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Abstract: The Australian Bureau of Meteorology offers a national operational 7-day ensemble stream-
flow forecast service covering regions of high environmental, economic, and social significance. This
semi-automated service generates streamflow forecasts every morning and is seamlessly integrated
into the Bureau’s Hydrologic Forecasting System (HyFS). Ensemble rainfall forecasts, European
Centre for Medium-Range Weather Forecasts (ECMWF), and Poor Man’s Ensemble (PME), available
in the Numerical Weather Prediction (NWP) suite, are used to generate these streamflow forecasts.
The NWP rainfall undergoes pre-processing using the Catchment Hydrologic Pre-Processer (CHyPP)
before being fed into the GR4H rainfall–runoff model, which is embedded in the Short-term Water
Information Forecasting Tools (SWIFT) hydrological modelling package. The simulated streamflow is
then post-processed using Error Representation and Reduction In Stages (ERRIS). We evaluated the
performance of the operational rainfall and streamflow forecasts for 96 catchments using four years of
operational data between January 2020 and December 2023. Performance evaluation metrics included
the following: CRPS, relative CRPS, CRPSS, and PIT-Alpha for ensemble forecasts; NSE, PCC, MAE,
KGE, PBias, and RMSE; and three categorical metrics, CSI, FAR, and POD, for deterministic forecasts.
The skill scores, CRPS, relative CRPS, CRPSS, and PIT-Alpha, gradually decreased for both rainfall
and streamflow as the forecast horizon increased from Day 1 to Day 7. A similar pattern emerged
for NSE, KGE, PCC, MAE, and RMSE as well as for the categorical metrics. Forecast performance
also progressively decreased with higher streamflow volumes. Most catchments showed positive
performance skills, meaning the ensemble forecast outperformed climatology. Both streamflow
and rainfall forecast skills varied spatially across the country—they were generally better in the
high-runoff-generating catchments, and poorer in the drier catchments situated in the western part of
the Great Dividing Range, South Australia, and the mid-west of Western Australia. We did not find
any association between the model forecast skill and the catchment area. Our findings demonstrate
that the 7-day ensemble streamflow forecasting service is robust and draws great confidence from
agencies that use these forecasts to support decisions around water resource management.

Keywords: ensemble streamflow forecast; 7 days; GR4H model; performance evaluation; Australia

1. Introduction

During 1997–2009, south-east Australia experienced its worst drought since 1901 [1].
Known as the ‘millennium drought’, below-median annual rainfall was frequently observed
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with little recovery in intervening years during this period. In particular, observed stream-
flow in the Murray Darling River Basin, known as Australia’s food bowl, was very low,
and inflow to major reservoirs was half of the previous recorded minimum [2]. As a result,
there was wide societal, economic, and environmental impacts [3,4]. The Federal Govern-
ment passed the Water Act, 2007 (https://www.legislation.gov.au/Details/C2017C00151,
accessed on 20 June 2023); this was a water security plan for the future of the nation. The
Bureau of Meteorology (the Bureau) was given responsibility to implement the Water
Act. Among other services, streamflow forecasting at seasonal and 7-day time scales were
developed as part of the water security plan [5].

A 7-day deterministic streamflow forecast service was progressively developed during
2010–2015 and released by the Bureau to the public in September 2015. This was the first
nationally operated continuous streamflow forecast system developed in Australia [6].
Subsequent feedback from key customers across state and territory jurisdictions favoured
a move to ensemble or probabilistic forecasts. Ensemble forecasting is considered more
reliable and skilful, and it can greatly benefit water resource management by providing
useful information about uncertainty [7]. In response to customer needs, the Bureau pro-
gressively developed the 7-day ensemble streamflow forecasting and released it to the
public in 2020 [8]. This is a comprehensive, nation-wide service for Australia, and cov-
ers most water resource catchments of high economic value and social significance [9].
The service currently consists of 99 catchments and 208 forecasting locations where ob-
served streamflow records are available (Figure 1), and covers 10 out of the 13 drainage
divisions. Catchments vary in area across the country (from 26 to 83,150 km2) and are
located in different hydroclimatic regions. The number of forecasting locations distributed
across different drainage divisions vary significantly, the selection of which was based
heavily on value, with little attention paid to human impact on natural flows or impact
for customers—the Murray Darling division has the largest number of stations, while
the South-Western Plateau, the Lake Eyre Basin, and the North Western Plateau have no
stations at all (Figure 1). Australia has a wide range of climate zones, as defined by Köppen
Climate Classification [10]; these include the tropical region in the north, the temperate
regions in the south, the grassland, and the desert in the vast interior. The annual rainfall
for each of the divisions varies from 410 mm to 2800 mm [8]. The distribution of annual
rainfall and potential evapotranspiration (PET) varies significantly across the continent
(http://www.bom.gov.au/jsp/ncc/climate_averages/rainfall/index.jsp, accessed on 11
November 2023). Annual average PET is generally higher than annual average rainfall.
Therefore, streamflow generation processes in most divisions are different, and are con-
trolled by water-limited environments [11], except for the Tasmania drainage division.

