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Abstract: The Soil Moisture Active Passive (SMAP) satellite carries an L-band microwave radiometer.
This sensor can be used to observe global soil moisture (SM) and sea surface salinity (SSS) within
the protected L-band spectrum (1400-1427 MHz). Owing to the complex effects of radio frequency
interference (RFI), the SM and SSS data are missing or have low accuracy. In this paper, a constrained
iterative adaptive algorithm for the detection, identification, and localization of RFI sources is
designed, named MICA-BEID. The algorithm synthesizes antenna temperatures for the third and
fourth Stokes parameters before RFI filtering, creating a new polarization parameter called Wsppa,
designed to approximate the level of RFI interference on the L-band microwave radiometer. The
algorithm then utilizes the Wspp4 intensity and distribution density of RFI detection samples to
enhance the identification and classification of RFI sources across various intensity levels. By utilizing
statistical methods such as the probability density function (PDF) and the cumulative distribution
function (CDEF), the algorithm dynamically adjusts adaptive parameters, including the RFI detection
threshold and the maximum effective radius of RFI sources. Through the application of multiple
iterative clustering methods, the algorithm can adaptively detect and identify RFI sources at various
satellite orbits and intensity levels. Through extensive comparative analysis with other localization
results and known RFI sources, the MICA-BEID algorithm can achieve optimal localization accuracy
of approximately 1.2 km. The localization of RFI sources provides important guidance for identifying
and turning off illegal RFI sources. Moreover, the localization and long-time-series characteristic
analysis of RFI sources that cannot be turned off is of significant value for simulating the spatial
distribution characteristics of localized RFI source intensity in local areas.

Keywords: passive microwave remote sensing; polarization detection; radio frequency interference;
L-band microwave radiometer; Stokes parameter; localization

1. Introduction

In recent years, observing soil moisture (SM) and sea surface salinity (SSS) with
satellite-borne L-band microwave radiometers has become an emerging technology with
broad scientific research and application prospects [1]. The Soil Moisture Active Passive
(SMAP) satellite is the third scientific research satellite carrying an L-band microwave
radiometer, following the Soil Moisture and Ocean Salinity (SMOS) and Aquarius/SAC-D
satellites. It is mainly used to monitor global SM; however, it is also currently widely used
in the satellite remote sensing observation of SSS due to its operating band and instrument
design features [2-5].
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The preferred band for the satellite observation of SM and SSS is 1413 MHz [6,7]. In ac-
cordance with the provisions in the Radio Regulations of International Telecommunications
Union—Radiocommunication Sector (ITU-R), all emissions within the L-band frequency
range from 1400 to 1427 MHz are prohibited [8,9]. However, numerous research results
indicate that considerable radio frequency interference (RFI) has been observed worldwide
for each satellite-borne L-band microwave radiometer [9-14]. Research institutes have
taken into account RFI detection and mitigation methods in the design of each L-band
microwave radiometer. Nevertheless, the unique design of the satellite sensor hardware
alone cannot completely enable the detection and suppression of RFI, and different algo-
rithms for radiation calibration, detection, and suppression are still required to alleviate
the influences of RFI sources on L-band microwave radiometers [12,14,15].

Common L-band RFI sources primarily include radar systems, ground-based wireless
services (such as monitoring cameras and WIFI networks), broadcasting satellite services,
and meteorological satellite services [13,16]. These RFI sources are mainly distributed
in large parts of Europe, Asia, and the Middle East [9,17]. Strong RFI emissions may
cause abnormal increases in brightness temperature data, leading to significant data loss
for scientific retrievals [9]. Moreover, weak RFI signals may be submerged in natural
radiation signals, making them difficult to detect and identify and reducing the accuracy
of SM and SSS inversion results, thus having a non-negligible influence on microwave
radiometers [9,12,14].

The SMAP satellite carries an advanced L-band digital microwave radiometer that
provides rich time and frequency sampling data, offering more support for RFI detection
and suppression [11,18]. The integrated detection and suppression algorithms used by
the SMAP satellite include time domain detection, cross-frequency detection, kurtosis
detection, and polarimetric RFI detection algorithms. The output flag results from these RFI
detectors are integrated through the maximum probability of detection (MPD) algorithm to
reach the MPD and remove the RFI-corrupted pixels in each footprint [18-20]. In recent
years, machine learning methods have been applied for RFI detection and localization
using SMAP data. Soldo et al. (2018) proposed a method that employs Density-Based
Spatial Clustering for Applications with Noise (DBSCAN) along with centroid calculation to
estimate the location of RFI sources [14]. Nazar et al. (2023) conducted a multi-dimensional
semi-supervised learning approach [21]. Owfi et al. (2023) proposed an autoencoder-based
RFI mitigation method [22]. These methods offer novel detection strategies to address the
complex and variable characteristics of RFI. Furthermore, they enhance our understanding
of the characteristics of RFL

China is within the influential range of terrestrial RFI, so satellite observation data of
earth surface brightness temperature are of low quality, further influencing the accuracy of
inverted SM and SSS data and seriously constraining the research and service applications
of satellite-borne L-band microwave radiometers [23,24]. The diverse types and varying
intensities of RFI sources, widely distributed on land, coupled with the spatiotemporal
variability of overlapping RFI signals, make the impact on L-band microwave radiometers
extremely complex and difficult to suppress effectively.

Given the sensitivity of the third and fourth Stokes parameters of L-band microwave
radiometers to RFI, we have constructed a polarization parameter and evaluated its capa-
bility to characterize RFI features. Based on the intensity and spatiotemporal distribution
characteristics of this polarization parameter, a constrained iterative adaptive algorithm for
RFI sources detection, clustering, identification, and localization using machine learning
methods is designed. The algorithm is applied to analyze and identify the localization
of various types of RFI sources using SMAP satellite L-band microwave radiometer data.
The results provide important technical support for both locating and turning off illegal
RFI sources, enhancing the accuracy of retrieval data. As China’s ocean salinity satellite
approaches launch, this study is essential for developing SSS retrieval algorithms capable
of effectively detecting and mitigating interference effects from RFI.
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2. Materials and Methods
2.1. SMAP L1B_TB Data

In this study, we utilized the SMAP Level 1B Brightness Temperature Product (L1B_TB)
provided by the NASA National Snow and Ice Data Center (NSIDC). This Level-1B product
provided calibrated estimates of time-ordered geolocated brightness temperatures mea-
sured by the SMAP passive microwave radiometer. The algorithm established in this study
primarily utilized the antenna temperatures for the third and fourth Stokes parameters,
denoted as ta_3 and ta_4, for each footprint before RFI filtering. The RFI original detection
flag (tb_qual_flag 3/4/h/v) and the longitude and latitude of the intersection of the an-
tenna boresight vector and the Earth’s surface (tb_lon and tb_lat) are used as inputs, as
distributed in the L1B_TB products of SMAP.

