Thus, the cost-effective, excellent phosphate affinity,
great magnetic recovery performance, and high adsorption capacity of MTPG had an enormous
promising utilization on phosphate removal from aqueous solutions.

Keywords: phosphorus; palygorskite; magnetic recovery; kinetics; thermodynamics

1. Introduction

Phosphorus is a crucial nutrient substance for growth of organisms on earth. Huge
demand triggers excessive discharge of phosphorus from industrial (mainly detergents
and cleaners) and agricultural systems, which causes eutrophication of water bodies and
is harmful for aquatic plants. The World Health Organization (WHO) has established a
maximum discharge criteria of 0.5–1.0 mg P/L for the receiving water body [1]. In practical
engineering application, numerous developed treatment techniques have been verified to
scavenge phosphorus from aquatic medium, including chemical method (mainly including
precipitation and ion exchange), biological method, and adsorption [2–5]. Among those, the
success of the biological treatment technique in phosphorus removal has been certificated
for a long time. However, complex operation system (including aeration, non-aeration, and
backflow), high operation cost, complex management, and large structure floor area limit
its practical application. It was recommended for the treatment of wastewater containing
0.3–2 mg/L of phosphorus [6]. Additionally, the excess sludge containing phosphorus
required further thickening and dehydration, otherwise, it will cause secondary pollution.
Chemical method is widely applied for phosphorus removal, but the addition of metal salts
causes heavy effluent color and large production of sludge [2]. Importantly, phosphorus
is one type of non-renewable resource in the abundant natural resources [7–9]. Thus,
the growing needs of phosphorus would be possibly overcome by recovering phosphate
from wastewater, which become a global consensus [7]. The technology of adsorption
attracts great attention on phosphate removal and recycling due to its convenient operation
process, flexibility of design, low cost, and high effectiveness and reusability [3]. However,

Minerals 2023, 13, 293. https://doi.org/10.3390/min13020293 https://www.mdpi.com/journal/minerals

https://doi.org/10.3390/min13020293
https://doi.org/10.3390/min13020293
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/minerals
https://www.mdpi.com
https://orcid.org/0000-0002-1414-7973
https://orcid.org/0000-0002-0871-3086
https://doi.org/10.3390/min13020293
https://www.mdpi.com/journal/minerals
https://www.mdpi.com/article/10.3390/min13020293?type=check_update&version=1


Minerals 2023, 13, 293 2 of 13

the adsorption process highly relies on the properties of adsorbents. To accommodate
wide concentration range of phosphate removal and achieve an ultralow level of effluent
requirement, various adsorbents have been explored, such as minerals, biochars, red
mud, metal (hydr)oxides, layered double hydroxide [3,7,10–13]. To find environmentally
friendly, economic, high adsorptive capacity, and efficient adsorbents, great endeavors are
still demanded.