There is a wide range of modelling techniques for streamflow and flood forecast-
ing [12,13]; taking rainfall forecasts from the Numerical Weather Prediction (NWP) system
as an input for the hydrological model for prediction is a very popular option. Ensem-
ble streamflow forecasting has also become very popular across the world over the last
decade [14,15]. There are various large-scale continental and global hydrological models
that are run by communities around the world [15,16]. The Global Ensemble Streamflow
Forecasting and Flood Early Warning (GloFAS) service is one of the most popular forecast-
ing systems. The U.S. Hydrologic Ensemble Forecast Service (HEFS) is run by the National
Weather Service (NWS), and this service provides ensemble streamflow forecasts that
seamlessly span lead times from less than 1 h up to several years; these are spatially and
temporally consistent [17]. In Canada, provincial river forecast centres deal with unique
challenges in data collection, modelling, and river flow forecasting due to a large diversity
in landscape, hydrological features across the country, and distribution of weather and
extreme events at different times of the year [18]. Similar results were also found in South
America, where a continental-scale hydrological model coupled with ECMWF ensemble
rainfall was applied to produce streamflow forecasts up to 15 days in advance [19].

https://www.legislation.gov.au/Details/C2017C00151
http://www.bom.gov.au/jsp/ncc/climate_averages/rainfall/index.jsp
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Figure 1. Drainage divisions, hydroclimatic regions, and forecasting locations. Catchment area is
shown by size and color of circles.

For users to fully benefit from ensemble streamflow forecasts, they need to compre-
hend the performance, the model behaviour, and the forcings. Recent studies have focused
on the performance evaluation of short–medium-range hydrological streamflow forecasts.
The quality of ensemble streamflow forecasts in the U.S. mid-Atlantic region was inves-
tigated by Siddique and Mejia [20], and they found that ensemble streamflow forecasts
remain skilful for lead times of up to 7 days, and that postprocessing further increased
forecast skills across lead times and spatial scales. In Canada, optimal model initial state
and input configuration led to reliable short- (days) and long-term (a year) streamflow
forecasts [21]. In China, Liu et al. [22] demonstrated that ensemble streamflow forecasting
systems are skilful up to a lead time of 7 days ahead; however, accuracy deteriorates as the
lead time increases.

The Bureau’s operational ensemble 7-day streamflow forecast service [8] now has
4 years of retrospective (archived) forecast data (January 2020–December 2023). The per-
formance of the overall end-to-end streamflow forecasting has not been analysed yet, and
this paper presents the steps in filling this critical operational knowledge gap. The key
objectives of this paper are as follows: (i) to discuss the day-to-day operational monitoring
and continuity of the service; (ii) to perform a comprehensive evaluation of pre-processed
rainfall and streamflow forecasts; (iii) to suggest possible avenues for future improvements.

2. Operational Forecast System and Model

The 7-day ensemble streamflow forecast service for Australia can be accessed through
a freely available website (http://www.bom.gov.au/water/7daystreamflow/, accessed
on 28 February 2024). This service features forecasting locations with forecasting skills
and reliability that have passed specified selection criteria. While the primary emphasis is
on delivering daily and hourly streamflow forecasts, the service also includes cumulative
hourly streamflow and rainfall forecasts.

2.1. Description of the System’s Architecture

The forecasts are generated daily using the Bureau’s Hydrological Forecasting System
(HyFS). This national platform for modelling underpins flood forecasting and warning

http://www.bom.gov.au/water/7daystreamflow/
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services for Australia. HyFS is a Delft-FEWS (Flood Early Warning System) based forecast-
ing environment (https://oss.deltares.nl/web/delft-fews, accessed on 20 October 2023).
The system provides a comprehensive platform for the management of input observations
and a Numerical Weather Prediction (NWP) model—Quantitative Precipitation Forecasts
(QPFs). It encompasses various tasks such as input data processing, forecasting and mainte-
nance workflows, model internal state management, and forecast visualization. Publication
quality plots are generated using a spatial module outside the HyFS (Figure 2) and the
products are delivered to the website via the Bureau’s content management system. The
publication time of the forecast information to the website varies across states—generally,
it is between 10:00 a.m. and 12:00 noon Australian Eastern Standard Time (AEST). An
end-to-end forecast generation and publication procedure is presented in Figure 2.
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2.2. Input Data

The observed rainfall and water level data are ingested into the HyFS in near-real
time through the Bureau’s Australian Water Resources Information System (AWRIS). Po-
tential evapotranspiration (PET) data are extracted from the Australian Water Availability
Project, AWAP [23], disaggregated to hourly and sub-catchment scale, and stored in HyFS.
Additionally, the Quantitative Precipitation Forecasts (QPFs) from the ECMWF and PME
Numerical Weather Prediction (NWP) models’ data are automatically integrated into
HyFS. The ECMWF forecast rainfall is processed using the Catchment Hydrology Pre-
Processor, CHyPP [24]. CHyPP generates an ensemble comprising 400 members sourced
from ECMWF and merges with PME at an hourly time step for each sub-area for a lead
time of up to 7 days (Figure 2). Given that PME is a merged, post-processed product of
many global NWP products, it shows negligible improvement when CHyPP is used on
it [24]. Therefore, the PME forecasts are not post-processed.

2.3. Rainfall–Runoff and Routing Model

The Short-term Water Information Forecasting Tools (SWIFT) constitute a streamflow
modelling software package (version 2.1) [25] seamlessly integrated into HyFS (Figure 2).
SWIFT encompasses a variety of hydrologic models and provides a semi-distributed
modelling approach—conceptual sub-areas and a node–link structure—for channel routing.
Its functionality extends to modules for calibration, model initial state (hot start), ensemble
forecast runs, and output error correction. Out of the available conceptual rainfall–runoff
models in SWIFT GR4H, a four-parameter hourly model developed by Perrin [26] was
found to be the most suitable option for Australian applications [27]. The model calibrated
the parameter sets, and the initial state conditions were migrated and stored in HyFS for
operational application. To enhance the accuracy of the hydrological forecast time series,

https://oss.deltares.nl/web/delft-fews
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an integrated tool within SWIFT known as ERRIS (Error Representation and Reduction In
Stages), developed by Li et al. [28], is used for streamflow error correction.

