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Abstract: Smallpox vaccination carries a high risk of adverse events in recipients with a variety
of contra-indications for live vaccines. Although alternative non-replicating vaccines have been
described in the form of replication-deficient vaccine viruses, DNA vaccines, and subunit vaccines,
these are less efficacious than replicating vaccines in animal models. DNA and subunit vaccines in
particular have not been shown to give equivalent protection to the traditional replicating smallpox
vaccine. We show here that combinations of the orthopoxvirus A27, A33, B5 and L1 proteins give
differing levels of protection when administered in different combinations with different adjuvants.
In particular, the combination of B5 and A27 proteins adjuvanted with CpG oligodeoxynucleotides
(ODN) gives a level of protection in mice that is equivalent to the Lister traditional vaccine in a lethal
vaccinia virus challenge model.
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1. Introduction

Smallpox, caused by the orthopoxvirus variola virus (VARV), was eradicated in the last century,
and the virus exists now only in two World Health Organization (WHO) repositories in the USA
and Russian Federation. There are continuing concerns about the possible re-emergence of smallpox
through bioterrorist attacks, and the WHO and several countries have emergency preparedness plans
to deal with a smallpox outbreak. Since the decline and eradication of smallpox another orthopoxvirus,
monkeypox virus (MPXV) has begun to emerge as a human pathogen in Central and West Africa [1–4],
and has caused a multiple foci outbreak in the USA [5]. Monkeypox appears to be controlled by
smallpox vaccination, and there is likely to be an increasing need in the coming years for licensure and
deployment of smallpox vaccine and/or antivirals for the control and treatment of MPXV infections.

The traditional vaccines that were successfully used to eradicate smallpox were based on a
third orthopoxvirus, vaccinia virus (VACV). VACV establishes a localized infection in humans
after inoculation into the skin, and the high amino acid sequence homology between old world
orthopoxviruses is the basis of the success of VACV in providing immunity to smallpox. Nevertheless
VACV is associated with several complications, which can be life-threatening in people who are
immunocompromised [6]. Strategies to provide for contra-indicated people center on the Modified
Vaccinia Ankara (MVA) strain of VACV, which does not replicate in humans because of multiple
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large-scale deletions [7–9], and the Lc16m8 strain, which is highly attenuated through deletion of the
B5R gene [10–14].

In addition there have been several studies examining DNA and protein subunit vaccines as
replacement vaccines. In general, DNA vaccines have not performed as well as the traditional vaccines
in mouse challenge models using virulent, non-vaccine strains of VACV [15–20]. Protein subunit
vaccines have generally fared better than cognate DNA vaccine candidates, especially when used in
combinations of multiple VACV proteins, and in some cases have performed as well as the Wyeth
traditional vaccine [18,21–25]. Importantly, VACV-based DNA and subunit vaccines have been shown
to protect against monkeypox in animal models, although a combination of DNA and protein subunit
works better than either alone [16,26,27].

Vaccination with a live virus biases towards a Th1 immune response in Balb/c mice, characterized
by the induction of IgG2a antibodies, whereas immunization with protein subunits biases towards
a Th2 response, characterized by the induction of IgG1 antibodies [28]. For novel vaccines against
smallpox or monkeypox, the gold standard is protection equal to the traditional vaccines used in the
smallpox eradication campaign. Although these could not be characterized as Th1 or Th2 inducing
at the time, subsequent studies have shown that these traditional, live vaccines bias towards a Th1
response in Balb/c mice [25,29]. CpG oligodeoxynucleotides (ODN) are known to bias immune
responses towards Th1 responses [30,31], and previous studies have shown that combining alum
adjuvant with a CpG ODN adjuvant can alter the Th1/Th2 balance for protein subunit VACV
vaccines [23]. Our study examines a panel of VACV protein subunits adjuvanted solely with CpG7909,
an ODN that has been extensively researched in multiple clinical trials [32–36], as candidates for future
orthopoxvirus vaccines. A combination of the B5 and A27 proteins is shown to bias strongly towards
a Th1-type, IgG2a response when adjuvanted with CpG ODN, and to be most effective, comparable
with the Lister traditional vaccine.

2. Materials and Methods

2.1. Study Design

6–8 week old female Balb/c mice were purchased from Charles River, UK. All mice were identified
by unique microchip, and habituated for one week before sorting into random groups of 5 (Figures 1–3)
or 6 (all other figures) mice per cage. Vaccinations and challenges were administered as described
in the text, with variations in quantity of protein; interval between sequential vaccinations; and
interval between final vaccination and challenge. For all subunit vaccinations, the appropriate protein
components were combined with a fixed amount of adjuvant per dose, regardless of the amount
of protein. Subunit vaccinations were given intramuscularly, and Lister vaccinations were given by
scarification on a shaved flank (flanks were shaved 24 h prior to vaccination). After challenge, animals
were monitored for 14 days, after which surviving animals were humanely culled. Mice were housed
with access to food and water ad libitum, and studies were in accordance with the UK Scientific
Procedures (Animals) Act 1986, and UK Codes of Practice for the Housing and Care of Animals used
in Scientific Procedures 1989, under Project Licence 30/1748.