2.2. Theoretical Analysis of RFI Influence Characteristics

The Stokes parameter matrix of polarization data from satellite-borne L-band mi-
crowave radiometers contains four Stokes parameters representing the polarization char-
acteristics of ground object microwave radiation. The third and fourth Stokes parameters
are proportional to the real and imaginary parts of the correlation between fields in hori-
zontal and vertical polarizations, respectively. The modified Stokes vector expressed with
brightness temperature is as follows [25,26]:

2
Th |Eh|
—_ 2
Ty — ? :kL |Eo|® (1)
2 BT | 2Re(E,E,*)
4 20m(EoEp*)

where A is the radiometer’s wavelength, k is Boltzmann's constant, B is the bandwidth, 7 is
the medium impedance (air), and E; and Ej, are the two orthogonal components of the plane
wave, which are electric field strengths in vertical and horizontal directions, respectively.

Under the natural-level conditions uncontaminated by RFI, the third and fourth
Stokes parameters of L-band microwave radiometers are very small [27]. However, these
parameters are highly sensitive to signals from ground-based RFI, and their anomalies
can indicate the presence and characteristics of various RFI sources and can also reflect
RFI signals at different intensity levels; in particular, they have some advantages in the
detection of weak RFI signals. In addition, the synthesized parameters of the third and
fourth Stokes parameters can characterize the emission intensity of terrestrial RFI sources
to a certain extent [11,21,27-29].

The synthesis parameter detection algorithm (SPDA), established through the syn-
thesis of dual parameters, can simultaneously identify artificial RFI sources with linear
polarization and those with circular polarization. It effectively covers the present polar-
ization modes of artificial radiation sources, achieving the purpose of comprehensive RFI
detection. The expression for the synthesized polarization characteristic parameter is as

follows [28]:
Wsppa = /T3 + T} 2)

Substituting T3 and T4 in Equation (1) into Equation (2) yields [21]:

2
Wsppa = 13317 (Eon(t)Eoo(t)) 3)

where Eg, and Eg, represent the amplitudes of electric field strength under horizontal and
vertical polarizations, respectively.

It can be seen that the synthesized polarization parameter Wgspp4 is directly propor-
tional to the time-averaged product of horizontally and vertically polarized amplitudes of
plane waves. The radiated power is directly proportional to the square of the amplitude
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of a plane wave. This relationship indicates that, under ideal conditions, the polarization
parameter Wsppa can be used to estimate the impact strength of RFI sources on L-band
microwave radiometers.

For an RFI source located in the effective field of view (EFOV) of the antenna of a
radiometer, if the effective isotropic radiated power (EIRP) emitted from the RFI source
points to the satellite, the interference signal can easily enter the receiving antenna of the
microwave radiometer. The EIRP represents the power radiated from a directional antenna
in its maximum radiation direction, and it is usually used to characterize the emissive
capability of a ground-based transmitting system [21,30] based on the following formula:

EIRP = PG (4)

where P; represents transmission power, and G; represents the gain of the transmitting antenna.

The Friis transmission equation can determine the relationship between received
power, antenna gain, and transmission power [30]. According to the Friis transmission
equation, the EIRP can be calculated using the following formula [31]:

2
EIRP = (47KR> g (5)
r

where P, represents the received power, G, represents the gain of the receiving antenna, R
represents the distance between the two antennas, and A represents the wavelength.

The relationship between the Wsppy of the satellite receiving antenna and the EIRP of
a ground-based RFI source can be established with the Friis transmission formula [31]:

471R\? W.
) SPDA ©)

A Gr (6, ¢1)

where P;G¢(6;, ¢;) represents the EIRP of the RFI source in the direction of the L-band
microwave radiometer experiencing interference, and G, (61, ¢t) represents the gain of the
receiving antenna in the direction of the RFI source.

As can be discerned from Equation (6), the parameters of the ground-based RFI
source, including transmission power and the gain of the transmitting antenna, remain
unknown. Additionally, the transmission power may fluctuate dynamically over time.
Furthermore, the orientation of both the RFI source antenna and the satellite sensor antenna
is also unknown. The Wgsppa for continuous instantaneous observations can be used to
characterize the spatiotemporal variation characteristics of the interference intensity from
the land-based RFI source to the L-band microwave radiometer.

To minimize the RFI noise received by the satellite antenna, the main lobe direction
of the satellite antenna should avoid the emission directions of the antenna of strong RFI
noise sources in principle, and the sidelobes in the pattern of the satellite antenna should
be reduced or lowered. However, since ground-based RFI sources are of widespread
distribution, the emission directions of the antenna of RFI sources are varied, and the
satellite antenna has different observation elevations and azimuths, it is challenging to
entirely avoid RFI sources. Establishing the aforementioned multivariate functional rela-
tionships can help us quantitatively understand the spatial distribution characteristics of
terrestrial RFI sources on satellite observation data and is crucial for the establishment of
RFI identification and localization algorithms.