2.4. Operational Platform

The product generator tool produces five graphical outputs: (i) daily flow forecast,
(ii) hourly flow forecast, (iii) cumulative flow forecast, (iv) cumulative rainfall forecast,
and (v) forecast performance. The first four graphical products (and associated forecast
data) are updated and published on the SDF website daily (http://www.bom.gov.au/
water/7daystreamflow/index.shtml, accessed on 22 March 2024). The generated forecast
time series is automatically archived for future analyses and interpretation (Figure 2).
Following forecast generation, selected data are packaged for downstream processing by
end-users. The ensemble streamflow forecasts also serve as guidance for the Bureau’s
flood forecasting service (http://www.bom.gov.au/water/floods/, accessed on 8 March
2024). Operational day-to-day monitoring involves addressing issues through a systematic
approach encompassing data, modelling, and system and customer feedback. A designated
monitoring officer logs, escalates, and resolves issues in collaboration with other experts,
such as software/system engineers who support the service.

3. Performance Evaluation Methodology

Forecast quality continues to be limited by systematic and random errors from limited
knowledge of initial conditions and inherent limits in representing physical processes in
model structures [29,30]. Performance evaluation is generally “the process of assessing
the quality of a forecast” [31] and serves as a useful tool in identifying the sources of
errors [32–34]. Quantitative model performance is generally evaluated by computing met-
rics based on observed and forecast data. It establishes an appropriate level of confidence in
a model’s performance before its use can be effective in management and decision making.
This confidence level is vital for forecasters to consider and communicate when interact-
ing with users who rely on these forecasts. In hydrological modelling and forecasting,
observed values are used as the “point of truth” against which one can assess forecast
performance [35,36]. We used streamflow and rainfall (2014–2016) as historical sources of
“truth” to verify the model before operational release [8]. While there have been studies that
have presented different verification and performance evaluation metrics and diagnostic
plots [37,38], we applied some widely used ones for the evaluation of forecasts in ensemble
and deterministic forms.

3.1. Performance Evaluation Metrics

The absence of clarity and consensus regarding criteria for defining optimal or sub-
optimal forecasts can complicate the formulation, evaluation, and ultimate determination of
the utility of operational forecasts. Murphy [34] defined nine forecast quantitative attributes
and their relationships with different verification metrics. Additionally, ‘coherence’, a term
used to describe whether forecasts are not, at least, worse than climatology (historical
data), was also considered [39]. These cross-relationships were recently summarized by
Huang and Zhao [38]. We have chosen metrics to provide a comprehensive overview of
the operational forecast performance (see Appendix A). This includes all metrics used
to evaluate the historical performance of the model before it is used operationally [8].
Additionally, we have incorporated selected supplementary metrics for a more thorough
evaluation. These metrics are used for evaluating the quality of rainfall and streamflow
forecasts. These are presented in ensemble, deterministic, and categorical forms:

• Deterministic: We considered the mean of the ensemble members and assessed the
performance using the PBias, NSE, KGE, PCC, RMSE, and MAE metrics.

• Ensemble: The metrics included were CRPS, relative CRPS, CRPSS, and PIT-Alpha.
• Categorical: Three metrics were included—POD, FAR, and CSI.

http://www.bom.gov.au/water/7daystreamflow/index.shtml
http://www.bom.gov.au/water/7daystreamflow/index.shtml
http://www.bom.gov.au/water/floods/
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These metrics are widely applied for assessing streamflow and rainfall prediction
skills across the world [20,40–43].

3.2. Diagnostic Plots

Diagnostic plots allow for the visualisation of verification metrics, and they addi-
tionally provide an empirical understanding of ensemble hydroclimatic forecasts [37,44].
There are generally six types of popular diagnostic plots [38,45]. Of these, we chose scatter
plots, spatial maps, percentile distribution, and box plots for ensemble forecasts and their
deterministic forms.

3.3. Forecast Data and Observations

We have chosen a full four years of data (from January 2020 to December 2023) for
use in the performance analysis. The hourly forecast data were accumulated to daily
totals for the performance evaluation process. In line with forecast verification analyses
conducted by Hapuarachchi et al. [8], we considered the most downstream locations
within the catchments for the operational performance evaluation. The continuous hourly
forecast data were unavailable for a few catchments, limiting our assessment to 96 out of
99 catchments. During the development of the service, 3 years of retrospective forecast data
between 2014 to 2016 were considered for the performance evaluation; hourly observed
streamflow data between 1990 and 2016 were used to calculate the climatology as the
reference for skill score calculation (CRPSS). Consistently with this historical approach, we
maintained the same reference climatology for this research.

4. Results of Predictive Performance

We analysed the performance of the models by computing the metrics, as detailed
in Appendix A. Decades of research and investigations consistently reveal that the en-
semble mean yields results that are comparable to, or often better than, determinis-
tic forecasts [7,46,47]. To comprehensively assess performance, we conducted analyses
in two ways: (i) deterministic—considering only the mean of the ensemble forecasts;
(ii) ensemble—accounting for all members of the ensemble. As examples, Figure A1
(rainfall) and Figure A2 (streamflow) show the performances of two randomly selected
catchments across all the metrics.

