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Abstract: In the current century, urbanization and the development of the construction industry have
led to the generation of construction and demolition waste (CDW), imposing pressure on ecology
and the environment. This has attracted the attention of industry personnel and researchers. This
work discusses the current research on recycled coarse or fine aggregate, mainly focusing on the
physical, mechanical and durability properties of sustainable concrete with recycled coarse or fine
aggregate. Furthermore, it also summarizes CDW recycling and classification in major countries, the
production processes of recycled aggregate, and the physical properties. This review will provide a
reference for the application of concrete with recycled coarse or fine aggregate. Moreover, this review
notes that replacing natural aggregates with both coarse and fine recycled aggregates awaits further
experimental exploration.

Keywords: construction and demolition waste; green concrete; physical properties; mechanical
properties; durability

1. Introduction

Concrete has become a widely used building material, with the global concrete con-
sumption estimated to be around 14 billion cubic meters in 2020, according to statistics
from the Global Cement and Concrete Association (GCCA) [1]. Aggregates in concrete
are an essential component, constituting approximately 75% of the total volume, and the
ratio of fine to coarse aggregate usually is approximately 2:3. Currently, the greenhouse
gas emissions from the extraction of natural aggregates account for about 1% of the to-
tal emissions from concrete production [2]. Further, the prevalent use of blasting in this
extraction process has been identified as a significant source of environmental pollution
and vegetation destruction, resulting in irreversible impacts on ecology and the environ-
ment [3]. In response to these environmental concerns, researchers are exploring alternative
materials to replace natural aggregates in concrete production. These alternatives encom-
pass a range of recycled materials, such as foundry mold waste [4–7], glass waste [8–10],
plastic waste [11,12], fly ash [13,14], tire waste [15,16], construction and demolition wastes
(CDWs) [3,17–20], etc.

Within the construction sector, CDWs are generated during the construction and
demolition phases of buildings. The three major CDW-producing countries or regions
include China, producing approximately 2.3 billion tons/year [21], the United States,
producing 600 million tons in 2018 [22], and the 28 EU countries, totaling 807 million tons
in 2020 [22], respectively. CDWs mainly consist of concrete, mortar, ceramic, brick, metal,
plastic and more. Searching “construction and demolition wastes” keywords through the
Scopus database, a total of 5779 articles have been published from 2000 to 2023 [23]. As
shown in Figure 1, studies on “Construction and demolition waste” are mainly concentrated
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on the performance of materials with CDW and waste management. There are some studies
relating to one type of CDW. In Figure 2, it can be seen that the country that has published
the most articles about CDW is China, followed by Australia, Spain, England and Portugal,
etc. This is basically positively related to the CDW output in these countries. However,
from the perspective of the CDW resource utilization rate, the CDW resource utilization
rate in developed countries is higher. As can be seen in Figure 1, developing countries
such as China and India have paid attention to research on CDW to improve the resource
utilization rate of CDWs.

Sustainability 2024, 16, x FOR PEER REVIEW 2 of 29 
 

Scopus database, a total of 5779 articles have been published from 2000 to 2023 [23]. As 

shown in Figure 1, studies on “Construction and demolition waste” are mainly concen-

trated on the performance of materials with CDW and waste management. There are some 

studies relating to one type of CDW. In Figure 2, it can be seen that the country that has 

published the most articles about CDW is China, followed by Australia, Spain, England 

and Portugal, etc. This is basically positively related to the CDW output in these countries. 

However, from the perspective of the CDW resource utilization rate, the CDW resource 

utilization rate in developed countries is higher. As can be seen in Figure 1, developing 

countries such as China and India have paid attention to research on CDW to improve the 

resource utilization rate of CDWs. 

 

Figure 1. Studies related to “Construction and demolition waste”. 

 

Figure 2. The distribution of articles published worldwide from 2000 to 2023. 

Figure 1. Studies related to “Construction and demolition waste”.

Sustainability 2024, 16, x FOR PEER REVIEW 2 of 29 
 

Scopus database, a total of 5779 articles have been published from 2000 to 2023 [23]. As 

shown in Figure 1, studies on “Construction and demolition waste” are mainly concen-

trated on the performance of materials with CDW and waste management. There are some 

studies relating to one type of CDW. In Figure 2, it can be seen that the country that has 

published the most articles about CDW is China, followed by Australia, Spain, England 

and Portugal, etc. This is basically positively related to the CDW output in these countries. 

However, from the perspective of the CDW resource utilization rate, the CDW resource 

utilization rate in developed countries is higher. As can be seen in Figure 1, developing 

countries such as China and India have paid attention to research on CDW to improve the 

resource utilization rate of CDWs. 

 

Figure 1. Studies related to “Construction and demolition waste”. 

 

Figure 2. The distribution of articles published worldwide from 2000 to 2023. Figure 2. The distribution of articles published worldwide from 2000 to 2023.

Generally, CDWs are considered as inert solid waste and can be used in concrete [3,24–27],
mortar [28–30], bricks [31,32], blocks [33,34], mountain landscaping [35], etc., according to
the different size distributions of CDW. Additionally, some glass waste [36,37] and plastic
waste [38,39] have been used in concrete. Zhang et al. [40] studied the status of CDWs
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in China; CDWs could occupy a volume of 7.5 billion m3, and the potential recycling
value of CDWs was up to USD 401 billion in 2013. In addition, using CDWs as a replace-
ment for natural aggregates for concrete construction could save 10–20% of the material
cost. Therefore, effectively managing and repurposing this substantial volume of CDWs
is imperative. Simultaneously, researchers are directing their efforts towards enhancing
concrete performance and reducing costs through the incorporation of CDWs in construc-
tion. For instance, Allali et al. [41] conducted a study on the application of 60% recycled
concrete aggregate (with a size of 4.75–19 mm) and 40% sand (with a size of 0–2.36 mm)
as a sub-base material for roads. In a related context, Jia et al. [3] took advantage of the
porosity of CDWs and developed a thermal concrete incorporating demolition waste, with
a size range of 4–10 mm, and paraffin. The incorporation of demolition waste not only
addresses the environmental concerns associated with CDWs, but also contributes to the
development of innovative materials. Güneyisi et al. [42] studied the rheological and fresh
properties of concrete with the incorporation of recycled coarse and fine aggregates. The
results showed that when the recycled coarse aggregates were used, the slump of concrete
decreased. Based on different contents of coarse aggregate, 25%, 50%, 75% and 100% fine
aggregate were added, respectively, to replace river sand, and the slump of concrete in-
creased. Additionally, during the CDW recycling process, aggregates with different particle
sizes are produced. Singh et al. [25] and Weibo Consulting [43] noted that a well-established
technical foundation and industrialization have been achieved in the realm of recycled
coarse aggregate; however, there remains a dearth of technologies for recycled fine fractions,
which constitute more than 40% of the total recycled material. Although some research has
proved that recycled concrete could obtain certain material properties when incorporating
an amount of CDWs, recycled aggregate is typically inferior to natural aggregate in its
concrete material properties. At present, some studies, including parametric and numerical
studies with empirical studies, have been conducted to investigate the reason why the
performance of recycled aggregate is worse than that of natural aggregate [44,45], and
the relationship between the properties of CDWs and those of recycled concrete material
has been established. Zhang et al. [46] proposed an integrated interface parameter to
reveal why recycled concrete is inferior to natural concrete on a microscale and macroscale,
and connect the interface properties and the macro material properties. Moreover, Gong
et al. [47] also performed a mesoscale discrete analysis of the mechanical properties of
recycled aggregate, and proposed an empirical model to predict the compressive strength
of recycled aggregate concrete using a database of simulation results obtained by RBSM. In
addition to the above studies, new intelligent technologies has been adopted to research the
performance of recycled concrete. Wang et al. [48] systematically reviewed the applicability
and reliability of AI technologies in the field of sustainable concrete properties, and found
that AI technology can effectively evaluate the mixture schemes, static properties and
durability of sustainable concrete; the reason for this is that it has a stronger nonlinear
processing ability. However, more progress is needed in order to accurately predict the
performance of concrete in the future.