Pth(GT/ q)r) = kB (

2.3. SMAP RFI Detection Algorithm

The SMAP satellite uses multiple RFI detection algorithms. The composite MPD RFI
detection algorithm employs a logical OR operation on each of the individual RFI detection
flags, and it is used to achieve the purpose of reaching the MPD [18-20,32]. Compared
with the SMOS, the SMAP is less affected by RFI in the coastal ocean regions [33]. The RFI
detection algorithms designed for the SMOS, Aquarius, and SMAP satellites according to



Remote Sens. 2024, 16, 1791

50f24

Iteration 1: Generated a clusters

Unclustered Samples—————

Input Data

SMAP

L1B_B
Data

RFI

Detection RFI DBSCAN

Module Detection +
Sample Boundary

SPDA Database Conditions
SRDF Rias s ete

| | |

1 | |

| | |

T T

| | : |

I 1 | |

| | | |

e | ! ! |

| | | |

I | | |

I | | |

I | |

I 1 : |

| | |

I 1 : |

| | | |

Identification | ! N Identification | ! N | Identification | |

™| and Location | | D;;fﬂ“:"l‘:“ | Boundary | | ™| and Location | | D;:f““:,';:“ ™| Boundary ™1 and Location !
Algorithms } Database Conditions Algorithms : Database | | Conditions Algorithms | | Clustering

| Ripa» ete | 1| Ry ete :

’ I : | i : i

. | | | |

. | 1 | |

I 1 | |

I 1 | |

I | |

I 1 : |

| | |

I 1 : |

I 1 | |

| | | |

| 1 | |

| 1 H 1

I 1 | |

I | | |

the features of the onboard radiometers have a common characteristic: a fixed or dynamic
threshold needs to be set by RFI characteristics to realize detection filtering and control
false alarm rate (FAR). However, the threshold has two sides: if the threshold is set too low,
the FAR will be increased; if the threshold is set too high, the probability of detection (PD)
will be decreased. In addition, these ordinary and direct methods mainly suffer from the
following potential limitations:

(1) Weak RFI sources may be submerged into the action range of strong RFI sources or
into natural-level radiation signals, making them difficult to detect [12,18].

(2) The substantial transition in brightness temperature that occurs at land-water and
ice-water boundaries can also cause false alarms. Several algorithms have too high
FAR at land-water and ice-water coastal boundaries, and only increasing the thresh-
old can be used to reduce the FAR. However, increasing the threshold may result in
the missed detection of weak RFI at coastal boundaries [11,12].

(3) The influence of an RFI source on a satellite-borne L-band microwave radiometer
through sidelobes is not limited by the RFI source position. As long as there is a
line-of-sight propagation path between the transmitting antenna and the receiving
antenna, the RFI source will influence the satellite observation results [12,14,34,35].

(4) The emission characteristic of terrestrial RFI sources dynamically varies over time,
and this increases the difficulty in setting a threshold for the detection algorithm [12].

(5) Polarization can precisely characterize the RFI signal, but the utilization rate of polar-
ization detection algorithms is too low in actual applications because of the influences
of Faraday rotation and coastal boundaries [11,19,28].

2.4. Construction of RFI Detection, Identification, and Localization Algorithms

To better utilize polarization data, we, making use of the characteristic that the SMAP
third and fourth Stokes parameters are sensitive to RFI sources, constructed a synthesized
polarization parameter, Wspp4. Based on the spatial distribution of Wspp4, we established
a constrained iterative adaptive algorithm for RFI detection, identification, and localization.
The algorithm was developed based on the Interactive Data Language (IDL) 8.5 platform
and included an RFI sample detection module, an iterative clustering module, and an RFI
identification and localization module. Figure 1 illustrates the steps of the constrained
iterative adaptive algorithm.
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Figure 1. Flowchart for the constrained iterative adaptive algorithm.

In Figure 1, Y_i_j, where i represents the number of iterations and j represents the
number of generated clustering clusters, W,y is the maximum value of Wspp within a
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clustering cluster, and Ry, is the maximum action radius at the location where W4y is
found. In each iteration, the samples for the newly generated database are sourced from
those outside the boundary conditions established during the previous clustering. The
samples that are not identified as RFI are flagged as “‘No RFI’ and are excluded from all
subsequent iterations. The following outlines the specific steps of the algorithm:

Step I: Detect and extract suspected RFI samples

The third and fourth Stokes parameters are extracted from the SAMP L1B data, and the
parameter Wsppa characterizing the satellite-received RFI radiation intensity is calculated
with Equation (2). Subsequently, statistical methods, as detailed in Equation (7), are applied
to calculate both the probability density function (PDF) and the cumulative distribution
function (CDF) for the Wspp4 data across half-orbit. Based on the conducted statistical
analysis, in this study, the cumulative probability is established as an empirical constant of
95%. The calculated value of w then serves as the detection threshold, denoted by W;. This
95% value represents the chosen level of significance for RFI detection specific to the scope
and objectives of this research.

FWSPDA (w) = p(WSPDA < w) )

where P is the probability density value of parameter Wspp4 and Fy,,, (w) is the cumula-
tive distribution value of parameter Wsppa.

This threshold W; was dynamic and obtained based on the statistical characteristics
of each orbit. In summary, the RFI detection sample dataset is a union of the datasets
generated under the following two conditions:

SMAP RFI detection flag(SRDF) = Yes (8)

Wsppa =2 Wy ©)
Step II: Perform iterative clustering of RFI samples

A multiple iterative clustering algorithm based on emission intensity and density
(MICA-BEID), which simultaneously considers the emission intensity and distribution
density of the RFI source, is used for the sample data. By adding a maximum radius of
action of the RFI sources as a boundary condition, a bounded multiple iterative clustering
algorithm is constructed. This algorithm is then used to obtain clusters.

Step III: Identify and localize RFI sources

Whether a cluster contains RFI sources is determined according to the spatial distri-
bution of the RFI sample intensity in the cluster. When a cluster contains RFI sources, the
coordinates of the maximum Wsppy4 in the cluster are extracted to obtain single-time RFI
source location information. Subsequently, the centroid of a long-time-series multi-orbit
RFI source location dataset is then calculated to establish the RFI source’s final location [14].

3. Results
3.1. Detection of RFI Suspected Samples
3.1.1. Extraction of RFI Detection Samples

Rational classification of RFI detection samples based on the intensity and spatial
distribution characteristics of RFI detection results is crucial for detecting RFI sources
across various energy levels. Spatially continuous and sufficient RFI detection samples are
a precondition for classification. In fact, the SMAP satellite, equipped with an advanced
L-band microwave radiometer, acquires rich time—frequency data. This capability allows it
to employ multiple RFI detection algorithms. Consequently, the RFI flags in the SMAP L1B
data can provide a large quantity of detection flag samples for RFI classification. However,
owing to such factors as Faraday rotation and rapid variation in brightness temperature
at coastal boundaries, the threshold for the polarization detection algorithm used by the
SMAP satellite is set to a very high value, and the polarization characteristics of the RFI
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signal are not fully utilized in actual applications. Therefore, in this study, in addition to
the original RFI flag samples extracted from the SMAP L1B data, the RFI detection samples
were supplemented using the SPDA detection algorithm.