Natural palygorskite (PG) is a typical nano-fibrous magnesium-aluminum hydrated
phyllosilicate clay mineral, which abundantly exists in a natural environment [3,14]. It
possesses a unique rod-like crystal structure (40 nm crystal diameter), a large specific
surface, tunable surface chemistry, high dispersion, and well-developed nanopores, which
make it a promising adsorbent [15]. As reported, raw PG and modified PG have been
explored to adsorb phosphate, ammonium, fluoride ions, heavy metals (for example,
arsenate, Cu2+, Ag+), methylene blue, and phenol [16–25]. However, raw PG has limited
active sites, nonuniform distribution of intrinsic constituents, and limited surface area,
which rigorously restricts the performance of phosphorus adsorption [23]. Thus, many
efforts have been expended to magnify its adsorptive capacity by expanding the specific
surface area (SSA) or multiplying the active sites. A typical modification method of thermal
treatment has long been used to enhance the adsorption capacity of PG [20,25]. Under
various incinerating temperatures, multifarious water situated in intracrystal channels of
PG could be selectively evaporated and the pore structure, surface properties, and the SSA
would be consequentially altered [25]. Gan et al. (2009) obtained the maximum phosphate
sorption capacity of 42 mg/g when PG was heated at 700 ◦C and suggested that the
layers of the PG collapsed; the structure was folded and pores were blocked when PG was
heated above 700 ◦C [26]. Additionally, it has been reported that cations, especially metal
(hydr)oxide, lead to a positive surface charge of the adsorbent and enhance the effective
adsorption sites for anions, which benefits phosphate adsorption [23,27,28]. Our previous
study certificated that phosphate had a relatively strong affinity for the surface of PG and
the coating of aluminum (hydr)oxide on PG contributed to the maximum phosphorus
adsorptive density of 16.86 mg/g, while the value of natural PG was 4.08 mg/g [21].
Zhang et al. (2022) prepared La–Mg-modified PG composite for phosphate adsorption
and found that metal-bound hydroxyl and metal oxide groups dedicated great efforts
on a high adsorptive quantity of 104.22 mg P/g [2]. Wang et al. (2017) prepared PG-
MgO to adsorb phosphate from aqueous solution and found the loading of MgO extremely
magnified the maximum phosphorus sorption density from 1.49 (raw PG) to 69.8 mg/g (PG-
MgO) [29]. To enhance the application and fulfill the purpose of phosphorus recovering, a
recyclable and easily dissociated adsorbent is desired. Many studies verified that Fe3O4 can
achieve these requirements [12,16,30–32]. Magnetic-based materials have greater surface
aera, higher adsorption capacity, low cost, intensified stability, and magnetic separation
properties [30,33]. Jack et al. (2019) fabricated magnetic biochar to adsorb phosphate and
received a maximum adsorptive density of 23.9 mg/g [12]. Wang et al. (2021) compared
raw diatomite and magnetic Fe0/iron oxide-coated diatomite on phosphorus adsorption
and found the adsorptive densities were 3.51 and 37.0 mg P/g, respectively [32]. However,
few studies have been conducted to remove phosphorus using magnetic thermal modified
PG (MTPG) as an adsorbent.

Here, MTPG was firstly fabricated and systematically evaluated the feasibility of its
application on the phosphate adsorption from aquatic medium. In doing this, the impact
of pH, ionic strength, and regeneration cycles were evaluated by batch experiments. Values
from well-known adsorption isotherms, thermodynamic parameters, and kinetic models
were applied to explore the mechanism of condensed phosphate binding to the surface of
MTPG.



Minerals 2023, 13, 293 3 of 13

2. Materials and Methods
2.1. Materials

The natural palygorskite (PG) mineral (<200 mesh) for modification was obtained from
Guanshan, Anhui, China. The thermal modified palygorskite (TPG) was achieved by heat
treatment at 700 ◦C in a muffle furnace for 2 h. The preparation method of MTPG followed
a modification procedure reported by Mu et al. [16]. Firstly, 2 g FeCl3, 1.2 g polyethylene
glycol, and 5.0 g sodium acetate were added into 60 mL ethylene glycol solution in sequence
and then the mixture was stirred for 30 min; 2 g TPG was dispersed to the medium and
continually ultrasonicated for 3 h. Afterwards, transferred to a polytetrafluoroethylene-
lined autoclave (100 mL), the latter suspension was calcined at a temperature of 180 ◦C
for 12 h. The black composite after cooling to ambient temperature was bathed by using
ethanol and deionized water for a few times until the conductivity was below 10 µs/cm.
The dry MTPG nanocomposite was obtained after drying at 50 ◦C for 24 h.

Except PG, other chemicals employed in the current contribution were analytical reagents.

2.2. Batch Adsorption Experiments

The impact of pH and ion strength on the adsorptive capacity of phosphate onto MTPG
was conducted under ambient temperature. In a series of 100 mL polyethylene centrifuge
tubes with caps, PO4

3−-P solutions (50 mL, 1000 mg/L) were respectively regulated at
different NaClO4 concentrations of 0.001, 0.01, and 0.1 M and different pH values of 3, 4, 5,
6, 7, 8, 9, and 10 by 0.1–1M HClO4 or 0.1–1M NaOH solutions. A total mass of 0.02 g MTPG
was respectively mixed into the phosphate solution. The mixture was then mingled using a
thermostatic shaker at a temperature of 25 ◦C for 12 h (250 rpm). After equilibrium, the
solid phase was completely separated from the mixture by magnetic attraction, centrifuge,
or membrane filter (0.45 µm). The PO4