Additionally, numerous researchers have studied the different types of aggregate
used in concrete. For example, Jia et al. [4] investigated the replacement of lightweight
aggregate with foundry mold waste in concrete. The results showed that the mechanical
performance and durability of the lightweight concrete was improved. Omoding et al. [9]
studied the effect of using recycled glass waste as a coarse aggregate on the concrete; the
experimental results showed that when the replacement of coarse aggregate with recycled
glass waste was less than 25%, the abrasion resistance of the concrete was not affected, and
the concrete produced with the 100% recycled waste glass aggregate had the same abrasion
resistance as the concrete incorporated with 100% crushed limestone coarse aggregate.
Basha et al. [12] evaluated the possibility of using recycled plastic waste as a substitute for
natural aggregates in concrete; they developed a lightweight concrete with a unit weight
of 1500 kg/m3 and a compressive strength of 17 MPa by using 100% recycled plastic
aggregate, and they discovered that the flexural strength, modulus of elasticity and bond
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strength of the RPA concrete decreased with an increasing quantity of RPA. Kazmi et al. [15]
studied concrete that incorporated waste tire rubber and recycled aggregates by adopting a
new compression approach; the results showed that the compressive strength and elastic
modulus of the compressed RAC and treated RAC containing 10–20% CR were close to
those of traditional concrete without CR.

Furthermore, Mohmmad et al. [49] studied the properties of concrete blocks that used
different agricultural wastes as sand substitutes in rural areas of India; they discovered that
cement blocks containing coconut husks and pistachio shells exhibit acceptable strength
and durability. Sathvik et al. [50] investigated the effects of an alkali activator on the fly
ash reaction and the performance of geopolymer concrete; the results showed that with an
increase in the curing temperature and alkaline solution concentration, the compressive
strength of geopolymer concrete mixed with fly ash continues to increase. Mohmmad
et al. [51] studied the post-fire mechanical performance of concrete with the incorporation
of waste EPS. The result showed that the concrete containing different proportions of
EPS had an increased post-fire compressive strength compared with traditional concrete.
Besides that, there are also some studies on the substitution of cementitious materials [52].
Mohmmad et al. [53] proved that metakaolin-based geopolymer concrete, which is a
current sustainable alternative to cement, could use nano-silica to improve its mechanical
performance; they found that metakaolin (MK)-based GC with the incorporation of 6.0% NS
produces the highest mechanical properties.

Tables 1 and 2 review some works about the recycled coarse and fine aggregates used
in concrete.

Table 1. Articles about the replacement of recycled coarse aggregates with natural aggregates.

Study

Recycled Coarse Aggregate
Replacement

Level

Cement Slump Compressive Stength

Type
Size Density Water Ab-

sorption Type
7

Days
28

Days
90

Days

mm kg/m3 % % cm MPa

Majhi et al.
[54] Concrete 20 2530 4

0

OPC

70 28.37 37.77 46.1
25 75 27 36.5 45
50 85 25 33.5 41.85

100 95 22.5 30.5 37.68

Simsek et al.
[55] Concrete

4–11.2 2420 4.79
20

CEM I
42.5R

80 22 27 34
40 75 23 25 33

11.2–22.4 2380 4.96
60 70 22 24 33
80 65 21 23 29

100 60 18 23 27

Delsaute
and Staquet

[56]

Demolition
concrete waste

4–10 2340 /
0

CEMII/A-
L 42.5 R

29 40 / /
30 27 26 / /

10–20 2320 100 23 25 / /

Pedro et al.
[57]

LC—laboratory-
produced
concrete

/ 2300 3.6

0

CEM I
42.5R

13.5 65.4 72.6 74.3
25 13.2 59.8 68.2 72.1
50 13.5 58.8 66.5 69.0

100 12.8 55.5 61.2 64.3
100F 12.7 53.9 65.4 68.3
100C 13.2 59.3 68.7 71.8

RW—real
concrete wastes

/ 2400 3.9

25 13.8 58.7 68.9 72.3
50 13.6 54 63.8 67.2

100 13 52.9 61.0 64.7
100F 13.7 50.9 61.5 64.8
100C 13.4 58.9 66.9 70.0
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Table 1. Cont.

Study

Recycled Coarse Aggregate
Replacement

Level

Cement Slump Compressive Stength

Type
Size Density Water Ab-

sorption Type
7

Days
28

Days
90

Days

mm kg/m3 % % cm MPa

Bogas et al.
[58]

RHD: structural
concrete

4–11.2

1735 15.7

0

CEM I
42.5 R

13 32.8 38.4 39.3
20 12 33.9 40.4 41.3
50 13 34.4 43.1 46.8

100 12.5 36.1 43.7 48.5

RM: a no-fines
non-structural

lightweight
concrete

878 24.9

0 12.5 16 19.2 20.7
200 13 21.6 25.1 26.5
50 13 23.8 27.7 30.5

100 12.5 27.7 33.4 34.6

Kou et al.
[59]

Low-grade
construction and
demolition waste

RAI: 5/10 2263 6.25
0

OPC
/

32.5 43.4 47.8
20 29.3 39.4 44.2

RAI: 10/20 2302 6.18
50 28.4 37.8 42.4

100 20.4 27.9 33.8

RAII: 5/10 2315 5.81
0 32.5 43.4 47.8
20 30.4 39.7 43.6

RAII: 10/20 2242 5.49
50 26.2 33.9 39.6

100 24.5 32.3 36.8

RAIII: 5/10 2490 4.26
0 32.5 43.4 47.8
20 29.1 45.3 49.1

RAIII:
10/20 2580 3.52

50 27.6 42.5 47.5
100 24.4 38.1 45.5

Bendimerad
et al. [60] Concrete waste

4–10 2.34 5.3
0

CEM
II/A-L

42.5

195 23 31.4 /
30 193 22.1 28.5 /

10/20 mm 2.32 4.9
0 204 19.4 29 /

100 222 12.2 24 /

Güneyisi
et al. [42]

Recycledconcrete
aggregates

/ 2360 / 0
OPC

70 / / /
/ 2310 / 50 72 / / /
/ 2260 / 100 71.5 / / /

Singh and
Singh [61] Concrete wastes

Fineness
modulus

6.88
/ 5.65

0

OPC

68.5 40 42.5 43.8
25 68.5 36.9 40 42
50 68.8 34.8 37 40
75 68.4 33 35 35.2

100 68 33 34 35.3

Rao et al.
[62]

Demolished RCC
culvert,

15 yearsold
4.75–20 1413 /

0

OPC

57.5

/

50

/
25 55 46
50 50 44

100 50 42

Suhaib et al.
[63]

Demolished
bridge / / 6.05

0

OPC

77 16.25 29.3

/
30 67 14.64 26.2
50 59 15.21 27.31
70 46 14.67 23

Kazmi [38]
Recycled
aggregate max. 20 mm 1414 6.85

0
OPC

/ / 18.92 /
10 / / 17.65 /
20 / / 16.01 /

Basha et al.
[39]

Recycled plastic
aggregate 5–10 mm 980 0

0

OPC

/ / 46.8 /
25 / / 35 /
50 / / 26 /
75 / / 19 /

100 / / 17 /

Mohammed
et al. [51] EPS waste 5 mm / /

0 128 / 19.94 /
15 OPC 95 / 19.29 /
25 83 / 16.8 /
50 105 / 17.66 /
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Table 2. Articles about the replacement of recycled fine aggregates with natural aggregates.