4.1. Evaluation of Rainfall Forecasts
4.1.1. Performance of Ensemble Mean

In our deterministic analysis, we considered several performance metrics, including
PBias, MAE, NSE, KGE, RMSE, and PCC (Appendix A), across all forecasting locations.
The mean bias for all catchments (n = 96) approached zero, and gradually deteriorated
with longer forecast horizons (Figure 3a). However, the percentile range of bias remained
remarkably consistent across different forecast horizons. Only about 40% and 15% of
catchments had positive bias for Day 1 and Day 7, respectively (Figure 3b). These findings
closely resemble those obtained for the verification period used in developing the service [8].
The rainfall post-processor, CHyPP, played an important role in reducing bias in NWP
rainfall forecasts. As anticipated, based on PBias and MAE, the NSE of the bias-corrected
forecast rainfall remained low (despite post-processing) and decreased progressively as the
forecast horizon increased. Only about 95% of catchments showed positive KGE for Day 1
forecasts, while this figure dropped to about 10% for the subsequent 6 days (Figure 3c). The
percentile range of the forecast also steadily decreased as the forecast horizon increased,
with Day 1 having the largest range. Similar trends in steadily declining performance skills
have been observed by other researchers—in India [48], Canada [7], China [22,49], and
the USA [17]. Furthermore, when assessing rainfall forecast performance using KGE and
PCC, we found relative increases, but there was an overall decrease as the forecast horizon
extended. These patterns were consistent across both KGE and PCC metrics.
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Three categorical metrics—CSI, POD, and FAR—accurately evaluate the performance
of rainfall forecasts across different amounts that fall within specified time frames [50,51].
These metrics have been widely used for the assessment of rainfall forecasts [52,53]. In our
deterministic assessment of forecast rainfall performance, we categorised the total daily
amounts into five distinct classes—the 5th, 25th, 50th, 75th, and 95th percentiles (an example
catchment is shown in Figure A1). The forecast performance of the rainfall varied among
these percentiles and across different forecast horizons (Figure 5). The best performance
was obtained from the 25th percentile range (from Day 1 to Day 7) and it deteriorated for
higher rainfall amounts and forecast horizons. Extreme predicted rainfall events showed
minimal or no skill beyond Day 1. These findings aligned with the assessment of POD,
which yielded similar results.
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4.1.2. Performance of Ensemble Forecasts

We computed CRPS, relative CRPS, and PIT-Alpha metrics for all 96 catchments
(Figure 6). Similarly to the results for the deterministic form, the forecast skills gradually
diminished as the forecast horizon increased. The percentile range of CRPS was highest in
Days 3 and 4, respectively, and gradually decreased. However, the PIT-Alpha was lowest
for Days 2 and 3 and increased successively for the remaining Days 4–7. Our findings are
similar to those verification skills from the development phase of the service [5,8].
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4.1.3. Skills and Catchment Areas

In addition to performance metrics and diagnostic plots, we investigated rainfall
forecast skill and its association with catchment area (Figure 7). The catchment area ranges
from 26 km2 to 86,000 km2 (Figure 1). While there was a positive relationship between
catchment area and NSE, there appeared to be no relationship with PBias, with PIT-Alpha
or with CRPS. This is in contrast to other findings across the world. For example, the
national flood warning system in New Zealand has performance skills that increase with
the catchment area [54].
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4.2. Evaluation of Streamflow Forecasts

We assessed and evaluated the 7-day ensemble streamflow forecasts using the metric
as described in Appendix A and present the results in the following sections. The details
of the performance metrics of a randomly selected catchment from New South Wales are
shown in Figure A2.

4.2.1. Performance of Ensemble Mean

Box plots of streamflow forecasting performance skills PBias, RMSE, KGE, and PCC
for all locations are shown in Figure 8. The skills clearly declined gradually as the forecast
horizon increased from Day 1 to Day 7. The median bias for all forecasting locations
remained very close to zero, but the percentile range increased steadily. This is different
from the rainfall forecast (Figure 4a) where the median of the bias decreased over the
forecast horizon and the range bound remained fairly constant. The apparent improvement
in skills could be attributed to implementation of streamflow post processing [37] and
the streamflow routing scheme in the SWIFT modelling system. Forecast skill using the
other three metrics—RMSE, KGE, and PCC—led to a similar conclusion. The performance
decayed approximately exponentially as the forecast horizon increased (Figure 8). However,
the lower percentile bound of KGE, from Day 3 onwards, was below zero, meaning some
forecasting locations had no skill. Similarly, the upper bound of the RMSE was very high
for some catchments, indicating poorer performance.

The NSE results for all catchments and forecasting locations are presented in Figure 9.
Similarly to the other metrics, the performance decreased as the forecast horizon increased.
Only about 25% of catchments had an NSE greater than 0.6 and 0.4, respectively, for lead
times of 3–7 days. In an operational context, this performance skill is better than that found
in a similar study in India using an ECMWF dataset as the forcing variable [48].
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(b) percentage of catchments exceeding median NSE for different lead times.

Categorical metrics are widely used to assess the performance of the streamflow
and flood predictions [52,53,55–57]. Similarly to rainfall, we classified the streamflow of
different percentiles and calculated the CSI, POD, and FAR for all catchments (an example
is shown in Figure A2) for different flow volumes to further understand the model’s
predictive capabilities. The forecast performance progressively decreased with higher
discharges and longer lead times (Figure 10). The performance of the rainfall forecast was
even poorer (Figure 5), indicating that the streamflow forecast skill was improved by the
postprocessing error-correction scheme. Another reason for the poorer performance of
extremely high flows could be that there were fewer events used in the analysis and higher
measurement uncertainty [58]. Matthews et al. [59] found similar results in Europe when
comparing the CRPSS of rainfall and streamflow prediction at different quantile ranges.
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4.2.2. Performance of Ensemble Forecasts