Figure 2 shows a statistical histogram of the SMAP half-orbit data Wsppa. It can
be seen from the statistical results of the ascending and descending orbits that 95% of
the samples are primarily distributed in a threshold interval of [0, 6.3 K] and [0, 5.5 K],
respectively. The detection thresholds W for RFI polarization detection in the ascending
and descending orbits were set to 6.3 K and 5.5 K, respectively.
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Figure 2. Statistical histogram of calculation results of SMAP L1B half-orbit data parameter Wsppa
for (a) the ascending orbit and (b) the descending orbit.

Nevertheless, RFI detection samples on the edges of the satellite orbit may be affected
by RFI sources outside the satellite orbit strip so there may be no RFI sources in the RFI
detection samples on the orbit edges. These RFI detection samples can be removed based
on the scan angle range of the SMAP satellite. To avoid such cases, clusters were discarded
if the cluster’s center corresponded to a scan angle of 90° £ 25° (left side of the scan) or
270° = 25° (right side of the scan) [14].

Figure 3a,b show schematic maps of the spatial distribution of RFI detection sample
data on the SMAP satellite orbit edge (red) and inside orbit (green) for two orbits (ascending
and descending orbits) obtained on 17 June 2017. Figure 3c,d show schematic maps of the
spatial distribution of an RFI detection sample dataset of SMAP data with samples on orbit
edges being removed for two orbits (ascending and descending orbits) obtained on 17 June
2017, where the SPDA detection samples are in red, the SRDF samples are in blue, and the
overlapped samples are in green. Table 1 shows the results of the RFI detection based on
SMAP L1B half-orbit data (from ascending and descending orbits). As can be seen from
the figures and table, the number of SPDA detection samples is greater than that of the
SRDF samples on both ascending and descending orbits. Both SPDA detection samples
and SRDF samples exhibit basically consistent spatial distributions in the zones, with SRDF
samples being more concentrated, and the sample overlap rate accounts for over 50% of
the total SRDF samples. However, at coastal boundaries, the number of SPDA detection
samples is far greater than that of SRDF samples.
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Figure 3. Spatial distribution of SMAP RFI detection sample data. (a,b) RFI detection samples inside

(green) and on the edges (red) of the ascending and descending orbits, respectively; (c,d) SMAP

RFI SRDF samples (blue), SPDA samples (red) and overlapped samples (green) in ascending and

descending orbits, respectively, with the samples on the edges being removed.

Table 1. RFI detection results based on SMAP L1B half-orbit data (ascending and descending orbits).

Total Number of Number of Number of Number of SRDF Number of Number of
Orbit RFI Detection Samples on Samples inside Samples inside SPDA Samples Overlapped
Samples Orbit Edge Orbit Orbit inside Orbit Samples
Ascending 15,231 3806 11,425 7436 7853 3864
Descending 14,446 4525 9921 4915 7608 2602

We have discussed potential limitations with the SMAP RFI detection algorithms at
coastal boundaries in Section 2.3. The thresholds for the SMAP RFI third Stokes detector
remain high, essentially not contributing to the overall FAR. To avoid excessive false alarms
at coastal crossings, the thresholds for the SMAP pulse and fourth Stokes detectors are
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increased on coastal boundaries [11]. For the reasons mentioned above, there is a risk of
missing the detection of RFI sources at sea—land and sea—ice boundaries.

The SPDA detection method relies on the statistical characteristics of natural-level
radiation signals, and it can effectively supplement weak RFI signal detection samples
and address the issue of missing RFI samples at the water-land boundary. However, the
threshold for SPDA is a dynamic value obtained based on statistics, and the probability
of 95% is an empirical value, so the dynamic threshold method still cannot fully cover
all RFI samples. If the selected threshold is too low, both PD and FAR will increase
during RFI detection. This could lead to a large quantity of falsely detected RFI detection
samples, thus reducing the running efficiency of detection and localization algorithms.
Conversely, if the selected threshold is too high, there is a risk of missing RFI signals at a
low energy level. Comprehensive consideration of the SRDF samples being selected for
sample supplementation and the detection samples obtained with other algorithms being
used as auxiliary inputs can well solve the problems of false and missed detection. The
method of combining the SPDA detection algorithm and the SRDF not only covers RFI
weakly contaminated signal samples but also supplements RFI detection samples at coastal
boundaries, ensuring the comprehensive coverage of RFI detection samples.

3.1.2. Classification of RFI Detection Samples at the Water-Land Boundary

The RFI signals at the water-land boundary cannot be extracted effectively using the
initially set dynamic threshold, as the background value of parameter Wspp4 at the water—
land boundary is higher than that in other areas. Therefore, it is necessary to establish a
dynamic threshold for RFI detection samples at the water-land boundary through statistical
analysis. This adjusted threshold helps to eliminate abnormal background gain values and
obtain RFI detection samples at the water-land boundary:

WSPDA_coustlines = VWuwater—land_contamination + WRFI (10)

where Wiiter—1and_contamination 1S the total contribution at the water-land boundary under
natural-level conditions, and Wgr; is the unwanted contributions caused by RFI.

By calculating the PDF and CDF for the Wspp4 data at the water-land boundary, the
detection thresholds W; for RFI detection samples in the ascending and descending orbits
were set to 10.6 K and 9.3 K, respectively. These thresholds are dynamic and obtained
based on the statistical characteristics of each orbit. As illustrated in Figure 4, adjusting
the detection threshold at the water-land boundary effectively removes most abnormal
contributions within the water—land boundary belt and can retain the RFI detection flag
samples to the maximum extent.
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Figure 4. Local spatial distribution of SMAP RFI detection sample data at the water-land boundary.
The background is the spatial interpolation results of Wspp4. The detection results of the descending
orbit at a detection threshold of 5.5 K are in red, and those at a detection threshold of 9.3 K are
in green.
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3.2. Iterative Clustering of RFI Samples

The clustering classification of RFI samples was conducted using the DBSCAN method,
and a region with sufficiently high density can be delimited as a cluster by calculating the
maximum set of density-connected points to construct an RFI cluster [14,36]. Nevertheless,
clusters in many shapes can also be found in a spatial sample dataset of noise using the
DBSCAN method. In terrestrial areas, numerous RFI detection samples around multiple
adjacent RFI sources may be clustered into a single cluster. Additionally, at the water-land
boundary, banded clusters may be formed along the coastal belt. The formation of these
clusters is primarily determined by the spatial distribution of the RFI detection samples.
Therefore, it is required to establish a MICA-BEID algorithm by analyzing the spatial
distribution characteristic of clusters, coupled with an iterative calculation, to realize
the multi-level classification of the RFI detection samples from strong to weak and the
identification and localization of RFI sources.