3−-P concentration in liquid phase was examined.
The study of adsorption isotherms of phosphate was conducted in a thermostatic

shaker for 24 h and the temperatures were set at 298 K, 308 K, and 318 K. A total mass of
0.02 g MTPG was mixed into the PO4

3−-P solutions (50 mL) at pH of 5 and initial PO4
3−-P

concentrations of 5, 50, 100, 200, 500, and 1000 mg/L.
The kinetic adsorption of phosphate was evaluated at pH value of 5 and at a tempera-

ture of 298 K. A total mass of 0.02g MTPG was added into the PO4
3−-P solutions (50 mL,

1000 mg/L). Samples were taken at a continuous interval of 0.25, 0.5, 1, 2, 4, 8, 12, and 24 h.
The influence of regeneration cycles on phosphate adsorption capacity was evaluated

at pH of 5 and at a temperature of 298 K. The adsorbent (MTPG) after saturated adsorption
was collected and then mixed with 250 mL NaOH solution (0.3 M) under stirring for 6 h.
After that, the adsorbent (MTPG) was gathered and bathed with deionized water for several
times. Finally, the regenerated MTPG was dried at 50 ◦C in an oven for 24 h and reused to
adsorb phosphate from aqueous solution.

2.3. Analysis Methods

The PO4
3−-P concentration was detected by the molybdenum-blue ascorbic acid

method with a spectrophotometer (722E, Spectrum Co., Shanghai, China). The analysis of
mineral phases was undertaken by X-ray diffraction (XRD) analysis by an X-ray diffraction
meter (SmartLab, Rigaku, Japan) with a Cu-target and a range of 5–70◦ at a scan rate
of 10◦ min−1. The studies of morphology and nanostructures of mineral materials were
carried out by a field emission scanning electron microscope (FESEM, Sigma 300, Zeiss Ltd.,
Cambridge, UK) with an electron acceleration voltage of 10 kV. The analysis of SSA and
pore circumstances of materials were carried out by a surface area and pore size analyzer
(Quanta NOVA 3000e, Quantachrome, Shanghai, China).

3. Results and Discussion
3.1. Characterization of Adsorbents

The XRD images of three materials (PG, TPG, and MTPG) are illustrated in Figure 1a.
The characteristic diffraction peaks of natural PG were emerged at 2θ = 8.40, 13.86, 16.42,
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19.90, 21.34, 23.06, and 35.34◦, which agreed with a standard card (31-783) in the JCPDS
(Joint Committee on Powder Diffraction Standards) [14]. The reflections at 2θ = 20.86, 27.34,
and 50.14◦ were considered to be quartz (JCPDS 85-795). Dolomite (JCPDS 75-1656) as a
paragenous mineral coexisting with PG was found at 2θ = 30.96◦ in the pattern [34]. The
diffraction peak of PG suddenly disappeared after thermal modification at 700 ◦C. It was
attributed to the loss of coordination water, and adsorbed water of PG led to the change
of channel dimensions [26], while the crystalline quartz remains virtually the same. The
diffraction patterns at 2θ = 30.12, 35.54, 57.18, and 62.72◦ were authenticated as magnetite
(JCPDS 19-629) in the sample of MTPG [33].
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Figure 1. Characterization of mineral materials. (a) XRD patterns, (b) Pore size distributions and
N2adsorption-desorption isotherms, (c) SEM of PG, (d) SEM of TPG, (e) SEM of MTPG, (f) EDS
spectrum of MTPG.

The results of the BET-SSA and pore size distribution of PG, TPG, and MTPG are
illustrated in Figure 1b. It can be observed that the adsorption/desorption curves were
type IV isotherms, suggesting that the prepared samples were mineral materials with
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mesoporous structure [35,36]. As seen in Figure 1b, the pore diameters of MTPG mainly in
the range of 15–30 nm were smaller than that of PG and TPG. These mesoporous structures
may dedicate higher SSA to magnify the adsorptive capacity [37]. The comparison of SSA,
pore volume, and average pore size for PG, TPG, and MTPG is templated in Table 1. The
SSA values of PG, TPG, and MTPG were 86.3, 57.0, and 104.7 m2/g, respectively. The
SSA of TPG was decreased due to dehydration and dehydroxylation during the thermal
treatment [26]. The value of synthesized MTPG composite was higher than that of TPG,
which could be attributed by nanometer-sized Fe3O4 [38].