Study

Recycled Fine Aggregate
Replacement

Level Type
Cement

Compressive Strength

Type Size Density Water Ab-
sorption Slump 7 Days 28 Days 90

Days

mm kg/m3 % % cm MPa

Evangelista
and Brito.

[64]
Concrete FM:2.387 dry:

1913
13.1

0
CEM I
42.5R

8 ± 1
59.3 /

30 57.3 /
100 54.8 /

Farah et al.
[65] Concrete 150 µm–

1.18 mm 2340 5.3

0

CEM I
42.5R

15 40 48.53 /
10 15 42 49.74 /
20 12 48 50.68 /
30 10.5 46.5 48.47 /
40 8.5 45 45.28 /

Singh et al.
[25] Concrete

0–45 µm

/
replace
cement

CEM I
42.5R 20 mm

water/
cement

ratio

SP
content

(%)

0 0.36 2.16 /
15% 0.36 2.84 /
30% 0.36 3.52 /

replace
cem. and

sand
30% 0.36 2.5 /

0.15-4.75 mm 2199
12.57

(replace
sand)

25% 0.38 2.65 /
50% 0.39 3.3 /
75% 0.41 4.24 /

100% 0.42 6.11 /

Revilla-
Cuesta et al.

[66]
Concrete 0–4 mm 2370 7.6

0

CEM I 52.5
R

68 56 60 60
25 69.5 53 55 58
50 73 40 44 43
75 74 30 31 33

100 75.5 25 29 32

Simsek et al.
[55]

20 MPa
Concrete 0–4 mm 2430 4.6

20

CEM I
42.5R

8 21 24 33
40 7 20 22 30
60 6.5 19 1 28
80 5 16 21 24

100 4 13 19 21

Delsaute
and Staquet

[56]

Recycled
demolition

concrete
0–4 mm 2100 10.65 0 CEMII/A-L

42.5 N
/ 29 40 /

30 / 23 36 /

Bogas et al.
[67]

Fine
recycled

aggregate
0–4 mm 2156 9.05

0 CEM I
42.5R

(350 kg/m3)
11.5–12.5

/ 51.7 /
20 / 49.9 /
50 / 47.4 /

100 / 43.1 /
0 CEM I

42.5R
(420 kg/m3)

11.5–13.5

/ 81 /
20 / 72.7 /
50 / 67.4 /

100 / 58.8 /

Evangelista
and Brito

[68]

Fine
recycled
concrete

Sand
equivalent:

69

Dry:
2000 10.43

0

CEM I
42.5R S3 /

33.6

/
10 32.1
30 32.7
50 32.8

100 30.7

Lyo et al.
[69] Brick sand Finenss

modulus: 1.2 2360 36.5

0

/ / /

49.1

/

50 42.9
100 34
0 59.1
50 49.2

100 44.5
0 56.4

100 42.1
0 50.7

100 33.1
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Table 2. Cont.

Study

Recycled Fine Aggregate
Replacement

Level Type
Cement

Compressive Strength

Type Size Density Water Ab-
sorption Slump 7 Days 28 Days 90

Days

mm kg/m3 % % cm MPa

Geng and
Sun [70]

FM: 2.8

/

1.6 0

/

18.3 (water:
155 kg/m3) 46.7

/
Recycled
aggregate

FM: 2.7 7.5

20 15.4 (water:
155 kg/m3) 44.5

40 8.9 (water:
155 kg/m3) 38.2

60 5 (water: 155 kg/m3) 31.2
80 /(water: 155 kg/m3) 21.5

20 19.3 (water:
167 kg/m3) 43.3

40 18.6 (water:
179 kg/m3) 34.6

60 18.1 (water:
194 kg/m3) 29.8

80 17.4 (water:
234 kg/m3) 20.2

FM = 2.9 6.8 40 10.5 (water:
155 kg/m3) 39.6

FM = 3.3 5.9 40 18.2 (water:
155 kg/m3) 42.1

This work reviewed the methods used to recycle CDW and the physical properties
of coarse and fine CDW. The research on recycled coarse and fine aggregates in concrete
was discussed with regard to physical properties (density, water absorption), mechanical
properties (compressive strength, flexural strength) and durability (chloride ion penetration
and resistance carbonation). In conclusion, the exploration of recycled materials, especially
CDWs, as alternatives to natural aggregates in concrete production is gaining momentum.
The cited examples highlight the promising outcomes of research endeavors in this direction,
emphasizing the need for sustainable practices in the construction industry. Additionally,
the analysis of different CDW particle sizes contributes valuable insights to the tailoring of
concrete formulations for specific applications, balancing environmental considerations
with performance requirements.

Methodology of the Review Paper

The methodology used to create this review prioritized papers published within the
last 20 years based on their contribution to the topic and scientific relevance. Scientific
papers were selected by considering their impact and relevance. The search for papers was
conducted using internationally recognized databases including SCOPUS, Web of Science,
and open access databases.

In response to the growing interest among researchers in Construction and Demolition
Waste (CDW), this comprehensive review critically examines the methodologies used for
recycling CDW, evaluates the properties of recycled aggregates (including structure, density,
water absorption, etc.), investigates the diverse applications of recycled aggregates, and
assesses their impacts on the physical properties, mechanical properties, and durability
of concrete. By synthesizing a multitude of technical studies, this review aims to provide
readers with a nuanced understanding of the implications of utilizing recycled aggregates
in cement-based materials, offering valuable insights for the advancement of sustainable
construction practices.
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2. CDW Recycling Process and Properties of CDW
2.1. CDW Recycling Process

Currently, there are various buildings with different forms, structures and materials in
different regions and countries, resulting in the generation of a large number of different
types of construction waste. Studies from researchers worldwide have shown that many
construction and demolition wastes are mainly composed of concrete, mortar, bricks, plastic,
glass, paper, wood, and metal [71–74]. And in order to utilize these construction wastes as
resources, two main CDW recycling processes that transform demolished materials into a
smaller-sized fraction are applied, namely mobile recycling machinery and fixed recycling
plants [75–77].

Mobile recycling machinery can handle CDW on-site, then the recycled aggregates can
be directly utilized without the need for additional transportation. However, the quality
of the aggregates is not high, and the separated aggregates generally contain various
types of waste materials that are not fully processed, most of which are only used for
landfill [22,78]. Figure 3 presents the mobile recycling machinery process for RAs, which
has three steps [79]: (1) feed inlet section: pre-sorting the CDW to separate out the waste that
cannot be processed by machines or contains contaminated elements, and sending usable
raw materials to the feed port; (2) crushing section: crushing and magnetic separation:
reducing the RA size and removing the remaining ferrous; (3) screening and output section:
separating the aggregates using a comprehensive screening platform into different size
fractions for various applications: small size (0–5 mm), medium size (5–20 mm), large size
(20–40 mm). It is worth mentioning that aggregates larger than 40 mm should be further
crushed in step until the aggregates meet the particle size requirements.
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Types of equipment included few many 

Figure 3. Schematic diagram of mobile CDW recycling process.