Streamflow forecasting performance skills—CRPSS and PIT-Alpha again reaffirm that
skills gradually decline as the forecast horizon increases (Figure 11). The CRPSS skill was
somewhat lower than that obtained during the development phase of the service [5,8] for
Day 1, but was higher for the subsequent 6 days. Few catchments had negative CRPSS
skill, meaning the performance was lower than it might have been if reference climatology
had been used. Similar results were also evident for the relative CRPS metric. The median
of the PIT-Alpha score was also very similar to that obtained during the development
phase of the service. However, the percentile band was much wider (Figure 11b). The
streamflow forecasting skills also showed better performance than the skills obtained from
a similar studies conducted in USA [20], Canada [60], Europe [59], South America [19],
and around the world [38]. Our findings suggest that the operational 7-day ensemble
streamflow forecasting service is robust, and this provides greater confidence for end users
who use or wish to use these forecasts to support water management decision making.
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4.2.3. Spatial and Temporal Performance

Here, we present the CRPSS and PIT-Alpha performance statistics for all 96 forecasting
locations for the four-year evaluation period (2020–2023). The key idea was to identify any
spatial pattern in streamflow forecasting performance skills. It was clear that the model’s
performance was poorer for the catchments in the western part of the Great Dividing Range,
South Australia, and in the mid-west of Western Australia (Figure 12). The spatial pattern
of the two metrics was similar across the continent.
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In addition to the spatial mapping of the results, we investigated the regional pat-
terns of the forecast performance skills for different states and territories (jurisdictions);
we present only the results for Day 3’s skills (NSE, CRPSS, and PIT-Alpha) in Table 1.
Except for the Northern Territory, performance of only a small number of catchments at
all other jurisdictions were poorer, as evidenced by the deterministic, ensemble median
NSE (Figure 9a). This may not represent the reality, as the sample number is only 4 in the
Northern Territory. The maximum NSE among different jurisdictions ranged from 71%
(Tasmania) to 94% (Western Australia). There were also a small number of catchments
in New South Wales, Queensland and Tasmania where the CRPSS scores were negative.
Most of these forecasting locations had poorer NSE scores as well. The CRPSS score were
greater than 20% for half of the forecasting locations in Queensland, which seemed to
be poorest performer among all jurisdictions. The performance skills of all forecasting
locations, as computed by PIT-Alpha, seemed to be better than those of the other two
metrics (Table 1). Overall, it appeared that the forecast performance of the operational
service was better in Western Australia and poorer in South Australia and Queensland.
Most of the underperforming locations across the continent are situated in the interior
part of Australia (Figure 12). The principal reason for this spatial variation in performance
across the continent could be attributed to the following: (i) the ranges of the mean annual
rainfall with higher inter-annual variability [61]; (ii) the catchments’ physical attributes,
including slope, soil properties, Köppen climate classes [10], and the intermittent nature of
streamflow; (iii) the sparse monitoring network; (iv) the poor performance of the rainfall
forecasts. Overall, the performance of the system in the operational setting seems to be very
similar to the one obtained during development phase [8] and gives greater confidence in
end-user decision making.

Table 1. Streamflow performance skills (NSE, CRPSS, and PIT-Alpha) for different jurisdictions—
forecast horizon Day 3.

Jurisdiction Number of
Locations

NSE (%) CRPSS (%) PIT-Alpha (%)

5th 50th 95th Max 5th 50th 95th Max 5th 50th 95th Max

New South
Wales 28 <0 29 63 68 13 39 57 63 57 81 91 92

Northern
Territory 4 43 59 88 91 29 41 65 67 70 81 85 85

Queensland 15 <0 13 82 83 <0 20 60 70 50 81 93 94
South
Australia 4 <0 22 62 68 6 24 50 54 51 71 78 78

Tasmania 14 <0 43 71 71 <0 33 57 63 63 78 91 91
Victoria 19 <0 38 72 82 21 47 60 63 55 79 91 93
Western
Australia 12 <0 75 88 94 12 44 84 92 45 83 91 96

4.2.4. Performance and Catchment Area

In addition to the performance metrics and diagnostic plots, we investigated the
streamflow forecast skill and its relationship with the catchment area (Figure 13). We
found no relationships between the catchment area, the NSE, the PBias, the PIT-Alpha,
the CRPS, or the other performance metrics. This finding is different from those of other
studies around the world. For a national flood warning system in New Zealand, it was
found that forecast performance skills increase with the catchment area [40,54]. Similarly,
in the USA, the predictive flood forecasting skill of a real-time operational hydrological
forecasting model showed positive relationships between the catchment areas [20,62]. In
South America, performance skills of medium range (up to 15 days) ensemble streamflow
forecasts were investigated and found a positive relationship between the forecast skills
and the catchment area [19]. Similar results were also found in China [49], but with varying
relationships between geographical location and differences in climate.
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Figure 13. Performance of one-day lead time streamflow forecast and catchment area for all
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A fundamental property of spatial scale in hydrology [63] is that streamflow varies
less with increasing catchment area; this is due to the averaging and smoothing effects
of the complex river network. Additionally, as the catchment time of concentration (time
for water to flow from the most remote point in a catchment to the outlet) increases and
approaches the forecast time horizon, a larger portion of the forecast streamflow volume at
the catchment outlet is already in the river network; therefore, it is in the forecast model. In
this case, the skill of rainfall prediction plays a relatively reduced role as the catchment area
increases. Across Australia, 50% of catchments in the 7-day streamflow forecasting service
have an area greater than 1500 km2. There is an indication that CRPS skill score deteriorates
for the catchments smaller than 1500 km2 (Figure 13b). Operationally, we implemented
ERRIS to post-process the hydrological model’s generated streamflow; it has been proven
that implementing ERRIS significantly increases forecast skill [8]. Further investigation and
research in this area may reveal more about the complex relationships between forecast
rainfall, flow generation processes, and the relationships with the catchment area.

