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Abstract: Long tail fibers of bacteriophage T4 are formed by proteins gp34, gp35, gp36, and gp37, with
gp34 located at the phage-proximal end and gp37 at the phage-distal, receptor-binding end. We have
solved the structure of the carboxy-terminal region of gp34, consisting of amino acids 894-1289, by
single-wavelength anomalous diffraction and extended the structure to amino acids 744-1289 using
data collected from crystals containing longer gp34-fragments. The structure reveals three repeats
of a mixed o-f fibrous domain in residues 744 to 877. A triple-helical neck connects to an extended
triple 3-helix domain (amino acids 900-1127) punctuated by two 3-prism domains. Next, a 3-prism
domain decorated with short helices and extended (3-helices is present (residues 1146-1238), while
the C-terminal end is capped with another short 3-helical region and three 3-hairpins. The structure
provides insight into the stability of the fibrous gp34 protein.

Keywords: bacterial viruses; Caudovirales; Myoviridae; crystallography; fibrous protein

1. Introduction

Bacteriophages (or phages) are of interest as tools to understand principles of molecular biology [1],
vectors of horizontal gene transfer [2], drivers of bacterial evolution [3], sources of diagnostic and
genetic tools, but also as novel therapeutic agents [4]. Bacteriophages recognize bacteria specifically
and infect them efficiently. The great majority of known phages belong to the Caudovirales order of
double-stranded DNA phages [5,6]. These phages have a tail that recognizes and attaches to the host
and subsequently orchestrates DNA transfer into the bacterial cytoplasm. Bacteriophage T4 infects
Escherichia coli. It is a complex tailed virus and belongs to the Myoviridae family, with an exclusively
lytic lifecycle [7]. The mature virus consists of a prolate head encapsulating the genomic DNA and a
cylindrical contractile tail.

The tail of bacteriophage T4 is a large macromolecular complex [8,9]. It consists of a sheath, an internal
tail tube, and a baseplate, which is situated at the distal end. The tail has two types of fibers, the long
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tail fibers and the short tail fibers, responsible for host cell recognition and binding to the host cell. These
fibers are attached to the baseplate. In free T4 phages, most of the long tail fibers are retracted, folded
back against the phage, although some are extended and free to contact bacterial cells [9,10]. The long tail
fibers recognize the outer membrane protein C (OmpC) or the lipopolysaccharide (LPS) of E. coli and are
responsible for the initial and reversible attachment of the virion. After several long tail fibers have bound,
the baseplate changes conformation and the short tail fibers, which normally are incorporated into the
baseplate, extend and bind irreversibly to the host cell LPS [9,11]. The short tail fibers serve as inextensible
stays during contraction of the tail sheath and penetration of the cell envelope by the tail tube [10].

The long tail fibers of bacteriophage T4 are connected to the baseplate via gp9 [9,12]. When
retracted, they also contact the fibritin (whisker) proteins of the neck region between the head and
the tail of the phage and the capsid. The fibers are about 145 nm long and only 4 nm in diameter.
Each fiber consists of rigid proximal and distal parts, connected by a hinge region (Figure 1) [13,14].
The proximal half-fiber is formed by a parallel homo-trimer of gp34. The carboxy-terminal end of gp34
interacts with the distal half-fiber; the hinge angle between the proximal and distal half-fibers may be
due to the monomeric protein gp35. Gp35 forms the “knee-cap”, by which the retracted long tail fibers
bind to the whiskers. The gp36 trimer is located near gp35, while gp37 makes up the rest of the shin,
including the very distal receptor-recognizing tip [8,10,15].
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Figure 1. Schematic drawing of the bacteriophage T4 long tail fiber. The baseplate-binding proximal end
is indicated with a B, the receptor-binding distal end with an R. The component proteins are indicated
with colors: gp34 in red, gp35 in green, gp35 in blue, and gp37 in yellow. The carboxy-terminal end of
gp34 is indicated with an asterisk. The numbers inside the red gp34 outline indicate where the P3, P4,
and P5 domains are located. A box indicates the approximate size of the largest fragment for which the
structure was solved (residues 744-1289).