Compared to recycling machinery, fixed recycling plants have stronger processing
capabilities and the processed aggregates are of a higher quality than those processed by
mobile recycling machinery through repeated sorting, crushing, and separation. Specifically,
the processed aggregates’ impurity content is less, they exhibit better soundness, and they
also better satisfy the particle size requirements. Figure 4 presents the working process
of a fixed recycling plant, which has four steps: (1) preliminary treatment: feed port
process, removal of soil, preliminary crushing, magnetic separation: feed waste, removal
of small particles and remaining ferrous, reduction in the size of the waste; (2) manual
sorting: removal of large pieces of steel, wood, plastics or paper that could influence the
quality of the recycled aggregate, mainly through manual sorting; (3) secondary crushing:
secondary crushing to further reduce the size of the waste and remove the remaining
ferrous; (4) finished product screening: separating the aggregates for various applications:
small size (0–5 mm), medium size (5–10 mm, 10–20 mm, 20–31.5 mm), large size (more
31.5 mm). It is worth mentioning that large aggregates should be further crushed in step
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3 until they meet the particle size requirements [80]. Table 3 shows a comparison of two
different CDW recycling processes.
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Table 3. Comparison of two different CDW recycling methods.

Mobile Recycling Fixed Recycling

The level of the recycling process simple complete
Types of equipment included few many

Output production forms single various
The level of production cost moderate high

The quality of the recycled aggregates low high
The scope of application small large

Furthermore, according to the above two types of construction waste treatment process,
it is clear that both recycling methods involve multiple processes of crushing, separating,
and removing impurities, and the research demonstrates that the process of crushing,
separating and removing impurities could directly affect the quality of the recycled ag-
gregate [81,82]. Wan et al. [83] found that with an increase in the crushing and separation
times, the content of small-sized aggregate increases, the density of the aggregate increases,
and the water absorption of the aggregate decreases. Therefore, the quality of the recycled
aggregate has been improved.

However, compared to natural aggregate, the quality of recycled aggregate is still poor,
with a lower density and higher water absorption [84–86]. Therefore, scholars have further
searched for the reasons for the poor quality of recycled aggregates; one of the reasons is
that the surface of the recycled aggregate still adheres to the original mortar after multiple
crushing and separation processes [87], and researchers have found that there is a very
strong correlation among the adhered mortar, water absorption and density.

Besides that, numerous researchers are also seeking methods to remove adhered mor-
tar and improve the quality of recycled aggregate, such as heat and rubbing, eccentric
rotary grinding, screw grinding, rotary drum mills [88], acid, ball milling [89], microor-
ganisms [90] and RA carbonation [91]. Kim et al. [92] proposed an approach that used a
steel ball as a mechanical method and acid as a chemical method to remove paste from the
surface of origin fine aggregate, and the experimental results showed that the oven-dry
density and absorption ratio were 2.51 g/cm3 and 2.3%, which satisfied the quality criteria
of over 2.2 g/cm3 and under 5%, respectively. Cho et al. [93] investigated the change in
a recycled fine aggregate after the use of microbial carbonate precipitation as a microbial
modification. They found that the surface of the RFA was covered with calcium carbonate
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precipitate, which contributed to an increase in the recycled fine aggregate weight and a
reduction in the recycled fine aggregate water absorption under the proposed conditions.

In general, the recycling process affects the quality of recycled aggregate, and it is
necessary to improve the recycling equipment and methods in the future; it is worth
mentioning that in the CDW recycling process, be it within the domain of stationary or
mobile recycling operations, the treatment of construction and demolition waste needs a
meticulous treatment that comprises sorting, crushing, and screening processes. Within
this procedural framework, a consequential phenomenon emerges: the augmentation of
cracks; this culminates in the elevation of its porosity or water absorption capacity. Such
a consequential effect is subject to meticulous scrutiny and discourse in the elucidative
confines of Section 2.2.

2.2. Properties of Recycled Aggregates
2.2.1. The Shape and Distribution of CDW

After the CDW experienced a series of crushing processes, coarse and fine aggregates
of different particle sizes were obtained. Its particle shape was quite different from that of
natural aggregates. For example, the shape of natural aggregates is rounder and less sharp.
The recycled coarse aggregate (RCA) contains fewer needle flakes than natural aggregates.
This is mainly affected by the collision, peeling during the crushing process and the location
of the broken face. Due to the influence of the rock structure, the fracture surface of natural
aggregates is usually located within the rock, while the recycled aggregates are in the
cement mortar layer, dispersing the stress points within the rock. This makes it easier
for the aggregates to achieve a rounder shape, resulting in a lower content of needle-like
particles [71].

The surface of recycled aggregates typically exhibits a rough and irregular shape,
characterized by numerous corners and a slightly flat profile. Additionally, the impact of
mechanical crushing causes damage to the recycled aggregate, resulting in the formation of
multiple internal microcracks within the aggregate [94,95] (see Figure 5). The formation of
microcracks in aggregates is attributed not only to the compression and collision during
the process of crushing waste concrete, but is also potentially influenced by various factors,
such as an alkali–aggregate reaction occurring within the original waste concrete structures
or components prior to their dismantlement [94].
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Gorjinia et al. [96] obtained recycled concrete aggregates from crushing-tested rein-
forced concrete beams in the laboratory. The surface structure of the natural and recycled
aggregates was then observed, and the microscopic surface structure was observed under
an electron microscope. The results demonstrated that the surface roughness of recycled
aggregates is higher than that of natural aggregates due to the presence of old bonding
mortar or unhydrated cement slurry on their surface, which are loosely connected and not
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tightly bonded. Additionally, there were significant voids and large pores in the recycled
aggregate, resulting in increased porosity. For instance, during the process of crushing
construction and demolition wastes, the separation between the aggregate and mortar
leads to the formation of pores on the surface of the aggregate.

Compared to recycled coarse aggregate, recycled fine aggregate possesses a smaller
particle size, thereby harboring a greater proportion of weathered cement mortar and
fissures. Consequently, its microstructure becomes more intricate in comparison to that
of recycled coarse aggregate, inevitably exerting an influence on the microstructure and
overall performance of recycled aggregate concrete.

Since the structure of recycled aggregate, such as its number of pours, adhered mortar,
interface transition zone and cracks, the concrete interiors become complex. Additionally,
these are important factors that influence the physical, mechanical and durability properties
of concrete.

2.2.2. Density and Water Absorption of CDW

Density refers to the mass of particles per unit volume of matter. It is one of the
basic characteristics of materials, and has an impact on the mechanical properties, physical
properties, durability and other aspects of materials. According to the Chinese standards
GB/T 25177-2010 [97] and GB/T 25176-2010 [98], the types of recycled coarse and fine
aggregates used in concrete are divided into classes I, II and III. Tables 4 and 5 show the
density-based classification criteria.

Table 4. Density of regenerated coarse aggregate.

Parameter Class I Class II Class III

Density (kg/m3) >2450 >2350 >2250

Table 5. Density of recycled fine aggregate.

Parameters Class I Class II Class III

Density (kg/m3) >2450 >2350 >2250

Loose bulk density (kg/m3) >1350 >1300 >1200

However, standard GB/T 14685-2022 [99] specifies that the density should not be
less than 2600 kg/m3 for pebble and crushed stone for construction. The standard GB/T
14684-2022 [100] stated that the density of sand should not be less than 2500 kg/m3, and
that the loose bulk density should not be less than 1400 kg/m3. Compared with natural
aggregates, the density of recycled aggregates is lower than natural aggregates, mainly
because the porous structure of recycled aggregates reduces the density. In addition, the
density of recycled aggregate is also related to the strength grade and formulation of the
concrete, and the usage time, usage environment and region of the recycled aggregate
matrix concrete [101].