3.2.1. DBSCAN Clustering

Two critical parameters—the scan radius (R) and the minimum number of contained
points (N)—for the DBSCAN classifier, were set first. The values of R and N were deter-
mined based on the scanning characteristics of the SMAP satellite antenna. The SMAP
instrument architecture consisted of a 6 m conically scanning reflector antenna and a com-
mon L-band feed shared by the radar and radiometer. The reflector antenna generated a
conical scanning antenna wave beam through rotation at a stable speed, which formed an
EFOV of 39 km x 47 km on the earth’s surface at an earth incident angle of ~40°, with the
EFOV spacing near the swath center being ~11 km x 31 km [37]. Based on the scanning
geometry of SMAP in which consecutive points centered at the antenna boresight along the
ground track are separated by 31 km, in the current version of the MICA-BEID algorithm,
the parameter R was taken as 40 km and the parameter N was taken as 3 [14]. The RFI
detection sample dataset was then clustered initially.

3.2.2. Multiple Iterations Clustering

The influence of RFI sources on the Wgppa values of the SMAP satellite was sum-
marized by analyzing the spatial distribution of the initial clusters obtained using the
DBSCAN method. As is discerned in Figure 5, the influence of a single terrestrial RFI
source on a satellite-borne L-band microwave radiometer is a complex process, and the
interference effects of multiple adjacent terrestrial RFI sources on satellite instruments are
often superposed, resulting in more complex influences.
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Figure 5. Spatial distribution of RFI detection samples after interpolation for (a) land only and (b) at
the water-land boundary.

A single RFI source generally exhibits a distribution similar to a circular surface,
and the Wgsppa value of an RFI detection sample within a cluster decreases with the
increase in distance between the RFI detection sample and the sample with Wy;4y. This
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rate of decrease is variable and dependent on the azimuth. When the distance exceeds
a certain value, the Wgpps value will not vary with the distance but tends to be stable.
The plane circle distributions are superposed together for adjacent RFI sources, but there
is an evident boundary between the radiation ranges of different RFI sources. Based on
these characteristics, a MICA-BEID algorithm was constructed, and a maximum action
radius (Ryx) can be established for RFI sources with different intensities through statistical
analysis. Subsequently, all samples within the Ry;5y range around the location of the Wy
in each cluster were extracted to finally form a new cluster. Samples lying outside this range
were released from each cluster and used to construct a new RFI sample set. Afterward,
the new sample set was classified using the same iterative clustering calculation method
until no new sample sets were generated.

Determining R, entails statistically calculating the PDF and CDF (as detailed in
Equation (7)) of Wsppa samples within a cluster. Figure 6 presents examples of statistical
analysis for Ry
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Figure 6. Ry statistical analysis examples. (a,b) Statistical results of RFI detection samples for fore
and aft looks, respectively; (c,d) spatial distribution of Wgpp,4 intensity of clusters for fore and aft
looks, respectively. The background is the spatial interpolation results of Wgpp4 for all fore and aft
detection samples.

Based on the conducted statistical analysis for this study, a cumulative probability
of 20% was established as an empirical constant. This constant serves to characterize the
spatial distribution of the low values of Wspp 4 in a cluster. Following this, the correspond-
ing value of w was determined through a statistical calculation using all extracted sample
data. This value of w represents the upper boundary threshold for the Wgpp4 low-value
zone within the cluster. Subsequently, the sample points with Wspp4 values below w were
identified. The distances from these samples to the point of W,y within the cluster were
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then calculated, and a distance dataset Degqe was established. However, as can be discerned
from the above discussion, if the minimum distance between two adjacent RFI source
samples satisfies the classification condition of the DBSCAN method, these two RFI source
samples will be clustered together. In the case that the clustering method possibly fails
to fully distinguish between two adjacent RFI sources, there will be numerous abnormal
low values of Wsppa. These values are obviously irrational and should not be used in
subsequent calculations. Therefore, it is imperative to set a relatively rational boundary
threshold based on experience. In this study, a threshold of 1° was selected.

A sample dataset of the low-value zone was established by summarizing the above
boundary conditions, and averaging was conducted separately for the corresponding
Wsppa and D, datasets in the sample dataset of low value to obtain values of parameters
Winean and Diyeqn, which characterize the samples at the cluster’s edge. The Djyeqn value
was defined as the maximum action radius Ry.y. As depicted in Figure 6, the selected
Rynayx is relatively rational, and it is a threshold that varies dynamically and can be ad-
justed automatically according to the emission intensity and influence range of different
RFI sources.

Figure 7 demonstrates the characteristics of the clustering identification results of the
MICA-BEID algorithm as the number of iterations varies. It can be observed from the
figure that for both fore and aft looks data, the number of detected samples, the number of
clustered samples, the number of RFI sources identified through clustering, and the Wy
value of the RFI sources all peak in the initial iteration. With the increase in the number of
iterations, these values exhibit a decreasing trend, and the variation characteristics for both
fore and aft looks are essentially consistent. This indicates that the MICA-BEID algorithm
is not only effective in detecting RFI sources but also capable of accurately identifying their
different intensity levels.
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Figure 7. The changing characteristics of clustering identification results with iteration count. (a) Num-
ber of detected samples; (b) number of clustered samples; (c¢) number of RFI sources identified;
(d) Wipax of RFI sources.