Table 1. Specific surface area, average pore size, and pore volume of the materials.

Sample BET-SSA
(m2/g)

Average Pore Size
(nm)

Pore Volume
(cc/g)

PG 86.32 91.80 0.40
TPG 56.96 138.98 0.40

MTPG 104.72 66.90 0.35

The SEM images of PG, TPG, and MTPG used in the present study are shown in
Figure 1c,d,f. Uniform nanorods with diameter of 20–30 nm and agglomerated nanocluster
morphology of natural PG are displayed in Figure 1c. Particularly, the length of fibers was
less than 2 µm. The room existing between the layers of TPG (Figure 1d) was declined
because of the irreversible dehydration and dihydroxylation [26]. In addition, plenty
of magnetite nanospheres (Figure 1e) with a scale of 100–200 nm were assembled on
the glabrous surface of TPG after magnetic modification. The smaller size of magnetite
comparing with previous work indicated that nano-scale PG improved the dispersion of
magnetite particles and inhibited crystal growth [33,39]. The EDS analysis in Figure 1f
further proved the loading of magnetite on TPG.

3.2. Effect of pH and Ionic Strength

The influence of pH on phosphate adsorption using MTPG as an adsorbent at pH
arranging of 3–10 and different ionic strength is illustrated in Figure 2a. The sorption of
phosphate onto MTPG is pH-dependent but slightly influenced by the ionic strength. The
adsorptive density of phosphate was slightly magnified from 368.60 mg/g to 383.71 mg/g
in the pH range of 3–6 and then sharply declined to 266.96 mg/g at pH of 10. It is reported
that the adsorption of phosphate onto clay minerals is based on electrostatic attraction and
ligand exchange [21]. According to the calculation results with visual MINTEQ, the primary
species of phosphorus in liquids are H3PO4 at pH < 2.15, H2PO4

− at pH 2.15–7.2, HPO4
2−

at pH 7.2–12.3, and PO4
3− at pH>12 (Figure 2b). The phosphate uptake capacities in acid

condition are apparently greater than these in basic condition, which can be attributed to the
bivalent HPO4

2− occupying more surface active sites of clay adsorbent than the monovalent
H2PO4

− [40]. Additionally, electrostatic attraction benefited the positively charged active
sites on MTPG appealed to phosphorus at lower pH [26]. Moreover, the pHpzc of MTPG
was measured to be 6.8 in this research. When pH was lower than pHpzc, positively charged
MTPG was benefited to unite negatively charged phosphate. A similar tendency had also
been brought up in phosphorus sorption by natural PG [26,41], acid-modified PG [20,41],
thermal treatment PG [26], and aluminum hydroxide-modified PG [21]. Moreover, the
inner-spheric complexation was proved to be independent of ionic strength, while the outer-
spheric complexation was uncontrollably affected by ionic strength [42]. Subsequently,
one can infer that the adsorption behavior of phosphate on MTPG in the present study as
predominant by the inner-spheric complexation [20].
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Figure 2. (a) Effect of initial pH on adsorption of phosphate on MTPG; (b) distribution of phosphorus
species in liquids (C0 = 1000 mg/L, MTPG = 0.4 g/L, t = 12 h, T = 298 K).

3.3. Kinetics

In present study, there were three typical kinetic models employed to match the
sorption kinetics of phosphate on MTPG, which are referred to as follows:

The equation of pseudo-first-order model [43]:

ln(qe − qt)= lnqe − k1t (1)

The equation of pseudo-second-order model [44]:

t
qt

=
1

k2qe2 +
t
qe

(2)

The equation of intraparticle diffusion model [45]:

qt = k3t0.5 + Cid (3)

where, qe is the adsorbed capacity at equilibrium, mg/g; qt is the adsorption amount at
time t, mg/g; k1 is the rate constant of the pseudo-first-order adsorption, h−1; k2 is the rate
constant of the pseudo-second-order adsorption, g/(mg·h); k3 is the intraparticle diffusion
rate constant, mg/(g·h−0.5). Cid refers to the Weber–Morris constant, related to the thickness
of the boundary layer, mg/g.