4.2.5. Comparison of Forecast Rainfall and Streamflow Forecast Metrics

We found no clear relationships between the different performance evaluation metrics
for either the rainfall forecast or the streamflow forecast (Figure 14). This finding is in
contrast to those of other studies around the world [7,17,22,49]. Further investigation is
necessary to better understand these different findings.
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5. Discussion and Future Directions
5.1. Service Expansion

Extensive customer consultation was undertaken during the development of the 7-day
streamflow forecasting service. More than 50 important customers across the country
were consulted to identify high-value catchments and forecasting locations, and to help
understand how the service is likely to bring the most benefits for them. Due to resource
constraints, some selected catchments were not included in the service. Initiatives should be
undertaken to revisit these catchments and to see whether the forecasting service could be
developed there. At present, the service is available only for catchments located upstream of
significant infrastructure developments, where there is no return flow to rivers, or diversion
from the rivers. Research is needed to understand how infrastructure, river operations,
and management influence the landscape’s water balance and how the forecasting service
could be expanded to manage systems including reservoir inflows, water balance, and
forecasting locations downstream of reservoirs.

5.2. Benefits and Adoption of Forecasting

Is there any benefit to using ensemble 7-day streamflow forecasts over simple cli-
matology? The answer is yes—in terms of overall accuracy, performance, and reliability.
However, forecast skill varied across different regions within the country (Figure 12),
and varied with lead times (Figure 11). Generally, improvements in NWP rainfall fore-
casts lead to more accurate and reliable streamflow forecasts. However, our analysis of
operational data shows that the primary source of streamflow forecast skill lies in the
post-processing error-correction scheme—ERRIS—and hydrological persistence, rather
than in the rainfall forecasts. This finding is different from those of studies in other parts
of the world [19,20,38,59,60]. Additionally, factors such as model initial states, catchment
aridity, seasonality, and geographical location may also significantly influence forecast per-
formance. It has been demonstrated that combining state updating and the error-correction
model leads to lower streamflow forecast errors [64]. Further investigation is essential
in comprehensively understanding the variability of forecast skill across different flow
regimes, including peak flow magnitude, timing, and recession.

How can the ensemble SDF service benefit the community? This can be carried out by
encouraging the adoption of ensemble forecasts among users and implementing them in
decision-making tools. However, replacing traditional deterministic hydrological forecasts
with ensemble forecasts presents challenges. A valuable scientific finding does not automat-
ically align with end-users’ decision-making processes [65]. Several studies have explored
the usability of streamflow forecasts in supporting decisions for reservoir operations [66,67],
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flood forecasting [22], water resource management [68], and hydropower generation [69,70].
One key challenge lies in the operational capacity to ingest and incorporate ensemble fore-
casts into water management decision-support tools. Many existing tools are designed for
deterministic inflow scenarios and would require significant upgrades to accommodate
automated ensemble streamflow forecasts. The Bureau has been closely working with key
stakeholders to increase and improve adoption of the ensemble SDF service in end-user
decision-making tools. For example, forecast streamflow time series are delivered to the
Murray Darling Basin Authority through the file transfer protocol (FTP) and are ingested
into their ROWS system for optimal release from the Hume Dam and the operation of the
River Murray system [71].

5.3. Understanding Forecast Skills and Uncertainties

Rainfall forecasting is very challenging due to the chaotic nature of the atmosphere [72].
Small changes in initial conditions can lead to an entirely different outcome. Modelling
deficiencies further add to forecast inaccuracies, especially for longer lead times. However,
due to ongoing improvements in NWP models, the skills of rainfall forecasting have
increased significantly [73,74]. Skilful rainfall forecasts are now being generated by NWP
models worldwide, enabling the production of relatively skilful streamflow forecasts for
water resource management and planning. Ensemble rainfall forecasts, extending up to at
least 30 days ahead, are available from over five NWP models globally. Analysing rainfall
data revealed that a multi-model ensemble approach enhances the predictability and
reliability of these rainfall forecasts [75]. Exploring the potential applications of extended
rainfall forecast data for streamflow forecasting remains an avenue for future research.

The inherent uncertainties in NWP rainfall forecasts are one of four key sources of
uncertainty, alongside input data, model structure, and the parameters and their combina-
tions [76]. These uncertainties vary across catchments, due to the catchments’ characteris-
tics, streamflow magnitude, and lead time. Within the hydrological modelling community,
it is widely acknowledged that the greatest uncertainty in forecasting beyond 2–3 days
originates with rainfall input [16]. However, when considering streamflow forecasts up
to 2–3 days ahead, skill primarily originates from rainfall forecasts and catchment per-
sistence. Surprisingly, our study revealed limited skill in rainfall forecasts beyond Day 2
(Figures 3, 4 and 6). Notably, improvements in streamflow forecast skill were due to post-
processing error corrections (Figures 8, 9 and 11). The role of persistence in forecast skill
shows strong dependence on catchment area, network characteristics, and geometric prop-
erties [77]. Although catchment area sizes vary significantly across Australia, we observed
no clear relationship with forecast skill (Figures 7 and 13). Consequently, it became clear
that the primary source of skill was in the streamflow post-processing error-correction
scheme, ERRIS, with minimal contribution from rainfall forecasts and possibly persistence,
or a combination of all three.