3.2.3. Sidelobe Clusters Filtering

As there are numerous sidelobe clusters included in the initial clusters and they have
relatively complex distribution characteristics, a sidelobe detection filtering algorithm
was designed. The SMAP satellite operates on elliptical scanning orbits, which can be
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divided into fore and aft looks. As depicted in Figure 8, an RFI source generally influences
multiple scanning orbits of fore and aft looks, with the influence being particularly evident
at locations marked as A, B, and C. However, within the red-boxed area of the figure, there
is a single scanning track for both the fore and aft looks footprints, which appears at regular
intervals multiple times. This pattern may be caused through the sidelobes and it does not
carry information on the location of the RFI source. Based on this characteristic, if a cluster
contains two or fewer scanning orbits of fore or aft looks, the cluster is flagged as a sidelobe
cluster and removed.
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Figure 8. Spatial distribution of RFI detection samples for the SMAP satellite’s fore and aft looks
footprints.

3.2.4. Water-Land Boundary Clusters Filtering

In this work, a filtering algorithm for water-land boundary clusters has been designed
to address the limitations of conservative threshold increases. The case study’s statistical
results presented in Table 2 and Figure 9 show that the presence of RFI sources increases
the Wy, and the standard deviation within clusters at the water-land boundary. This
indicates that RFI sources at the boundary are associated with a larger standard deviation.
Consequently, the algorithm was designed to filter off clusters with a standard deviation
below a certain threshold, which was empirically set to 4 K.
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Figure 9. Filtering results of clusters at the water-land boundary. (a) All clustering results for all
samples, where various colors denote different clusters; (b) results of cluster filtering, with red
indicating the removed clusters and green indicating the retained clusters.
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Table 2. Statistical results of clustering for RFI detection samples at water-land boundary.

Clusters Minimum Value (K) Maximum Value (K) Standard Deviation (K) Number of Samples

9.9 216.2 76.3 80
9.9 18.7 22 112
10.1 366.7 115.1 54
9.8 21.7 3.1 108
9.8 21 2.6 131

monNw >

3.2.5. Faraday Rotation Clusters Filtering

Faraday rotation affects the third Stokes parameter. Figure 10 shows a typical exam-
ple of this effect, observed on February 27, 2023, during a period of high geomagnetic
disturbance. The figure shows that Ta_3 of the SMAP satellite abnormally increased due
to Faraday rotation, while Ta_4 was largely unaffected, leading to an overall increase in
Wsppa. Figure 11 presents the results of the statistical analysis. Figure 11a is based on
half-orbit data from the SMAP satellite, and Figure 11b utilizes the data specified within
the blue box in the typical example. The analysis reveals a positive correlation between
the Faraday rotation angle and Ta_3 within a range of 30 K. Within the blue box range in
the typical example, there is a significant positive correlation between the Faraday rotation
angle and Wsppa, with Wspps varying between 10 and 30 K and a standard deviation of
3.7 K. Based on these characteristics, an empirical threshold of 4 K standard deviation was
used to filter clusters affected by Faraday rotation.
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Figure 10. A typical example of the effects of Faraday rotation during a period of high geomagnetic
disturbance on 27 February 2023.
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Figure 11. Statistical analysis results of the impact of Faraday rotation. (a) Data from half-orbit of the
SMAP satellite. (b) Data within the blue box range, as depicted in Figure 10, of a typical example.
The red line in both (a) and (b) represents the result of linear fitting.
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3.3. Localization of RFI Sources
3.3.1. RFI Source Identification Algorithm

After systematic classification of RFI detection samples through iterative calculation,
the RFI samples can be classified into numerous clusters by intensity based on the Wsppa
values. Nevertheless, owing to the influences of multiple factors, the positions correspond-
ing to satellite antennas obtained at abnormal temperatures do not align with the actual
locations of RFI signal sources. In the RFI clustering process, some classified clusters
have been removed through simple filtering. However, the filtering threshold is set in a
too-conservative manner, and it fails to filter off all falsely classified clusters. Therefore,
we need to establish an RFI identification algorithm according to the spatial distribution
characteristics of the RFI sources’ impact on satellite-obtained data. This algorithm will
help to determine whether there are RFI sources included in each cluster.

Figure 12 shows two- and three-dimensional intensity distributions of Wgpp4 in
classified clusters. The red and black circles in Figure 12a represent fore and aft antenna
scanning orbits, respectively. The size of each circle represents the magnitude of Wgppa
intensity, and the main difference between fore and aft looks is the difference in the azimuth
range. Figure 12b presents the corresponding three-dimensional distributions. Figure 12
illustrates that the impact of RFI sources on Wgpp4's spatial distribution characteristics is
related to both azimuth and distance. The Wspp4's intensity shows significant variation
across different azimuths. Additionally, for a single antenna scanning orbit, the data from
Wsppa suggest that RFI interference values decrease as the distance from the antenna scan
footprints to the cluster’s W,y location increases. Once this distance exceeds the Ryax
threshold, Wsppa will not be affected by the RFI sources within the cluster.
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Figure 12. (a) Two- and (b) three-dimensional intensity distributions of Wspps of clusters for
descending orbit. Red and black circles represent fore and aft antenna scanning orbits, respectively.

3.3.2. Data Normalization

It can be seen from Figure 12 that, owing to the influences of dual factors, namely the
pattern of the RFI source antennas and the satellite observation azimuth, the variation in
satellite observation azimuth will cause evident differences in the integrated intensity of
Wsppa between fore and aft looks of satellite antenna scanning orbits, which may result in
relatively low values in medium- and strong-field zones of the RFI source and relatively
high values in weak-field zones. In order to unify the Wspp4 intensity of the fore and aft
looks under a single standard for analysis, to provide a standardized sample dataset for
machine learning, and to mitigate the potential impact of factors such as azimuth on the
location results, we have normalized the data.
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The dataset within a cluster was divided into two sub-datasets (i.e., fore and aft sub-
datasets) based on the SMAP satellite antenna scanning direction (referred to as fore and aft
looks). Then, the Wspp4 intensity was normalized into the interval [0, 1] separately for these
two sub-datasets using the normalization method. Afterward, these two sub-datasets were
merged to establish a dataset of the normalized parameter and distance d and to establish a
dataset of positive and negative distances with the longitude line at the W,y in the cluster
as the center line. Figure 13 shows statistical diagrams of the spatial distributions of the
normalized parameter with distance. It can be seen from the figure that the distribution
curves basically follow a Gaussian distribution.
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Figure 13. Statistical diagrams of spatial distribution of the normalized parameter with distance for

descending orbits.