Gorjinia et al. [96] reported that recycled aggregate is about 20% lighter than normal
aggregate. The reason for this is the old mortar being attached to the normal aggregate.
And the density of recycled aggregate decreases as the strength of the parent concrete
decreases, or as the recycling cycles of the recycled aggregate increase. Xu [102] studied the
density of recycled aggregate, and the results showed that the density of recycled aggregate
could not reach the standard of natural aggregate. However, recycled aggregate could
reduce the weight of structures due to its low density, which is conducive to earthquake
resistance. Zhu et al. [103] reported that the quality of a third-generation recycled aggregate
was inferior to that of natural aggregate, and the quality decreased as the number of cycles
increased. This can be explained by the fact that, with the increase in the number of
recovery cycles, the content of mortar adhered to the recycled aggregate is higher, which
also determines the difference in the other physical properties of recycled aggregate.
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Water absorption refers to the quantity of water absorbed per unit area and per unit of
time, and it is one of the important indexes used to evaluate the properties of materials.
Since the surface of recycled aggregates is usually wrapped with a layer of mortar, making
it rougher, during the recycling and crushing process, there are many cracks inside the
recycled aggregates. The water absorption of recycled aggregates is much higher than
that of natural aggregates [104]. Chen et al. [105] studied the water absorption of recycled
aggregates with sizes ranging from 4.75 to 31.5 mm; the results showed that the water
absorption of the recycled aggregates increased as the aggregate particle size decreased.
This can be explained by the specific surface area increasing as the size distribution of the
recycled aggregate decreased. Zhu et al. [103] investigated whether the water absorption
of recycled coarse aggregates of different generations decreases with an increase in the
number of cycles. Gorjinia et al. [96] found that the water absorption of recycled coarse
and fine aggregates obtained from concrete with a compressive strength of 30 MPa may be
significantly higher than ordinary coarse and fine aggregates by approximately 11.5 times
and 3.5 times, respectively.

In summary, the density and water absorption of recycled aggregates are closely
related to the porous structure of recycled aggregates. In addition, a certain number of
cracks are also caused during the process of crushing recycled aggregates, which further
increases the water absorption of recycled aggregates. However, a higher water absorption
rate and lower density further lead to the higher water absorption rate and lower density
of recycled concrete compared with ordinary concrete. Therefore, the influence of recycled
aggregate on the physical properties of concrete is discussed in detail in Sections 3.1 and 3.2.

3. Recycled Aggregates Used in Concrete
3.1. Concrete Design

The concrete mix design plays a crucial role in the field of building materials. By
carefully designing the mix proportions of concrete, the optimization of concrete’s ma-
terial properties, such as its strength, durability, workability, and sustainability, can be
achieved. Concrete mix design involves a comprehensive consideration of factors such
as water-cement ratio, water-binder ratio, powder-fine aggregate ratio, aggregate particle
size distribution, among others, to ensure that the workability, strength development, and
durability of concrete meet design requirements [25,64–69].

In the current construction industry, there is a growing focus on exploring sustainable
concrete mix design solutions. By reducing the cement content, utilizing alternative materi-
als and additives, optimizing aggregate proportions, and employing other strategies, it is
possible to decrease the carbon footprint, resource consumption, and environmental impact
of concrete, thus promoting the sustainable development of concrete materials. Therefore,
the concrete mix design not only aims to enhance the performance of concrete structures,
but also drive the construction industry towards a more environmentally friendly and sus-
tainable direction. Ziada et al. [106] investigated the correlation between carbon nanotubes
(CNTs) and metakaolin- and slag-based geopolymers. To achieve their research objectives,
geopolymer samples with CNT contents of 0%, 0.05%, 0.15%, and 0.25% were prepared
and tested under three different environmental conditions. Subsequently, the compressive
strength of the geopolymer samples containing 0.25% CNTs exhibited a considerable in-
crease of 32.7% and 34.4% compared to the CNT-free geopolymer samples when immersed
in lake water and seawater, respectively. Paruthi et al. [107] studied the effects of replacing
cement with waste eggshells in their study. The findings revealed that substituting 20% of
cement with eggshell powder resulted in an increase in concrete strength.

In the following chapters, the effects of the replacement of different components in
concrete with recycled aggregates from construction and demolition waste on the physical,
mechanical and durability properties of concrete are reviewed in detail.
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3.2. Workability of Fresh Concrete

Workability is a critical parameter in assessing the ease with which freshly mixed
concrete can be handled, placed, and compacted. The incorporation of recycled coarse
and fine aggregates influences the workability of fresh concrete, and this section delves
into specific aspects related to workability. Several studies have investigated the impact
of recycled coarse and fine aggregates on the workability of fresh concrete. For instance,
Rao et al. [62] investigated the workability of fresh concrete with the incorporation of
recycled coarse aggregate. The natural aggregate, with a size ranging between 4 to 20 mm,
was replaced by recycled coarse aggregates with a size ranging between 4 and 20 mm
under replacement ratios of 25%, 50% and 100%. The results showed that the slump
decreased with an increase in the recycled coarse aggregate content. When the recycled
coarse aggregate content was 100%, the slump of fresh concrete decreased by 13%. This can
be explained by the recycled aggregate having a rough surface. Zega et al. [108] studied
fresh structural concretes with different percentages of recycled fine concrete aggregates
(0%, 20%, and 30%). The recycled aggregate with a fineness modulus of 3.15 and water
absorption of 8.5% was used. The results showed that the slump decreased with the
amount of recycled fine aggregate, and that the slump of concrete with 30% recycled fine
aggregate was significantly lower, although the admixture dose was increased. Combined
with Section 2.2.1, this phenomenon can be explained by the shape being irregular, causing
the total surface area to increase. And the friction between aggregates increased since the
surface of the recycled aggregate featured more powder. Therefore, the slump of fresh
concrete decreases with the recycled aggregate content. In addition, recycled aggregate has
a high level of water absorption, so it is in an unsaturated state during the preparation of
concrete and will absorb water effectively, thus affecting the slump of concrete.

Additionally, to enhance the workability of concrete incorporating recycled aggregates,
researchers have proposed various strategies, including optimizing the grading of recycled
aggregates, adjusting the water/cement ratio, and incorporating chemical admixtures.
For example, Zheng et al. [109] studied the gradation curve of a recycled coarse and
fine aggregate, which was not fine enough according to the present codes; the gradation
modification was a way to optimize the gradation curve of the recycled coarse and fine
aggregate, and the respective bulk density was increased and the crushing index was
reduced. In addition, the variability in the concrete increased when the recycled fine
aggregate replacement ratio increased from 0 to 30%.

Cartuxo et al. [110] adjusted the water/cement ratio to optimize the slump of fresh
concrete with the incorporation of recycled fine aggregate. The water/cement ratio was
adjusted to achieve a similar slump of 125 ± 15 mm in concrete with a different percentage
of recycled fine aggregate. When the 100% recycled fine aggregate was substituted for the
natural aggregate in concrete, the water/cement ratio increased by 17.6% compared to the
control concrete. Sasanipou an Aslani [111] investigated the effect of superplasticizer on
the slump of fresh concrete with the incorporation of fine and coarse recycled concrete
aggregates. As the recycled coarse aggregate content increased from 0 to 100%, the quantity
of superplasticizer increased by 11%, keeping within the range of 590–610 mm. Furthermore,
the replacement of natural fine aggregate with recycled fine aggregate in concrete was
evaluated. When the concrete incorporated 100% recycled fine aggregate, the slump flow
increased by 4 mm and the quantity of superplasticizer decreased by 16.7%. This is because
the addition of superplasticizer makes the arrangement between water molecules and
cement molecules more orderly, thereby increasing the slump of fresh concrete. Jia et al. [3]
evaluated the adsorption of paraffin by recycled aggregate. After absorbing paraffin, the
surface of the recycled aggregate was smooth and clean, which also improved the slump of
the fresh concrete.