The large fibrous proteins gp34 (1289 residues) and gp37 (1026 residues) need specialized
chaperone proteins to help them fold and trimerize correctly. Gp57 appears to be a general T4
tail fiber chaperone and is needed for the correct trimeric assembly of gp12 (the protein forming the
short tail fibers), gp34, and gp37 [16,17]. Gp38 must also be present for the correct trimeric assembly
of gp37 [16,18]. The molecular basis of the gp38 and gp57 chaperone activities are unclear, but gp57
may function to keep fiber protein monomers from aggregating unspecifically, while gp38 might bring
together three carboxy-terminal ends of the gp37 monomers to start the folding process. The long
tail fibers appear to be stiff structures, because no kinked half-fibers have been observed in electron
micrographs; moreover, the angle between the half fibers in the complete fiber never deviates much
from 20° [13]. The stiffness may be necessary for transmitting the receptor recognition signal from
the tip of the fiber to the baseplate [8]. Of the T4 tail fibers, only the crystallographic structures of
the carboxy-terminal half of the short tail fibers [19,20] and the tip of gp37 are known [15], and the
structure of the entire short tail fiber has been modelled into the pre-attachment state of the baseplate
at around 4 A resolution [9].

In the current work, by co-expression with gp57, we have produced and crystallized
carboxy-terminal fragments of the proximal tail fiber protein gp34 [14]. We have solved the structure
of a trimeric fragment containing amino acids 894 to 1289 (the carboxy-terminus) by single-wavelength
anomalous diffraction and, by molecular replacement, a larger fragment containing residues 744
to 1289. The overall structure reveals three small domains containing three parallel x-helices each,
followed by triple 3-helix regions punctuated by 3-stranded globular domains.
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2. Materials and Methods

Gp34(726-1289), gp34(781-1289), and gp34(894-1289) were produced, crystals were obtained,
and data was collected from them as described [14]. For the gp34(894-1289) crystals containing
selenomethionine, the coordinates of the heavy atom sites were obtained using Shelxd [21] and initial
phases were determined using Autosharp [22]. Solvent flattening was performed with Solomon [23].
ARP/wARP was used for automatic model building to 2.0 A resolution [24]. For the remaining
structures, molecular replacement was done with Phaser [25] or Molrep [26]. Model building was
performed with Coot [27] and refinement with Refmac [28] or with Phenix [29]. Structure validation
was carried out using Molprobity [30] and the Protein Data Bank (PDB) validation service [31].
Structure figures were prepared with Pymol [32] or Chimera [33]. Structure comparisons were done
with Dali [34], oligomerization parameters (accessible and buried surfaces, estimated dissociation
energies) were analyzed with Jspisa [35] and local three-fold axes were identified with Symd [36].
Multiple amino acid sequences were aligned by Clustal W [37].

3. Results

3.1. Structure Solution

Crystals belonging to two different space groups (P2; and R32) were obtained for gp34(894-1289).
Crystals of gp34(781-1289) and gp34(726-1289) also belong to space group P2;, but with different
cell parameters. Statistics of data collected from these crystals are shown in Table 1. The structure of
gp34(894-1289) was determined using the single-wavelength anomalous dispersion method (SAD), using
data from crystals of the P2; form grown from protein in which selenomethionine was incorporated.
A high-multiplicity dataset measured to 2.0 A resolution at the peak wavelength of selenium was
collected and used for phase determination. Thirteen sites were found, where fifteen sites were expected
(five internal methionines per monomer of the trimer). The resulting phases were of high quality (Table 1)
and, after solvent flattening with 53.2% solvent, permitted automatic building of 1102 residues, of which
1095 were automatically docked into sequence. Manual fitting and refinement led to a final model
consisting of 1189 residues (893-1288 of chain A, 893-1289 of chain B, and 893-1288 of chain C), plus
seven glycerol molecules and 1620 water molecules (residue 893 is the final proline of the amino-terminal
purification tag). The obtained model was also refined against data collected to 2.0 A resolution from
a native crystal (i.e., not modified with selenomethionine) of the same crystal form (P2; space group),
using the same test selection set for calculating the free R-factor selected in thin resolution shells. Here,
the refined model contained the same protein residues as before, plus seven glycerol molecules and 1312
water molecules. Both the native and selenomethionine-modified models have good correspondence to
the measured data and reasonable stereochemical parameters (Table 1), although residues at the amino-
and carboxy-termini have higher temperature factors and show some disorder.