3.3.3. Normalized Data Quality Control

Data normalization can eliminate the differences in the intensity level of Wsppy4 in-
tegrated intensity caused by different azimuths, but it is incapable of eliminating the
differences in distance. Moreover, if multiple RFI sources are very close together, super-
posed interference may be formed. As can be discerned from Figure 12, it is possible
that there may still be abnormal data in the dataset. This case mainly appears as low
values in high-value zones and high values in low-value zones. These abnormal data need
to be removed by data filtering. The specific method used was as follows: Initially, we
established an RFI identification algorithm based on the spatial distribution characteristics.
We set three action radii (i.e., R1, R2, and R3), with the W,;;;x point in the classified cluster
as the center of the circle, out of which R3 is the maximum action radius Ry, of the RFI
source. R1 and R2 were obtained through calculation with the following formulas:

Rl = %R3 (11)
2
R2 = 2R3 (12)

We then established three sub-datasets ([0, R1], [R1, R2], and [R2, R3]) in the space
range. We calculated the mean values of all normalized parameter values in the high-value
zone [0, R1] and in the low-value zone [R2, R3], set thresholds dj;g, and 9}, and removed
abnormal data satisfying the following formulas:

Whigh_zone_i - ahigh <0 (13)

Wlow_zane_j - alow >0 (14)

to form a dataset after quality control. If a sample in the sub-dataset satisfied Equations (13)
and (14), it was removed from the sub-dataset.
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3.3.4. RFI Source Identification Results

After abnormal values were filtered off for each sub-dataset, the mean value was cal-
culated for all sub-datasets (W1,,ean, W2ean, and W3yeqa,). Based on the spatial distribution
characteristics of the influence of RFI sources on the SMAP satellite, to finally determine
whether there are RFI sources contained in the cluster, three sub-datasets in the cluster
should meet the following criteria:

Wlinean > W2mean > W3mean (15)

If the classified cluster satisfies the above criteria, the position of the Wy, in the
cluster was flagged as an RFI source. Figure 14 shows an example of conditions for the
identification and determination of RFI as mentioned above. The red stars represent
outlier data that have been removed, and the example meets the RFI identification and
determination criteria.
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Figure 14. RFI identification and determination criteria. The red stars represent outlier data that have
been removed.

3.3.5. Long-Time-Series Data Location of RFI Sources

Due to factors such as the radiation pattern of the RFI source, satellite observation
azimuth, and satellite observation spatial resolution, a position obtained by a single-orbit
location may not completely characterize the actual position of the RFI source. An RFI
source location sample database was obtained from the RFI source location results based
on long-time-series single-orbit data. Subsequent to this, secondary iterative clustering was
conducted for the sample database to obtain an RFI identification cluster based on a long
time series. To characterize the final location coordinates of the RFI source, the centroid of
the RFI identification dataset was calculated with the following formula [14]:

Y. Loc_ijon 10t ¥ Wi
Loc == (16)
lOl’l/llJt Zi’l Wl

where Locjy, /1, Tepresents the coordinates of the centroid in longitude and latitude,
Loc_ijon /10t Tepresents the ith coordinates in longitude and latitude, and W; represents
the ith synthesized parameter.

Figure 15 shows the long-time-series RFI source identification results from 1 January
to 30 June 2017. It can be seen from the figure that, in the time period of half a year, the
RFI identification and location exhibit some differences. However, the long-time-series RFI
location data points are basically concentrated within an EFOV of the satellite antenna. The
MICA-BEID algorithm, with confirmation from online satellite imagery, located a suspected
RFI source, identified as a cellular tower in the Sahara Desert, approximately 1 km away:.
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Figure 15. Spatial distribution characteristic of long-time-series RFI location data points and the RFI
location centroid.

4. Discussion
4.1. Information Carried by the Parameter Wsppa

In natural scenes, there is considerable variation in horizontal and vertical brightness
temperatures, whereas the third and fourth Stokes parameters are expected to be small and
nearly always zero. It is generally unlikely that artificial RFI sources will align with the
polarimetric axes of L-band microwave radiometers, and thus, they are likely to contribute
to the third and /or fourth Stokes parameters [27,28]. The new parameter, Wgpp4, capitalizes
on the low values of the third and fourth Stokes parameters. Anomalously high values of
Wsppa can serve as effective indicators of RFI effects and have the potential to quantitatively
describe the contributions from artificial RFI sources. Moreover, Wsppy4 is particularly
sensitive to RFI, especially in detecting weak RFI signals.

Figure 16 shows the characteristics of the relationship between Wgspp4 and the antenna
temperatures for horizontal (Ta_h) and vertical (Ta_v) polarizations. As the figures indicate,
Wsppa values in samples without overlap between SPDA and SRDF are mainly concen-
trated in the lower range from 0 to 20 K. Consistently, Ta_h and Ta_v remain within their
natural range of levels. Conversely, in cases where SPDA and SRDF do overlap, Wsppa
values show a broader distribution, from just above the detection threshold to 1000 K.
The rise in Wsppa values corresponds to an increase in both Ta_h and Ta_v, indicating a
significant positive correlation with the correlation coefficients of 0.8 and 0.75, respectively.
This suggests that Wsppa can effectively characterize the extent of the impact of RFI sources
on Ta_h and Ta_v, and it holds the potential for conducting quantitative analysis.
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Figure 16. The characteristics of the relationship between the Wspps parameter and the antenna
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4.2. Comparison with the ITU’s RFI Survey Results

The ITU-R report presents global surveys of RFI levels observed by the SMAP L-band
microwave radiometer in 2021. It employed a machine learning algorithm to localize
the points where the effect of RFI is the highest [38]. Figure 17 shows the results of the
comparative localization of RFI sources in local regions of China for October 2016. The
analysis revealed that for 124 matching data sets, the localization distances were within
10 km, indicating a high degree of spatial consistency between the two sets of localization
results. Furthermore, the interference intensity levels of the RFI sources localized by the
two algorithms exhibit a significant positive correlation, with a correlation coefficient
reaching 0.89. In summary, the comparative analysis suggests a high degree of consistency
between the two algorithms regarding both the localization accuracy of RFI sources and
the representation of RFI levels.
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Figure 17. Comparison results between MICA-BEID algorithm and SMAP RFI surveys. (a) Compari-
son of RFI location results; (b) comparison of RFI levels.