In summary, the workability of fresh concrete is a crucial aspect affected by the
incorporation of recycled coarse and fine aggregates. Understanding the specific factors
influencing workability and adopting suitable measures to enhance it are essential for the
successful application of sustainable concrete in construction projects.
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3.3. Density and Water Absorption of Concrete with CDW

Density and water absorption are physical characteristics of concrete. Aggregates
occupy most of the volume of concrete, which has a great influence on the density and
water absorption of concrete. Tables 1 and 2 review numerous studies, and the high water
absorption and low density of recycled aggregate are shown. This section studied the effect
of the density, water absorption by immersion and water absorption by capillarity on the
concrete with the incorporation of recycled aggregate. Bendimerad et al. [60] studied the
density and water absorption of concrete with different recycled coarse and fine aggregate
replacement rates. As the recycled aggregate content increases, the density decreases and
water absorption increases. Bogas et al. [67] investigated the use of fine recycled concrete
aggregates in concrete. The results showed a higher porosity, lower density, and higher
water absorption compared to normal concrete. Shi et al. [112] evaluated the replacement
of natural aggregate with recycled concrete aggregate in concrete. The results indicated
the correlation between the porosity of recycled aggregates and the early-stage water
absorption of concrete. Nedeljkovi et al. [113] proposed that the water absorption and
density of recycled aggregates are the key parameters in mortar and concrete design. The
work determined the water absorption over time and measured the total water absorption
capacity of the fine recycled concrete aggregates (FRCAs). By observing the evolution of
the water content of the cement slurry, it was found that the water absorption of the FRCSs
in the slurry was lower than that in water. This can be explained by cement grains having a
great advantage regarding the content of water; therefore, it is difficult for FRCAs to reach
their maximum absorption capacity during mixing.

On the other hand, water absorption by capillary is a specific aspect of water ingress
that is related to the porous structure of concrete. Cartuxo et al. [110] found that the water
absorption by capillary action in a 72 h test increased by up to 45%. The capillary water
absorption increased with the incorporation of a fine recycled concrete aggregate. Pedro
et al. [57] noted that with an increase in the recycled aggregate content, the initial water
absorption by capillary increased rapidly and that the final quantity of water absorbed
was higher. Bao et al. [114] indicated that the water absorption by capillarity for recycled
aggregate concrete increases with an increase in the recycled aggregate replacement ratio
and stress level. Gao et al. [115] investigated the capillary absorption behavior of recycled
aggregate concrete using different recycled coarse aggregate replacement ratios, namely
0%, 33%, 66% and 100%. The results revealed that the amount of absorbed water increases
with the increase in the time spent in contact with water; the capillary absorption coefficient
increases by 19% as the recycled coarse aggregate content increases from 33% to 100%.
The reason for this is that recycled aggregate concrete contains old mortar and interface
transition zones, causing the higher porosity of concrete.

In summary, the above studies further prove that the factors affecting the density
and water absorption of recycled concrete are mainly the low density and higher water
absorption of recycled aggregates. A comprehensive understanding of the performance of
recycled aggregate concrete can help develop strategies to optimize concrete design and
improve its sustainability and durability.

3.4. Compressive Strength

Compressive strength serves as a vital indicator of the structural integrity of concrete
and is a primary consideration in assessing the feasibility of incorporating recycled coarse
or fine aggregates. Usually, cube or cylinder specimens are evaluated in a universal press,
as shown in Figure 6. In concrete, there are many factors that influence their compressive
strength, such as the cement content, water/cement ratio, quality of the aggregate and
concrete design, etc. Tables 1 and 2 present some results regarding the incorporation of
recycled aggregate in concrete.
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In this section, the recycled aggregate used in concrete is reviewed to find the effect
that the compressive strength has on different quantities of recycled concrete. Thomas
et al. [116] studied the effect of the compressive strength of concrete on the recycled concrete
coarse aggregate content under different water/cement ratios (W/C ratio) and cement
contents. The results showed that when maintaining the same W/C ratio and cement
content, the compressive strength decreases as the content of recycled aggregate increases.
When the W/C ratio decreased or cement content increased, the compressive strength was
optimized. However, the compressive strength of concrete with the incorporation of 100%
recycled aggregate increased 34% when the W/C ratio decreased by 20% and the cement
content increased by 50%. Hamadand et al. [117] has carried out compressive strength tests
for high-strength concrete with the incorporation of recycled coarse aggregate. The results
showed that the recycled aggregate content in high-strength concrete caused an average
reduction in the compressive strength of 9.8%. This can be explained by the recycled
aggregate content increasing the porosity of the concrete. Farah et al. [65] evaluated the
replacement of natural sand aggregate with recycled fine aggregate in concrete under
replacement rates of 0%, 10%, 20%, 30% and 40%. The results showed that the use of 20%
recycled aggregate in concrete could achieve the highest compressive strength compared to
normal concrete.

Researchers have investigated the compressive effect of concrete made with recycled
aggregate on the pre-treatment and curing of recycled aggregate. Taner et al. [118] studied
the effect of internal curing on the performance of concrete containing recycled aggregates.
Semi-saturated and saturated fine recycled concrete aggregates were used. The results
showed that the use of saturated or semi-saturated RCAs in concrete had a positive impact
on its durability through internal curing. Haghighatnejad et al. [119] reported that the
compressive strength of concrete made with recycled fine aggregate has an effect on
different curing conditions (continuous water curing, continuous open-air curing and
continuous laboratory curing). The results showed that continuous water curing is the most
suitable curing condition for concrete with the incorporation of recycled aggregate since it
has a higher porosity. In addition, Li et al. [120] studied the use of waste EPS as an aggregate
in concrete. In order to obtain lightweight geopolymer composites with higher strength, a
new commercially available expanded polystyrene coated fiber-reinforced epoxy resin was
used as a lightweight aggregate for mixing lightweight geopolymer composites in order to
improve the strength of concrete. Figure 7 shows the trends observed in the compressive
strength by various researchers with different replacement ratios of recycled aggregate.
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Based on the aforementioned studies, it can be concluded that the application of
recycled aggregate in concrete significantly impacts the compressive strength performance.
Generally, the optimization of the compressive strength in concrete can be achieved through
a decrease in the water/cement ratio or an increase in the cement content. However, an
increase in the recycled aggregate content may affect the compressive strength of concrete,
primarily due to the increased porosity caused by the recycled aggregate. Some studies
have shown that the use of an appropriate amount of recycled aggregate can result in a
comparable or even higher compressive strength than normal concrete. Furthermore, the
proper pre-treatment of recycled aggregate and adequate curing have a positive influence
on the compressive strength of concrete, such as enhancing its durability through internal
curing. Therefore, integrating the findings of various researchers, it can be inferred that the
application of recycled aggregate in concrete holds feasibility and potential for enhancing
the compressive strength of concrete.

Figure 7. Trends observed in the compressive strength by various researchers with different replace-
ment ratios of recycled aggregate. (Data from Farah et al. [65], Thomas [116] and Hamadand et al. [117]).