Variation in runoff and catchment area across the continent is significant, and some
catchments flow only during a few months of the year [8]. There are challenges in accu-
rately measuring low flows due to the rating curve, the gauging structure, or the sensor
issues [58]. Conversely, the accuracy of high flow measurements might be limited to a
specific occurrence. Our analysis revealed that streamflow forecast performance skills were
notably lower for high-flow components (Figure 10). As we develop an ensemble flood
forecasting service, it becomes crucial to evaluate high-extreme-flow events using longer
periods of data.

In this study, we investigated the streamflow forecast skill and its geographical patterns
(Figure 12, Table 1). However, research from the United Kingdom [78] demonstrates that
forecast skills depend on the initial state and the catchment characteristics, declining
exponentially beyond three days. This decline was found to be consistent with our findings,
and the skills were not uniformly distributed across different hydroclimatic regions. Further
investigations are necessary in building an understanding of this relationship.
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5.4. Adoption for Flood Forecasting Guidance

The ensemble 7-day streamflow forecasting approach provides additional guidance
for the Bureau’s current deterministic and event-based flood forecasting and warning
service. However, there is a growing trend toward using ensemble hydrologic forecasting
to produce probabilistic flood forecasts [79]. While many aspects of ensemble forecasts for
flood preparedness are still being explored, two critical points must be addressed before
the end-to-end adoption and operation of the ensemble forecasts are possible:

• Accuracy and timing: We must improve flood forecast accuracy and skills in terms
of the magnitude and timing peaks. Achieving precise predictions for flood peaks is
crucial for effective preparedness and response.

• Enhanced communication and support: Effective communication with end-users is
essential. Providing timely and actionable information to decision makers, emergency
services, and the flood preparedness community is vital. The focus typically lies on
time scales ranging between hours and a couple of days.

Our forecast horizon is 7 days, and this is considered to be adequate for covering a wide
range of flood events, depending on factors such as the catchment area, the flow-generation
mechanism, and the within-year flow distribution across Australia. It is vital for the devel-
opment of the service that the Bureau explores the use of ensemble forecasting data in its
operational flood forecasting and warning service. This will be possible through leveraging
the technology stack used here for operational 7-day ensemble streamflow forecasting.

6. Summary and Conclusions

The Australian Bureau of Meteorology launched its semi-automated operational 7-day
ensemble forecasting service in July 2020. The service covers most of the high-value water
resources across Australia and fulfils government and stakeholder requirements.

We evaluated the performance of the Bureau’s operational forecasts using four years
of operational output data from between 2020 and 2023. Ensemble rainfall forecasts—the
European Centre for Medium-Range Weather Forecasts (ECMWF) and the Poor Man’s
Ensemble (PME), available in the Numerical Weather Prediction (NWP) suite—were taken
as the input to generate streamflow forecasts. The GR4H lumped rainfall–runoff model,
embedded in the Short-term Water Information Forecasting Tools (SWIFT) was used to
generate the streamflow forecasts. We evaluated the ensemble rainfall and streamflow
forecast through CRPS, CRPSS, and PIT-Alpha metrics and its deterministic form, using
NSE, KGE, PCC, MAE, RMSE, and categorical metrics CSI, POD, and FAR. Diagnostic plots
were also considered for visual inspection and empirical judgements.

We found that the performance skills of the current operational ensemble streamflow
forecasts remain consistent with those obtained during the development phase of the
service. As we extended the forecast horizon from Day 1 to Day 7, the ensemble forecast-
ing performance scores gradually decreased. This pattern was consistent across various
metrics, including CRPS, CRPSS, PIT-Alpha, NSE, KGE, PCC, MAE, RMSE, and categorical
metrics like CSI, POD, and FAR. Across the catchments, most results showed positive
skills, indicating that the ensemble forecast outperformed climatology. Notably, there was
no significant association between the performance skill scores and the catchment area.
Spatially, streamflow and rainfall forecast skills were generally higher in the high-value
water resource catchments, and lower in the western part of the Great Dividing Range,
South Australia, and the mid-west of Western Australia. Our findings demonstrate that the
7-day streamflow forecasting service is robust; this ensures confidence among stakeholders
in using them to support water resource management decision-making processes. The
streamflow forecasts are already used by stakeholders and embedded into their decision-
making models. The Bureau is applying a similar forecasting approach in developing an
integrated ensemble flood and streamflow forecasting service.
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Appendix A. Forecast Performance Evaluation Metrics

Streamflow data from 1990 to 2016 are used for climatological streamflow calculations.
Climatological streamflow values are calculated on a daily basis using data from a 29-day
window. For a given day, the climatology value is the distribution of data within the period
from 2 weeks before to 2 weeks after the target day over the climatology period. Metrics
were computed for each lead time—Day 1–Day 7.

DETERMINISTIC FORECAST

PBias: This metric estimates whether the model is consistently underestimating or
overestimating streamflow. It can be positive (underestimation) or negative (overestimation)
and was calculated for each lead time (in days) as follows:

PBias =
∑n

i=1(Qi,obs − Qi,sim)

∑n
i=1(Qi,obs)

× 100 (A1)

In the above equation, Qi,obs was the observed streamflow, Qi,sim was the modelled
streamflow, and n was the total number of observations.