Figure 3a displayed the sorption kinetics of phosphate onto MTPG. The adsorption
capacity significantly was speeded in the first 2 h, reaching 66.82% of the maximum ad-
sorption capacity, and then slowly rose in the following 22 h. This performance may be
prospectively interpreted by two reasons: (1) all the active sites on the surface of MTPG
were available for phosphate adsorption at the beginning [2]; (2) along with the amount of
active sites reducing and most of the surface area occupied by phosphate, the speeding of
phosphate binding at the remaining active sites would be decelerated. The relevant param-
eters obtained here were all tabulated in Table 2. Comparing the correlation coefficients
of three kinetic models, the highest R2 values obviously unveiled that the pseudo-second-
order model best fit the adsorptive kinetics of phosphate on MTPG. The result obtained here
was corresponding to other researches that the pseudo-second-order model successfully
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simulated the kinetics sorption process of phosphate by PG [21,26], aluminum (hydr)oxide
on PG [21], La–Mg-modified PG [2], acid-modified PG [20], thermally treated PG [26],
ZrO2-zeolite [9], biochar [46], magnetic reed [30], magnetic iron oxide nanoparticles [47],
and activated carbon loaded with Fe(III) oxide [48]. According to the intraparticle diffusion
model, (i) the intraparticle diffusion involved in the process of phosphate adsorption causes
the fitting plot to be linear; (ii) if these lines pass through the origin point, the intraparticle
diffusion would be the rate-limiting step, and (iii) two or more slopes would be taking
place in a multi-step sorption process [21,49]. The sorption behavior of phosphate onto
MTPG covers two steps with a multilinearity (Figure 3b). If the value of Cid was not zero, it
was considered that the sorption process was not uniquely controlled by the intraparticle
diffusion [31]. Tao et al. (2022) reported that the bigger the Cid value represented the greater
the influence of boundary layer [9]. Thus, it was reasonable to infer that the adsorption
process of phosphate onto MTPG was principally controlled by the intraparticle diffusion
and boundary layer diffusion.
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Table 2. Kinetic parameters of phosphate sorption on MTPG.

Kinetic
Models

Pseudo-First-Order Pseudo-Second-Order Intraparticle Diffusion

qe
(mg/g)

k1
(h−1) R2 qe

(mg/g)
k2

(g/mg·h) R2 k3
(mg/g·h0.5)

Cid3
(mg/g) R2 k4

(mg/g·h0.5)
Cid4

(mg/g) R2

MTPG 195.70 0.25 0.9597 400.00 0.0039 0.9997 180.13 56.16 0.9680 19.59 298.48 0.8749

3.4. Isotherms

The isotherms of phosphate sorption behavior on MTPG here were described by the
Langmuir model [50], the Freundlich model [51], and the D-R isotherm [52]. The Langmuir
model is expressed by the following Equation (4):

Ce

qe
=

1
qm

Ce +
1

qmk
(4)

where Ce is the phosphate concentration at the equilibrium condition (mg/L); qm is the
maximum adsorptive capacity (mg/g); k is the Langmuir constant (L/mg).
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The Freundlich model is given as Equation (5):

ln qe = ln K f +
1
n

ln Ce (5)

where, Kf is the Freundlich constant (mg/g); 1/n refers to a heterogeneous factor, which
represents the adsorption intensity or surface heterogeneity.

The D-R isotherm is represented as Equation (6):

ln qe = ln qm − βε2 (6)

where β refers to the adsorptive energy constant (mol2/J2); ε represents Polanyi potential,
which can be expressed as Equation (7):

ε = RT ln(1 +
1

Ce
) (7)

and E is the average adsorption energy (kJ/mol), which can be calculated from β as
following:

E =
1√
2β

(8)