4.3. Comparison with Known Sources

The known RFI sources are primarily based on information provided by the Radio
Regulation of China. This information relates to RFI sources within the 1400-1427 MHz
frequency band, which were investigated and subsequently turned off during the period of
from 2016 to 2017 due to interference incidents. Table 3 presents a comparative analysis of
localization results between the MICA-BEID algorithm and known RFI sources. Figure 18
illustrates the monthly spatiotemporal distribution of RFI source localization results over
the extended period from January to October 2016.

Table 3. Comparative analysis of statistical results with known RFI sources.

Optimal Location

Region Distance (km) Wiax (K) Types of Known RFI Sources Date Turned Off
Hebei 12 200.4 Broadcast and television tower 2017-08
Tianjin 2.1 434.7 Video surveillance equipment. 2017-08
Shandong 3.8 959.1 Broadcast and television tower 2016-03
Hunan 17 13407 Microwave transmission 2016-03
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Figure 18. Comparative analysis of MICA-BEID algorithm RFI localization results with known RFI
sources on a long-term scale. (a) Hebei. (b) Tianjin. (c¢) Shandong. (d) Hunan.

From the figures and table, it is evident that the MICA-BEID algorithm is capable of
identifying and localizing different types and levels of RFI sources, including broadcast
and television towers, video surveillance equipment, and other microwave transmission
antennas. Due to the different deactivation dates of these four RFI sources, both the MICA-
BEID and SMAP RFI survey algorithms localized the sources in Hebei and Tianjin during
October 2016. In Hebei, both algorithms achieved an approximate localization accuracy of
2 km, with the MICA-BEID algorithm showing a relatively better performance. In Tianjin,
the MICA-BEID algorithm’s localization accuracy was approximately 6 km, while the
SMAP RFI survey algorithm achieved higher accuracy with results at about 4 km. On
a long-term scale, the monthly localization results from the MICA-BEID algorithm were
distributed near the known RFI sources, with the majority within a 6 km range and the
optimal localization accuracy reaching 1.2 km. After the RFI sources were manually turned
off, the MICA-BEID algorithm stopped outputting localization results. This demonstrates
that the MICA-BEID algorithm maintains stable localization performance and is capable of
adapting well to changes in the status of RFI sources.

4.4. Comparison with SMOS

This paper utilized the SMOS satellite L1C (MIR_SCLF1C) data for October 2016, which
covered China. The SNAP (Sentinel Applications Platform) 9.0.0 software was applied to
produce spatial distribution maps of the Wspp4 parameter, and the results were compared
with those from the MICA-BEID and SMAP RFI survey algorithms. From Figure 19, it is
evident that the RFI source localization results from the MICA-BEID algorithm largely
align with the spatial distribution characteristics and the corresponding Wspp4 levels of
anomalies detected by the SMOS. Nonetheless, there are significant discrepancies in some
areas, such as the one marked as Area A, where neither the MICA-BEID algorithm nor
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the SMAP RFI survey algorithm identified any RFI sources. Additionally, in Areas B, C,
D, E, and F, there is a mismatch between the Wgsppy levels from the SMOS and SMAP.
These observations imply that the differences in the design and observational approaches
of the L-band microwave radiometers on board the SMOS and SMAP satellites lead to
unique responses to RFI. Furthermore, we also compared the RFI detection results with
those obtained from the Root Mean Square Error (RMSE) method proposed by Wigneron
et al. (2021). This algorithm estimates the impact of RFI on SMOS satellite brightness
temperature data by calculating the RMSE between measured and modeled brightness
temperatures [39]. Figure 20 presents a comparative chart that shows the monthly aver-
aged brightness temperature RMSE (TB-RMSE) for October 2016, juxtaposed with the RFI
localization results from the MICA-BEID algorithm. The comparison indicates that these
two datasets have good spatial consistency.
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Figure 19. Comparative analysis of RFI localization results with MICA-BEID algorithm with Wsppa
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5. Conclusions

In this paper, a polarization parameter named Wgpp, was constructed using the SMAP
antenna temperatures for the third and fourth Stokes parameters. With this parameter, a
constrained iterative adaptive algorithm for RFI detection, clustering, identification, and
localization, named MICA-BEID, was constructed using machine learning methods. It
utilizes the Wgpp4 intensity and distribution density of RFI detection samples to enhance
the identification and classification of RFI sources across various intensity levels.
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The MICA-BEID algorithm was constructed based on the PDF and CDF of Wspp4. For
RFI detection, the algorithm integrates the RFI detection samples based on dynamic thresh-
olds of Wsppa and the original RFI flagged samples from the SMAP satellite, constructing
a complementary dataset covering RFI sources of different intensities. In terms of the clus-
tering of RFI detection samples, the algorithm takes the spatial distribution characteristics
of Wspp4 intensity and density in RFI detection samples into comprehensive consideration
on the basis of the DBSCAN algorithm. It sets boundary conditions, such as the R,y of
RFI sources, using statistical methods. Through multiple iterations, the algorithm forms
multiple effectively separable clusters. In terms of RFI source identification and localization,
the algorithm identifies RFI sources based on the characteristic that the intensity of Wsppa
samples diminishes as the distance increases from the location of Wy, and flags the Wsppa
position within a cluster as the single localization result. Through secondary iterative
clustering of single localization results on an extended time scale, the algorithm ultimately
represents the localization results of RFI sources by the centroid position of the clusters.

Comprehensive assessment results indicate that the MICA-BEID algorithm has the
capability to identify and localize RFI sources of various types and intensities and can
adapt to their spatiotemporal changes. The algorithm exhibits good spatial consistency
with other algorithms. Through cross-comparison analysis with known RFI sources on a
long time scale, the optimal localization accuracy can reach approximately 1.2 km. The
localization of RFI sources can guide relevant authorities in identifying illegal RFI sources,
and it can accelerate the progress in turning off illegal RFI sources. Moreover, for RFI
sources that cannot be turned off, the localization of RFI sources and the analysis of their
long-time-series characteristics are important for simulating and constructing the spatial
distribution characteristics of RFI source intensity.
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