Table 1. Crystallographic data, phasing, and refinement statistics.

Data Collection

P2;-SeMet P2;-native H32-native P2;-SeMet P2;-native
(894-1289) (894-1289) (894-1289) (781-1289) (726-1289)
Cell axes (a, b, ¢, A) 92.8,76.3,117.0 93.0,76.1,116.8 228.5,228.5,1069.5 92.1,75.9,149.1 107.3,76.1,139.9
Cell angles (, B, v, °) 90.0, 99.3,90.0 90.0,99.1, 90.0 90.0, 90.0, 120.0 90.0, 90.2, 90.0 90.0, 97.6, 90.0
Beamline Diamond 104 ESRF ID14-1 ESRF ID14-4 PF, BL1A PE, BL17A
Resolution range (A) 30-2.0(2.11-2.00) *  30-2.0 (2.11-2.00) 30-3.0 (3.16-3.00)  46.1-1.9 (2.00-1.90)  45.2-2.89 (3.04-2.89)
Reflections 109,012 (15,872) 108,802 (15,849) 214,066 (31,052) 161,501 (23,029) 48930 (6784)
Multiplicity 7.4(7.5) 34(34) 4.6 (47) 49 (4.9) 3.3(3.3)
Completeness (%) 99.9 (99.9) 99.9 (99.9) 99.8 (99.8) 99.0 (97.0) 96.6 (91.8)
Mean <I/s(I)> 12.4 (5.6) 8.1(3.3) 8.4 (3.5) 10.0 (3.2) 9.4 (3.0
(

Rinerge (%) ' 11.1 (30.7) 10.6 (37.7) 12.9 (36.1) 11.5 (42.5) 9.8 (43.6)




Viruses 2017, 9, 168 40f12

Table 1. Cont.

Data Collection

Wilson B (A2) 13.7 14.9 55.6 15.0 69.5
Phasing
Heavy atom sites 13 Se
Correlation coeff. (all/weak) 51.99/29.92
Patterson FOM ¥ 12.58
Correlation coeff. (E) ¥ 0.505
R-cullis ] (anom., acentric) 0.843
Phasing power 0.916
FOI\?;E;‘;SC(E’?:;ZS“)] 0.2996/0.0781

Solvent flattening

R-factor ** (before/after) 0.4820/0.2120

s 2 %
Overall correlation on E | 0.3246/0.8833

(before/after)
Correlat'io'n on 'I E|12/contrast 0.4688/0.2766
(original/inverted)
Refinement
Reflections 106789 (17167) 106463 (17174) 213700 (41856) 159525 (11143) 47006 (3004)
Reflections Reree 2205 (346) 2209 (349) 2999 (545) 1957 (159) 1911 (130)
R-factor +t 0.140 (0.162) 0.146 (0.199) 0.226 (0.281) 0.171 (0.244) 0.200 (0.352)
R-free 0.175 (0.207) 0.187 (0.219) 0.250 (0.321) 0.208 (0.275) 0.263 (0.408)
i;f:%ﬁgigi/s 9091/42/1619/0  9101/42/1664/0 36241/0/0/0 11299/102/1822/27  12441/6/350/0
Overall B-factor (A2) 20.0 249 51.4 25.9 64.8
Ramachandran stats 1t (%) 96.5/99.8 96.5/99.6 96.2/99.9 96.7/99.5 95.5/99.9
rmsd 19 bonds (A)/angles (°) 0.013/1.3 0.013/15 0.005/0.9 0.011/1.4 0.011/15
PDB code 4UXE 4UXF 4UXG 5NXF 5NXH

* Values in parentheses are for the highest resolution bin (where applicable). t Rsymm = Zp 2 | Iy — <Ip> 1 /Zp %5 Ty |,
where Iy; is the intensity of the ith measurement of the same reflection and <I},> is the mean observed intensity for
that reflection. ¥ Found by Shelxd.  Calculated with Autosharp. ** According to Solomon. ' R = £ | | Fgs(hkl) | —
| Feate(hKl) | 1 /21 Fops (kD) 1. 7 According to the program Molprobity. The percentages are indicated of residues
in favored and allowed regions of the Ramachandran plot, respectively. {{ Estimates provided by the program
Refmac. SeMet: selenomethionine; ESRF: European Synchrotron Radiation Source; PF: Photon Factory; FOM: figure
of merit; rmsd: root mean square difference; PDB: Protein Data Bank.