The isotherms of phosphate adsorption onto MTPG are displayed in Figure 4a. The
phosphate adsorption capacities were slightly increased with the increasing temperature
and the adsorption was an endothermic process. Table 3 exhibits relevant parameters
calculated from the adsorptive isotherm models under three different temperatures. Due to
the values of R2 being bigger than 0.9, the Langmuir, Freundlich, and D-R isotherm can all
be used to fit the adsorptive isotherm of phosphate onto MTPG. However, the Freundlich
model gave the highest values of R2 (>0.9979), which suggested that the adsorption occurred
on the surface of a structurally heterogeneous adsorbent with exponentially decaying
energies of adsorption sites [3]. In this study, the values of 1/n calculated were between
0.4118 and 0.4340 (<0.5), illustrating that the adsorption process of phosphate onto MTPG
was favorable [3,32]. It also suggested the heterogeneous surface of MTPG and the multi-
layer coverage of phosphate [3]. Moreover, the highest adsorptive quantity of 400 mg/g
was counted according to the Langmuir model at 298 K. Table 4 templates the maximum
phosphate adsorption capacities found in literature. Gan et al. (2009) mentioned that PG
fulfilled dehydration over a temperature space of 80–540 ◦C and dehydroxylation over
a temperature space of 540–770 ◦C, then Al and Fe in the PG would be activated and
exposed at the surface of PG [26]. Thus, MTPG had plentiful active sites of Al, Fe, and
Fe3O4, which all own great affinities for phosphate anions. Moreover, Hou et al. (2020)
reported that nano-sized magnetite (nFe3O4) has a high surface area, large pore volume,
high amounts of surface functional groups, and a low point of zero charge [53]. According
to the D-R isotherm, the adsorption process of phosphate onto MTPG could be related
to a pore volume filling process [52]. The E value differentiates the class of sorption, in
which the values over the interval of 1–8 kJ/mol are on behalf of physical adsorption and
of 8–16 kJ/mol symbolize chemical adsorption [54]. The points of E gained in the present
study were in the range of 10.91–11.79 kJ/mol, verifying that the phosphate adsorption
onto MTPG was predominantly chemisorption.
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Table 3. Relative parameters of sorption isotherms models.

T (K)
Langmuir Freundlich D-R

qm
(mg/g) k (L/mg) R2 Kf

(mg/g) 1/n R2 β

(mol2/J2)
qm

(mg/g)
E

(kJ/mol) R2

298 400.00 0.0099 0.9595 23.48 0.41 0.9991 0.0041 400.52 11.04 0.9715
308 416.67 0.0104 0.9696 21.96 0.43 0.9979 0.0042 446.29 10.91 0.9802
318 416.67 0.0106 0.9703 24.31 0.42 0.9985 0.0036 425.16 11.79 0.9719

Table 4. The maximum phosphorus adsorption capacities reported in literature.

Adsorbent Reaction Condition Adsorption
Capacity (mg/g) Reference

Natural palygorskite Adsorbent dosage: 0.5 g; initial P
concentration: 5~1000 mg/L; pH = 4.46 10.9 Gan 2009 [26]

Thermally treated natural
palygorskite

Adsorbent dosage: 0.5 g; initial P
concentration: 5~1000 mg/L; pH = 4.46 42.0 Gan 2009 [26]

Hydroxy-iron–aluminum pillared
bentonites

Adsorbent dosage: 4 g; initial P concentration:
20~60 mg/L; pH = 3 10.5 Yan 2010 [40]

Layered double hydroxide
(LDH)-coated attapulgite

Adsorbent dosage: 0.1 g; initial P
concentration: 2.5~200 mg/L 6.9 Gan 2011 [11]

Granular palygorskite Adsorbent dosage: 0.5 g; initial P
concentration: 5~1000 mg/L; pH = 6.86 13.1 Gan 2011 [55]

Acid-activated neutralized red mud Adsorbent dosage: 0.5 g; initial P
concentration: 50~1000 mg/L; pH = 4.5 396.35 Ye 2015 [13]

Zirconium (IV)-loaded cross-linked
chitosan particles

Adsorbent dosage: 0.1 g; initial P
concentration: 50~200 mg/L; pH = 3, 5, and 7 71.68 Liu 2016 [56]

Zirconium hydroxide modified by
dimethylamine

Adsorbent dosage: 0.05 g; initial P
concentration: 20~350 mg/L; pH = 6 155.04 Luo 2017 [57]
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Table 4. Cont.