3.5. Flexural Strength

The evaluation of the flexural strength in concrete with recycled aggregates extends
our understanding of the material’s ability to withstand bending and tension forces. The
concrete bending strength test is usually performed using universal press equipment,
and the specimens can be selected as cube or cuboid. Figure 8 shows the three-point
test approach.
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Several studies have conducted comprehensive flexural strength tests on concrete spec-
imens with varying proportions of recycled aggregates, revealing trends similar to those
observed in compressive strength studies; the flexural strength decreased with an increase
in the replacement ratio of recycled coarse or fine aggregates. For instance, Rao et al. [62]
investigated the flexural strength of recycled concrete with recycled coarse aggregate. The
results showed that the flexural strength generally decreases as the proportion of recycled
aggregate increases. When the replacement content is 25%, the flexural strength reduces to
20% compared to the normal concrete. Additionally, Topçu and Sengel. [121] prepared two
series mixtures with different strength levels, that is C16 and C20. The results showed that
the flexural strength of recycled concrete prepared at different strength levels decreases
with an increase in the recycled aggregate content. Zhao et al. [122] conducted flexural
strength tests on concrete with the incorporation of recycled fine aggregate; the results
showed that the flexural strength decreased to 29.6% under the replacement ratio of 100%.
Bogas et al. [67] investigated the flexural strength of normal and high-strength concrete
with the incorporation of recycled aggregate. The result showed that the flexural strength
of normal concrete reduced to 34% and that of high-strength concrete decreased to 36%
under a replacement ratio of 100%. It is obvious that both the recycled coarse aggregate and
fine aggregate cause the flexural strength of concrete to decrease; in particular, when the
recycled aggregate content is high, the flexural strength decrease is more obvious. Figure 9
presents some results from numerous researchers.

On the other hand, Jia et al. [4] optimized the concrete design and used recycled aggre-
gates instead of lightweight aggregates in lightweight concrete. The results showed that the
flexural strength of the lightweight concrete increased with the increase in the recycled ag-
gregate content. This is because the density and strength of recycled aggregates are greater
than lightweight aggregates, thereby enhancing the mechanical properties of lightweight
concrete. Amjad et al. [123] explored the potential benefits of incorporating Lysinibacillus
boronitolerans into biomimetic self-healing concrete made with a fine brick aggregate.
The results revealed that the concrete with spores immobilized in the aggregates showed
a significant improvement in flexural strength compared to the control mix; specifically,
the flexural strength of the concrete made with recycled fine and coarse brick aggregate
increased by 22% and 15.5%, respectively. This can be explained by the densification and
increased ductility of the matrix due to bio-mineralization [124,125].
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3.6. Durability

Concrete durability is a key aspect in assessing structural quality and reliability, in-
cluding the ability of concrete to maintain structural integrity and performance stability
under a variety of external factors. There are many factors that affect the durability of
concrete, such as chlorides and acids, resistance to carbonation, resistance to freeze–thaw
cycles and permeability resistance to water and harmful elements, etc. [57,126,127]. The
evaluation method involves non-destructive testing techniques (such as ultrasonic and
rebound hammer testing) and the direct examination of samples with material proper-
ties [128,129]. In this work, the effects of chloride ions, carbon dioxide and frost damage on
the durability of concrete are mainly presented. In general, the non-steady-state accelerated
chloride penetration test method is one of the methods used to quickly test the resistance
of concrete to chloride ion penetration (see Figure 10).
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Chloride ion penetration is a durability issue that leads to the deterioration of con-
crete structures [130]. This process is initiated by chloride ions permeating through the
connection pores of concrete and penetrating its interior. Once chloride ions react with
the cementitious matrix in concrete, forming chlorides, this can result in the dissolution of
minerals within the cement matrix, consequently compromising the structural integrity
of concrete. Additionally, chloride ions can induce the corrosion of the reinforcing steel
within concrete, leading to the formation of iron oxide and causing the expansion of the
steel, ultimately creating cracks and damage in the concrete structure [131–134]. Yu and
Lin [135] created a model to predict chloride diffusion in recycled aggregate concrete.
The results showed that the resistance of concrete to chloride penetration decreased as
the recycled aggregate content increased. Bao et al. [132] noted that with the content of
recycled coarse aggregates increasing, the chloride penetration depth increases, due to the
addition of recycled coarse aggregates remarkably increasing the total porosity of concrete.
Zhu et al. [136] studied the chloride ion diffusion in recycled aggregate concrete under
a complex environment. The results showed that the chloride ion diffusion coefficient
increases with the number of freeze–thaw cycles. Additionally, Sasanipour et al. [133]
studied a pretreated recycled coarse aggregate using a modification method in which the
aggregate absorbed silica fume through a mixture of 1 L of water, 0.25 kg of silica fume,
and 8 kg of recycled coarse aggregate. The results showed that pretreated recycled coarse
aggregates improve the resistance of concrete to chloride ion penetration. Liang et al. [126]
treated the recycled coarse aggregate through the absorption of calcium hydroxide and
carbonization. As the recycled aggregate content or curing time increases, the ability of
concrete to resist chloride ion penetration increases. This can be explained by the fact that,
after the recycled aggregate is treated, the porosity decreases. Furthermore, the porosity
of recycled concrete decreases and the performance of the concrete regarding chloride ion
penetration is improved.

Carbonation is a chemical process that can affect the durability of concrete structures,
particularly in environments where carbon dioxide is present. Concrete is an alkaline
material, wherein the cement contains alkaline compounds. Carbon dioxide reacts with the
alkaline substances in concrete, forming carbonate. This reaction leads to the neutralization
of the alkaline substances in the concrete, reducing the alkaline environment and conse-
quently diminishing the protective layer around the reinforcing steel within the concrete.
The carbonation depth test is an important way to evaluate the resistance of concrete to
carbonation. Sagoe-Crentsil et al. [137] reported a 10% increase in the carbonation depth of
recycled concrete when recycled aggregate was used, as well as a parabolic relationship
between the carbonation depth and square root of the exposure time that applies to recycled
concrete and normal concrete. Bosque et al. [138] studied the carbonation depth of concrete
with CDW and the results showed that the mean carbonation depth in recycled concretes is
1.07–1.2 times greater than that in normal concretes. Limbachiya et al. [139] found that the
carbonation depth and rate increase with the amount of recycled coarse aggregate, while
Lovato et al. [140] observed a proportional increase in the carbonation depth with the quan-
tities of both recycled coarse and fine aggregates. However, Tang et al. [141] studied the
reuse of aggregate carbonation and concrete carbonation in pervious concrete. The results
revealed that this can improve the compressive strength while ensuring the acceptable
permeability of pervious concrete, and that concrete carbonation is more effective than
aggregate carbonation. The above research results show that with the addition of recycled
aggregates, the resistance of concrete to carbonation weakens, which is directly related to
the quality of recycled aggregates. Finally, it is recommended that the type and proportion
of recycled aggregates and the addition of auxiliary materials are considered to improve
the resistance of concrete structures to carbonation.

Table 6 summarizes the main information about the various works presented earlier,
listing the type of recycled aggregate used, the properties studied for the developed
concretes, and the main conclusions reached.
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Table 6. Summary of the incorporation of recycled aggregates in concrete studies.

Study Type of Recycled Aggregate Properties Main Achievements

Bogas et al. [58] Recycled coarse lightweight
concrete aggregates (RCLA)

Compressive and tensile
strength, modulus of elasticity

and abrasion resistance.

The RCLA improved the
mechanical properties of
lightweight concrete. The

compressive strength increased by
up to 14%, and splitting tensile

strength increased by up to 32%.
This is due to the cement slurry
on the RCLA surface increasing

its strength.

Kou et al. [59] Low grade construction and
demolition waste

Compressive and splitting
tensile strength, E values,
resistance to chloride-ion

penetration and ultrasonic
pulse velocity.

The results showed that the
mechanical properties and
durability of the concrete

decreased with an increase in the
recycled aggregate content. This
is also due to the porosity and
weak strength of the recycled
aggregate itself. Moreover, the

results demonstrated that
low-grade recycled aggregates

can be used to produce
non-structural concrete.