The structure of the R32 crystal form was solved by molecular replacement, using the hexagonal
setting H32. Four trimers (i.e., twelve identical protein chains) were found in the asymmetric unit.
Here, manual fitting and refinement led to a final model consisting of 4736 residues (894-1288 of chain
A, 894-1288 of chain B, 890-1287 of chain C, 893—-1287 of chain D, 890-1287 of chain E, 893-1288 of chain
F, 894-1288 of chain G, 894-1287 of chain H, 895-1288 of chain I, 895-1288 of chain J, 897-1287 of chain
K, and 894-1288 of chain L). For final refinement at 3.0 A resolution, secondary structure restraints
were used as without them the model tended to get distorted. No solvent molecules were included.

The structures of gp34(781-1289) and gp34(726-1289) were also solved by molecular replacement,
both with one trimer in the asymmetric unit and belonging to the P2; space group. After manual
adjustments and refinement, the gp34(781-1289) structure contained 1485 residues (795-1289 in each of
the three chains), plus 3 phosphate ions, 17 glycerol molecules, 1822 water molecules, three phosphate
ions, a urea molecule, and two acetate ions. Note that this structure contains selenomethionine residues
instead of methionine, although these were not used for phasing. The gp34(726-1289) structure was
composed of 1668 residues (744-1289 in each of the three chains), a glycerol, and 350 water molecules.
The N-termini of gp34(726-1289) and gp34(781-1289) are less well ordered in the crystal structures,
presumably due to flexibility and lack of crystal contacts in these regions.
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3.2. Overall Structure

The structure of the carboxy-terminal part of gp34 reveals an elongated protein; just over
30 nm long for the longest crystallographic model, containing residues 744-1289 (Figure 2).
The carboxy-terminal parts of gp34 that we crystallized occupy the part of the proximal tail fiber
closest to gp35 (the “knee”). The overall shape of the molecule fits very well with the corresponding
region of the averaged electron microscopy image produced by Cerritelli et al. [13].

744 780 823 876 900 945 1012 1048 1103 1129 1254 1289

Figure 2. Crystallographic structure of the carboxy-terminal part of gp34. (a) Cartoon view of
the structure of gp34(744-1289). Approximate domain boundaries are indicated. (b) Space-filled
representation of the structure in the same orientation as A, illustrating the extensive intertwining of
the three monomers in the trimer. (c) Topology diagram of the structure. The termini, as well as the
starts and ends of most of the secondary structure elements, are labelled.

Residues 796-878 form two domains, each with three central short o-helices decorated by
intertwined loops. They are followed by a triple-helical neck and a stretch of residues in which
two turns are present. The framework of the rest of the structure (residues 901 to 1270) is an 18 nm-long
triple 3-helix made up of parallel 3-strands. The widths in the triple 3-helix regions are around 2 nm.
The triple 3-helix is interspersed with three wider domains, the widest of which reaches just over 5
nm in diameter. These domains are named P3, P4, and P5 according to the nomenclature coined by
Cerritelli et al. [13] (Figure 1). The cores of each of these three domains are formed by three anti-parallel
{3-sheets, one contributed by each of the three monomers. In the case of P3 and P4, the first and last
[-strands of their anti-parallel 3-sheets stack exactly onto the triple 3-helices preceding and following
them, while for P5 this is not the case. At the carboxy-terminal end of the P5 structure, the triple 3-helix
stacks onto a final three-stranded anti-parallel 3-sheet. These last strands appear somewhat more
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flexible, as evidenced by poorer electron density and higher temperature factors, and may be stabilized,
or even change their conformation, in the presence of gp35 and/or gp36. Between the start and the end
of the structure, each of the three protein chains makes seven 360-degree turns around the trimer axis.