Adsorbent Reaction Condition Adsorption
Capacity (mg/g) Reference

Aluminum hydroxide-modified
palygorskite nano-composites

Adsorbent dosage: 0.5 g; initial P
concentration: 5~1000 mg/L; pH = 5 16.86 Pan 2017 [21]

Calcined nano-porous palygorskite
matrix with embedded lanthanum

hydroxide

Adsorbent dosage: 0.2 g; initial P
concentration: 5~1000 mg/L; pH = 6.5~7 109.63 Kong 2018 [23]

La–Mg-modified palygorskite Adsorbent dosage: 2 g; initial P concentration:
5~1000 mg/L; pH = 7 109.35 Zhang 2022 [2]

Magnetic thermal modified
palygorskite

Adsorbent dosage: 0.02 g; initial P
concentration: 5~1000 mg/L; pH = 5 400.00 The present

study

3.5. Thermodynamic Parameters

In terms of temperature-dependent sorption isotherms, the thermodynamic param-
eters of phosphate adsorption in the present study can be calculated from the following
Equations (9)–(11):

Kd = qe/Ce (9)

∆G0= −RTlnKd (10)

ln Kd = −∆H0

RT
+

∆S0

R
(11)

Here, Kd presents the distribution coefficient, ml/g; ∆G0 (kJ/mol), ∆H0 (kJ/mol), and ∆S0

(J/mol) which are on behalf of the change of Gibbs energy, enthalpy, and entropy, respectively.
Figure 4b shows the plot of lnKd versus 1/T. The slope of the line determines the

change of ∆H0, while the intercept certificates the change of ∆S0. Table 5 shows the
summary of ∆G0, ∆H0, and ∆S0 values. Negative ∆G0 and positive ∆H0 symbolized
the adsorption behavior of phosphate onto MTPG as endothermic, feasible, and sponta-
neous [2]. The absolute data of ∆G0 are positively correlated with the temperature. Thus,
in the present study, the increasing of temperature magnified the spontaneous tendency
of phosphate sorption onto MTPG. In particular, the positive value of ∆S0 manifested the
randomness or disorder increased at the solid–liquid interface in the process of phosphate
binding to MTPG [9].

Table 5. Thermodynamic parameters of phosphate sorption on MTPG.

T(K) ∆G◦ (kJ/mol) ∆S◦ (kJ/mol/K) ∆H◦ (kJ/mol)

298 −15.112
308 −15.673 0.055 1.336
318 −16.216

3.6. Regeneration

For economic reasons, the exhausted adsorbent is required to be reused by a practical
regeneration method [55]. The adsorption of phosphate onto MTPG was basically decayed
at higher pH, thus sodium hydroxide solution may be efficient to phosphate desorption
from the saturated adsorbent [31]. The regeneration of MTPG which went through the circle
of regeneration is unveiled in Figure 5. It is apparently seen that the phosphate adsorption
density gradually declines with a rise of the cycle sequence. After the third regeneration
cycle, the adsorptive quantities in Figure 5 were obviously reduced from 375.46 mg/g
to 304.05 mg/g, with the regeneration ratio of 80.98%. This finding proved that after
regeneration, the reusability of MTPG was still feasible [31]. In particular, the MTPG was
confirmed to possess great advantages on magnetic recovery and reused characteristics by
employing a rapid sodium hydroxide regeneration method.
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4. Conclusions

The MTPG with brilliant characteristics of magnetic recovery power was successfully
fabricated in the present study. MTPG showed a great capability of phosphate adsorption
from liquid solution. The isotherm model of Freundlich and the kinetic model of the
pseudo-second-order satisfactorily fitted the adsorption process of phosphate onto MTPG.
The maximum sorption quantity of 400 mg/g was achieved. The E values from the D-R
isotherm in the range of 10.91–11.79 kJ/mol proved that the adsorption was chemisorption.
The adsorptive process was verified by the thermodynamic parameters to be endothermic,
feasible, and spontaneous. The adsorption process was inner-spheric complexation and
governed by the intraparticle diffusion and boundary layer diffusion. By sodium hydroxide
regeneration method, the regeneration ratio of 80.98% was obtained after the third regen-
eration cycle. The brilliant phosphate adsorption characteristics and magnetic recovery
performance symbolized that MTPG can be a promising adsorbent extensively utilized in
phosphate removal from aqueous solution.
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