Pearson’s Correlation Coefficient (PCC): PCC measures the linear correlation between
observed and simulated time series; in our case, this is the rainfall and the streamflow,
respectively, for each day. It is calculated as follows:

PCC
∑n

i=1
(
Qi,sim − Qi,sim

)(
Qi,obs − Qi,obs

)√
∑n

i=1
(
Qi,sim − Qi,sim

)2
√

∑n
i=1

(
Qi,obs − Qi,obs

)2
(A2)

The value of PCC is bounded between −1 and 1 and measures the strength and
direction of a relationship. When one variable changes, the other variable changes in the
same direction.

http:www.bom.gov.au/water/7daystreamflow/
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Mean Absolute Error (MAE): Mean absolute error (MAE) is the average of the magni-
tude of the errors. The perfect score is zero, as calculated by:

MAE =
∑n

i=1
∣∣Qi,obs − Qi,sim

∣∣
n

(A3)

Nash–Sutcliffe Efficiency (NSE): The Nash–Sutcliffe efficiency [80] quantifies the rela-
tive magnitude of residual variance compared to the observed streamflow variance:

NSE = 1 − ∑n
i=1(Qi,obs − Qi,sim)

2

∑n
i=1

(
Qi,obs − Qobs

)2 (A4)

In the above equation, Qobs was the mean observed streamflow. In this study, NSE is
used to assess the performance of the model forecast for each of the lead time.

Kling–Gupta Efficiency (KGE): The KGE [81] performance metric is widely applied in
environmental and hydrologic forecasting and is defined as follows:

KGE = 1 −
√
(r − 1)2 + (α − 1)2 + (β − 1)2 (A5)

In the above equation, r is Pearson’s Correlation Coefficient (Equation (A2)), α is a
term that represents the variability of the forecast errors and is defined by the ratio of the
standard deviation of the observed and predicted data

(
σsim
σobs

)
, and β is the ratio of the

mean of the observed and simulated data,
(

µsim
µobs

)
, respectively.

Root Mean Squire Error (RMSE): The RMSE measures the average difference between
the predicted values and observed ones. It provides an estimate of how accurately the
model can predict the target time series.

RMSE =

√
1
n ∑n

i=1 (Qi,sim − Qi,obs)
2 (A6)

ENSEMBLE FORECAST

CRPS: This metrics allows for a quantitative comparison between the deterministic
and the ensemble forecasts. It is calculated as the difference between the cumulative
distribution of forecast and the corresponding observation [82]. The CRPS reduces to the
mean absolute error for (MAE, Equation (A3)) deterministic forecasts and is given by:

CRPS =
1
T ∑T

t=1

∫ x=∞

x=−∞
(F f

t (x)− Fo
t (x))

2
dx (A7)

In the above equation, F f
t (x) is the forecast cumulative distribution (CDF) probability

for the tth forecast; Fo
t (x) is the observed CDF probability (heaviside function). For ensem-

ble rainfall, the relative CRPS, as a function of catchment mean rainfall (R) is calculated
as follows:

CRPS(%) =
CRPS

R
× 100 (A8)

CRPSS: This metric measures the relative performance of the streamflow forecast and
is calculated with respect to the reference forecast. It is calculated as follows:

CRPSS = 1 −
CRPS f orecast

CRPSclim
(A9)
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In the above equation, CRPSclim is the reference forecast, calculated from the stream-
flow climatology period.

PIT: The Probability Integral Transform diagram (PIT) is applied to assess the reliability
of ensemble forecasts [83]. It is the cumulative distribution function (CDF) of the fore-
casts, Ft( ft), evaluated with the observations, Qt (rainfall or streamflow), and is given by
the following:

PITt = Ft(Qt) (A10)

PIT is uniformly distributed for reliable forecasts and falls on the 1:1 line for a perfect
forecast. To avoid visual disparity, we have used a quantitative score of the Kolmogorov–
Smirnov goodness (KS-D) statistic to measure the deviation of the PIT values from the
perfect forecast. The KS-D statistic is used to compare the maximum deviation of the
cumulative PIT distribution from the uniform distribution of the forecasts. We used PIT-
Alpha [84] to compare the PIT values of the forecast ensemble streamflow and the rainfall
from all the catchments:

α = 1 − 2
T ∑T

t=1

∣∣∣∣PIT∗
t − t

T + 1

∣∣∣∣ (A11)

In the above equation, PIT∗
t is the sorted PITt.

CATEGORICAL METRICS

The categorical metrics for the assessment of the streamflow and rainfall forecasts
included [85] the following: probability of detection (POD), false alarm ratio (FAR), and
critical success index (CSI). These metrics are extensively used in operational forecast
assessments [52,53,55].

Probability of Detection (POD): The POD is based on the correctly identified (X) and
missed (Y) number of forecast class. The value ranges from 0 to 1 and a perfect score is 1.

POD =
X

X + Y
(A12)

False Alarm Ratio (FAR): The FAR depends upon the classes which are detected by the
forecasts, but which are not observed (Z), and the correctly identified (X) ones. The value
of the metric ranges from a perfect score of 0 to 1.

FAR =
Z

X + Z
(A13)

Critical Success Index (CSI): The CSI represents the overall number for forecasts
correctly produced by the model. Its value ranges from 0 to a perfect score of 1.

CSI =
X

X + Y + Z
(A14)
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Figure A1. Graphical representation of forecast rainfall performance metrics of a randomly selected 
catchment from Tasmania: (a) PBias, (b) PCC, (c) MAE, (d) NSE, (e) KGE, (f) RMSE, (g) CSI, (h) FAR, 
(i) POD, (j) CRPS, and (k) PIT-Alpha. 
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(i) POD, (j) CRPS, and (k) PIT-Alpha.
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Figure A2. Graphical representation of forecast streamflow performance metrics of a randomly se-
lected catchment from New South Wales: (a) PBias, (b) PCC, (c) MAE, (d) NSE, (e) KGE, (f) RMSE, 
(g) CSI, (h) FAR, (i) POD, (j) CRPS, and (k) CRPSS and (l) PIT-Alpha. 
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