3.3. Stability of the Trimer

In the formation of the trimer, more than half of the total accessible surface of the isolated monomer is
buried (23.5 x 103 A2 of 43.8 x 103 A2 for residues 744-1289, 21.4 x 103 A2 of 39.5 x 103 A2 for amino
acids 795-1289, and 17.2 x 103 A2 of 31.6 x 103 A2 for residues 894-1289). The estimated energies necessary
to dissociate the complexes are 660, 608, and 488 kcal /mol for residues 744-1289, 795-1289, and 894-1289,
respectively (estimated using Jspisa [35]). The extensive intertwining of the three monomers in the trimer
leads to a large fraction of buried monomer surface in the trimer, a large amount of inter-molecular
hydrophobic and polar interactions, and thus a very high energy barrier to dissociation. This predicted
stability is consistent with the observed heat and protease stability of gp34(781-1289) [14].

3.4. The a-Helix-Containing Domains

As previously reported [13,19], gp34 contains repeating sequences (Figure 3c), of which three repeats
are resolved in our structure. Structure based sequence alignment shows the repeating sequence to be
longer than reported and reveals an additional repeat from residue 552 to 598. These repeats form a
domain which starts from a tight turn at consensus position 1 to 8 towards the three-fold axis of the trimer,
followed by a 3-strand at position 9 to 14 (Figure 3). This strand points to the outside of the molecule and
connects to an o helix at position 16 to 20. A non-conserved loop at positions 21 to 40, which is different
in length in different repeats, connects back to the central core of the domain and forms a short 3 strand
at position 41 and 42. Consensus residues 44 to 47 form an «-helix, leading to a three-helix bundle at the
three-fold symmetry axis. In the repeat consisting of residues 822-868, the non-conserved loop (amino
acids 837-859) points upwards, forming a 2-nm long 3-hairpin lying against the three-helix bundle.

(a) (b)

(d) 1 11 21 41
Consensus rtaTetrrGv ikiatqaevn ag--------  ------- dtt avtPkkl
Conservation
436-473 NDSTRARLGV IALATQAQAN VDLENS - --- - ---- "QKEL AITPETL
476-513 RTATETRRG | ARIATTAQVN QNTTFS---- ----- FADD | I Il TPKKL
516-549 RTATETRRGV AEIATQQETN AG=-=-=- - - -~ TDDTT I Il TPKKL

<F | 552-598 RQGSESLSGI VTFVSTAGAT ASSRELNGT NVYNKNTDNL VVSPKAL
‘3_ 601-638 YKATPTQQGA VILAVESEVI AGQsSQQ---- ----- WANA VVTPETL
o) 641- 74 KTSTDGRIGL IEIATQSEVN TG---~-===2  ==o=-- TDYTR AVTPKTL
677-710 RRATESLSG I AEIATQVEFD ABG-m=2scm=a =80 = VDDTR ISTPLKI
743-776 LEANETQRGT LRVATQDNV - - - - - - - - oo o o m o mm o m o - LITPKKL
779-8120 TKSTEAQEGV I KVATQSETV TG--------  --=--- TSANT AVSPKNL
822-868® WAATTAIRCGF VKTSSGSITF VGNDTVGESTQ DLELYEKNSY AVSPYEL
48-81 DASSTTKG I LFIPTEQEVI DGTNNT---- -« --n-n-- K AVTPATL
o | 88-121 NATETVYCGL TRYSTNDEAI AGVNNE - --- - - S SITPAKF
~ | 132-165 RVSTESSNGV IKISSLPQAL AG=- === -~ ADDTT AMTPLKT
Q. 181-215 TTATESDQGV VQLATVAQVR QGT=--=-=---- ----- LRECY AISPYTF
> 218-250 SSSTEEYKGV IKLGTQSEVN SN----=---- - NASV AVTGATL
253-281 RGSTTSMRGV VKLTTTAGSQ SG----=---- e D ASSAL -

Figure 3. Structure comparison of N-terminal domains and repeating sequences of gp34. (a) Side view
of the trimeric structure of one of the amino-terminal domains, residues 745-776. (b) Top view of (a).
(c) Superposition of the monomeric structure of the three amino-terminal repeats of gp34(744-776 in
cyan, 780-812 in red, 823-868 in green) and one repeat of gp12(182-215) in yellow. (d) Alignment of
repeating sequences of gp34 and gp12.
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As shown in Figure 3d, these repeats are also present in the T4 short tail fiber protein gp12, of
which the structure in the T4 native baseplate was reported [9]. Gp34 residues 744776, 780-812,
823-868, and gp12 182-215 can be superimposed nicely (Figure 3c), and the repeating sequences are
well-conserved. Especially well-conserved is the glycine at position 9, which makes a 90° turn and
starts the 3-strand. Positions 43 (Ser or Thr) and 44 (Pro) are also well-conserved at the N-terminal
end of the central x-helix. Ser or Thr are favorable at the N-1 (Ncap) position of «-helices and Pro is
commonly found at the N-terminus of x-helices [38].