Bendimerad et al. [60] Recycled coarse and fine
concrete aggregates

Plastic shrinkage and cracking
sensitivity

The rate of substitution of
recycled coarse aggregate had a

relatively low influence on plastic
shrinkage, but the concrete with

30% recycled fine aggregate
showed the highest plastic

shrinkage because the recycled
fine aggregates develop a

significant surface area. The
cracking sensitivity is not

proportional to the recycled
aggregate content due to the fast
increase in the elastic modulus

and early deformation,
respectively, which implied
higher cracking sensitivity.

Rao et al. [62] Recycled coarse concrete
aggregates

Density, water absorption,
volume of voids, compressive

and tensile strength,
ultrasonic pulse velocity and

chloride penetration

The results showed that the
volume of voids and the water

absorption of the recycled
aggregate concrete increased by
2.61 and 1.82% compared to the
normal concrete due to the high
absorption capacity of recycled

aggregates. The mechanical
properties and durability

decreased with an increase in the
recycled aggregate content due to

the many transition zones and
porous nature of recycled

aggregates.
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Table 6. Cont.

Study Type of Recycled Aggregate Properties Main Achievements

Evangelista and Brito. [64] Recycled fine concrete
aggregates (RFCAs)

Water absorption by
immersion and capillarity,
chloride penetration and
carbonation resistance.

The results showed that the water
absorption achieved by the
immersion of concrete with

100 RFCAs increased by 46%.
Furthermore, the mechanical and

durability decreased when the
rate of replacement with

RFCAs increased.

Liang et al. [126] Recycled concrete aggregates

Physical and mechanical
properties, carbonation

resistance, microstructure of
concrete.

This work reviewed the treatment
of recycled aggregates through

carbon dioxide technology, which
can enhance the physical

properties of recycled aggregates.
Furthermore, the recycled

aggregate treated use in concrete
can improve the physical and

mechanical properties of concrete.
And in the process, carbon
dioxide is also utilized as

a resource.

Basha et al. [39] Recycled plastic aggregate
Physical and mechanical

properties, thermal
performance of concrete

This work introduces the use of
plastic waste as an aggregate for
lightweight concrete. With the
increase in plastic waste, the

density, mechanical properties
and thermal conductivity of

concrete decrease.

Li et al. [120] Waste EPS Physical and mechanical
properties of concrete

In this work, the strength of EPS
waste aggregate was increased by

coating the surface of EPS with
epoxy resin, and the strengthened
EPS aggregate was further used in

concrete. The density, flow rate
and strength of the concrete

decreased with an increase in the
EPS aggregate content.

3.7. Frost Resistance

Frost resistance is used as a durability indicator, especially in colder areas. It is
mainly obtained by concrete in relation to freeze–thaw cycles (FTCs). Some researchers
have verified that the frost resistance of recycled aggregate concrete is worse than that
of natural aggregate concrete [142–144] and investigated how RAC is worn down during
FTCs, emphasizing the potential deterioration mechanism. The key factors affecting the
frost resistance of recycled concrete have also been investigated, including the type of
recycled aggregate, the properties of the parent concrete, the rate of replacement with
recycled concrete, the moisture state of the recycled concrete and the coupling effect
between recycled concrete and other factors [145–147]. Sun et al. [148] found that the frost
resistance of RAC with only RFA replacement was significantly lower than that of NAC.
The main reason for this is that RFA has a higher porosity, resulting in heightened water
absorption and saturation in RAC during FTCs, and the aggravation of surface spalling.
Ajdukiewicz et al. [149] examined the frost resistance of high-strength RAC made from a
high-strength parent concrete (63.2–72.3 MPa). Their results showed that the frost resistance
of RAC was comparable to or even slightly higher than that of NAC. Furthermore, scholars
have been constantly looking for effective methods to improve the frost resistance of RAC,
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but also to optimize the prediction of frost resistance, such as models for predicting the
durability evolution of RAC in the freeze–thaw environment. Zhi et al. [150] proposed a
probabilistic damage model based on a two-parameter Weibull distribution to establish the
relationship between the freezing–thawing cycles and key parameters: the RFA replacement
ratio, water-to-cement ratio, and water absorption of RFA. In this research, they clearly
demonstrate that the result of this model’s prediction is basically consistent with the result
of the experiment: the frost resistance of RFA concrete decreases significantly with the
RFA replacement ratio and the other factors above. Zhi et al. [151] also established RAC
models based on the method of RBSM, and adopted it to research more examples of RAC,
obtaining a comprehensive view of the frost resistance of RAC with different factors: air
entrainment, the water-to-cement ratio and replacement ratio. The frost resistance is an
important factor associated with the durability of RC that needs further optimization in
future work.

3.8. Further Studies

In summary, the research on the future of recycled aggregates can be further explored
in the following aspects: the source of recycled aggregates, the refined classification of CDW
and research on practical engineering applications, research on the durability of recycled
aggregates, and the study of solutions to improve the durability of recycled aggregates;
this is in order to promote the sustainable management and utilization of construction and
demolition waste and achieve the goal of resource recycling and environmental protection.

4. Conclusions

This study comprehensively investigated the incorporation of recycled coarse and fine
aggregates in concrete, focusing on the physical, mechanical, and durability properties
of sustainable concrete. The key findings and implications drawn from this research are
summarized below:

The type of building and CDW recycling process plays a key role in the physical
properties of recycled aggregate. The analysis of recycled aggregates revealed a diverse
range of sources and compositions, influencing the physical and mechanical properties of
concrete. Recycled aggregates can be produced with different particle sizes as required.

The workability of fresh concrete was found to be influenced by the percentage
of recycled coarse or fine aggregates, with higher substitution rates leading to reduced
workability. In general, the superplasticizer was used to optimize the workability of fresh
concrete. The higher porosity and lower density of recycled coarse and fine aggregates led
to the concrete having a higher water absorption and lower density. It is therefore crucial
to optimize concrete design to obtain high-quality concrete.

The compressive strength and flexural strength were assessed to understand the
structural performance of concrete containing recycled aggregates. This study revealed a
nonlinear relationship between the substitution rates and compressive strength, empha-
sizing the need for careful optimization. Additionally, the incorporation of fibers showed
promise in enhancing the flexural strength of recycled aggregate concrete.

The resistance of concrete made with recycled aggregates to chloride ion penetra-
tion and carbonation was reviewed. Most studies showed that with the incorporation
of recycled aggregate, the resistance of concrete to chloride ion penetration and carbona-
tion decreased. This behavior was justified by the higher porosity of recycled aggregate.
Therefore, improving the durability of recycled concrete is important in improving the
widespread application of concrete.

The research highlighted the need for further experimental explorations addressing the
replacement of natural aggregates with both coarse and fine recycled aggregates. Future
studies should delve into optimizing mix designs, exploring alternative reinforcement
strategies, and investigating the long-term performance of structures incorporating recycled
aggregates under diverse environmental conditions.
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In conclusion, this study contributes valuable insights into the comprehensive ap-
plication of recycled coarse and fine aggregates in concrete. The findings presented here
provide a foundation for informed decision-making in sustainable construction practices,
emphasizing the importance of balancing environmental goals with structural performance
considerations. Continued research in this field is essential for advancing the practical
implementation of recycled aggregates in the construction industry. Continuous research
in this field is imperative to propel the practical utilization of recycled aggregates in the
construction sector. Moreover, by elucidating the influence of recycled aggregates on the
physical and mechanical properties and durability of concrete, there arises a need for forth-
coming investigations into the performance of recycled aggregates in concrete applications
to enhance specific aspects of concrete performance.
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