Residues 879-889 form a tight triple helix, followed by a stretch of residues (890-900) in which two
turns are present. This region connects the repeat domain to the triple 3-helix domain discussed below.

3.5. The Triple B-Helix

Amino acids 901-944, 1014-1047, 1105-1128, and 1255-1271 of the carboxy-terminal part of
gp34 form a triple (3-helix (Figure 2a). It is composed of intertwined (-strands, which are nearly
perpendicular to the fiber axis. It has exclusively inter-monomer main-chain hydrogen bonds and its
hydrophobic core has a triangular cross-section. The triple -helix is reminiscent of the long (3-helix
in gp5 (gp5 is the tail lysozyme of phage T4, which functions as a cell-puncturing device during
infection [39]). However, the gp34 triple 3-helix is less wide and has a hydrophobic interior, more like
the short triple 3-helix domain in the T4 short tail fiber (gp12) [19]. As for gp12, the width is about
2 nm, compared to over 3 nm for the gp5 triple 3-helix. The repetitive structure of the triple 3-helix
is not expressed in clear sequence motifs, although some generalizations may be made. Aliphatic
residues like Leu and Ile are abundant in the B-strands, forming the hydrophobic core, meanwhile
small residues like Gly, Ser, and Asn are abundant in the loops, allowing for the turns between the
strands. A rare, but very clearly resolved, non-proline cis-peptide [40] is present between Asn1121 and
Ser1122 at the end of one of the 3-strands of the triple 3-helix.

At the carboxy-terminal end, a mixed five-stranded f3-sheet from each monomer caps the gp34
structure. The first three strands are parallel, while the last three are anti-parallel. The three sheets
from each monomer pack together, enclosing a hydrophobic core. In the crystal structures, the
carboxy-terminal ends show some disorder and higher temperature factors. As this is the region that
most likely interacts with gp35 or/and gp36 in the complete long tail fiber, it is possible it becomes
more ordered and even changes conformation upon incorporation of gp35 and/or gp36.

3.6. The P3, P4, and P5 Domains

The P3, P4, and P5 domains are wider and protrude sideways from the triple 3-helix. The widths
of domains P3 and P4 are around 4.5 nm and 3.8 nm, respectively (Figure 4a). Each of the three domains
has an anti-parallel five-stranded {3-sheet at its core. Three equivalent 3-sheets form a triangular and
hydrophobic core. The P3 domain has short loops between the five strands of its 3-sheet, except for the
loops between the first and second strand and between the second and third strand. The P4 domain
also has a five-stranded anti-parallel 3-sheet at its core, in this case, only the loop between the third
and fourth strands is longer. This loop folds back towards the amino-terminal direction of the protein,
covering part of strands 1, 2, and 3. The 3-sheets of the P3 and P4 domains stack onto the 3-strands of
the triple 3-helices preceding and following them, forming a 27-strand longitudinal mixed (-sheet
(parallel in the triple 3-helix regions and anti-parallel in the P3 and P4 domains).
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(a)

()

Figure 4. Triangular domains in bacteriophage fibers and tailspikes. (a) Cross-section of the P4 domain,
viewed from the N-terminal end. (b) Side view of the P5 domain. One of the 3-hairpins is indicated
with an asterisk. The (3-strands of the central 3-sheet are numbered. Note that the fifth strand is
irregular. (c) Side view of the bacteriophage P22 tailspike, which is a trimer of gp9. The triangular
domain in this and the next panel are boxed and the termini are labelled. (d) Side view of the C-terminal
part of the bacteriophage T7 tail fiber (gp17). In panels (c) and (d), N- and C-termini are labelled with
Nt and Ct, respectively.

Tailspikes from phages like the podovirus P22 (Protein Data Bank (PDB) entry 1TSP; [41])
(Figure 4c) and the myovirus Det7 (PDB entry 2V5I, [42]) contain trimeric anti-parallel 3-sheets
in their triangular domains that are similar to those in the P3 and P4 domains. Triangular domains
are also present in the side tail fibers of the podovirus T7 (PDB entry 4A0T, [43]) (Figure 4d) and the
siphovirus T5 (PDB entry 4UW?7, [44]). However, there are no exact structural homologues of the P5
domain in known trimeric phage fibers or tailspikes, so this domain has a novel fold. The P5 domain is
the largest and is 5.1 nm wide. Its framework is an anti-parallel 3-sheet like in the P3 and P4 domains,
but the fifth strand is irregular and the loops connecting the strands are longer and more elaborate
(Figure 4b). The core is also not completely hydrophobic and has ordered solvent molecules inside.

Between the first and second strands of the P5 domain, a long loop including a short o-helix and
a -hairpin is inserted, which extends about 3.5 nm towards the carboxy-terminal end of the structure.
The 3-hairpin motif is reminiscent of the -hairpin arms in tailspike chaperones of K1F (PDB entry
3GWE6; [45]), phi29 (PDB entry 3SUC; [46]) and pbl (PDB entry 4UWS; [44]) and may serve a similar
role here, promoting the correct folding and trimerization of the structure they enclose. Given the size
of the P5 domain and the fact that it is the domain of gp34 with most inter-monomer contacts, folding
and trimerization of gp34 may start with this domain.
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3.7. Fitting of the Crystal Structure in an EM Map of T4 Phage

The longest structure, gp34(744-1289), was fitted into the reconstructed electron microscopy (EM)
map of the extended T4 tail [47]. Although the density for the long tail fiber is not as clear as for the
other parts of the tail, it was possible to fit the crystal structure manually into the density by using
domains P3, P4, and P5 as an indicator (Figure 5a,b). As shown in Figure 5, the crystal structure is
slightly bent around residue 881. The EM density for the gp34 fiber is also curved. Thus, we think the
bending is a feature of this protein.

Figure 5. Fitting of the gp34(744-1289) crystal structure in cryo-electron microscopy density of the
bacteriophage T4 tail. (a) Crystal structure in red fitted into EM density of the T4 tail (EMD-1126, grey).
(b) Close view of (a). White arrows indicate connected EM density between long tail fiber and phage
sheath. (c) Representation of local three-fold axis of the C-terminal part (blue, 882-1289) and N-terminal
part (red, 744-881).

When the contour level of the EM density is increased, at least three connecting densities between
the long tail fiber and the tail sheath become visible. The first site is located around the loop containing
residues 1076-1087 (Figure 5b, top arrow). The second one is found at the long insertion in one of
the repeating structures (residues 836-857; Figure 5b, lower arrow). Although both the loop and the
insertion are folded against the rest of gp34 in the crystal structure, it is conceivable that, in the phage
particle, they might protrude from trimer and interact with the tail sheath protein gp18. This might
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help the tail fiber to assemble to the phage tail. The third connecting density is located close to the
N-terminus of gp34, for which a crystal structure is not available. However, the fourth repeating
sequence from the N-terminus, residue 552-598, also has an insertion (Figure 3d). Thus, it is possible
that the long insertion in the fourth repeating sequence is responsible for the third connected density.

4. Discussion

We have solved the structure of the carboxy-terminal third of the proximal long tail fiber protein gp34.
The protein is a highly intertwined trimer containing a 2 nm-wide triple 3-helix domain interspersed with
three wider domains in which each of the monomers forms an anti-parallel 3-sheet. The third of these
domains features nearly 4 nm-long “arms” that fold against the carboxy-terminal part of the structure.
From the N-terminus to the triple 3-helix, there are several repeats of an x-helix containing motif, which
are also present in the short tail fiber protein gp12. These structural repeats expand the folds known for
fibrous proteins, which in turn may have benefits for the design of protein-based materials [48,49].

The extensive intermolecular interactions between the three protein chains shed light on the
stability of the protein. The structure of gp34 also illustrates how phages use similar domains in
different proteins, mixing, matching, and duplicating domains in their evolution until a tailspike
or fiber is obtained that initiates the infection process efficiently. Future studies should reveal
high-resolution structural information on the amino-terminal part of gp34 and on how the trimeric
gp34 carboxy-terminus interacts with the gp35 “knee-cap” monomer and the distal part of the tail fiber.
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