2.2. Viruses

VACV strains Lister, and IHD were purchased from the Swiss Serum Institute and the American
Type Culture Collection (ATCC) respectively. Viruses were propagated in RK13 rabbit kidney cells in
Dulbecco’s modified Eagle’s medium (DMEM) with 2% fetal bovine serum (FBS), 3 mM glutamine
and 100 units/mL penicillin and streptomycin (Sigma, St. Louis, MO, USA). Virus was released from
infected cells by Dounce homogenization, and purified by ultra-centrifugation through a 36% (w/v)
sucrose cushion. Virus was quantified by titration on monolayers of RK13 cells, and stored at −80 ◦C.
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2.3. Recombinant Proteins and Adjuvants

Constructs for expression of recombinant proteins were designed using the published sequence
of the Western Reserve strain of VACV. A33 and B5 glycoproteins were produced as ectodomains
in Spodoptera frugiperda Sf9 insect cells, from recombinant baculoviruses encoding the appropriate
gene with an N-terminal Histidine tag (Invitrogen, Carlsbad, CA, USA). The recombinant proteins
were purified on nickel agarose columns. A27 and L1 recombinant proteins were produced as
glutathione-S-transferase (Gst) fusion proteins (pGEX; Pharmacia, NJ, USA) in E. coli following a
42 ◦C heat-shock for 1 h then expression at 25 ◦C, and purified from the soluble fraction of bacterial
lysates captured on glutathione Sepharose columns before cleavage from the Gst tag with thrombin.
All subunit antigens were dialyzed into phosphate buffered saline (PBS) after purification, and stored
at −20 ◦C. For immunizations with alhydrogel, protein solutions were mixed with alhydrogel at
a ratio of 1/5 (v/v) and incubated at 4 ◦C overnight, prior to immunization. For immunizations
with CpG7909, proteins were mixed with CpG7909 to give a concentration of 75 µg CpG 7909
per dose, immediately prior to immunization. Alhydrogel is an aqueous colloidal suspension of
2% aluminum hydroxide (Invivogen, San Diego, CA, USA). CpG 7909 is a B-Class CpG ODN of
sequence 5′-TCGTCGTTTTGTCGTTTTGTCGTT-3′, synthesized with a phosphorothioate backbone
(Coley Pharmaceutical Group, Wellesley, MA, USA).

2.4. Mouse Challenges

For challenge experiments VACV IHD suspended in PBS was administered in 10 µL to a single
nares without anesthesia. Each mouse received 5 × 106 pfu of virus, equivalent to 100× the median
lethal dose. The weight of each mouse was recorded daily. Humane endpoints were either 30% body
weight loss or acute clinical signs. Experiments were terminated after 14 days.

2.5. ELISA

Enzyme linked immunosorbent assays (ELISAs) were performed by standard protocols. Up to
50 µL of blood was drawn from the tail vein at appropriate intervals and centrifuged at 10,000× g
for 10 min at room temperature, and serum collected. Recombinant proteins were adsorbed to ELISA
plates in carbonate/bicarbonate ELISA coating buffer (Sigma, St. Louis, MO, USA) at 5 µg/mL. Excess
binding capacity was adsorbed with 2% milk powder, after which sera from individual mice were
applied to appropriate wells at a 1/10 dilution in PBS in 100 µL volumes, with one well per sample.
Specific binding was detected with a biotinylated goat anti-mouse IgG antibody, visualized with
streptavidin-conjugated horseradish peroxidase and 2,2′-Azinobis [3-ethylbenzothiazoline-6-sulfonic
acid] (ABTS, Sigma, St. Louis, MO, USA). For quantitation of IgG isotypes, isotype-specific secondary
antibodies were used, and the concentrations calculated from standard curves generated with isotype
standards. Optical density was measured with a 405 nm filter.

2.6. Depletion of CD4 and CD8 T cells

CD4 and/or CD8 T cells were depleted in vivo by administration of three doses of rat anti-murine
CD4 (clone YTS 191), and/or rat anti-murine CD8 (clone YTS 169), or rat anti-Chlamydomonas AFRC
Mac5 Mabs (Chemicon, Tokyo, Japan). Animals received 500 µg of each appropriate Mab on days −2,
+2, and +6 post challenge. An additional 12 animals receiving VACV Lister were included and culled
in three batches on days 0, 5 and 10 post challenge to confirm depletion of spleen cells expressing
the appropriate marker, by flow cytometry for CD4 (Mab clone L3T4, conjugated to PE) and CD8
(Mab clone Ly-2, conjugated to PE-Cy) (BD-Pharmingen, San Jose, CA, USA). Depletion of CD4 and
CD8 cells by the appropriate treatment was confirmed, with animals given Mac5 Mab providing a
negative control for depletion. The 12 animals used for confirmatory analysis were not challenged
with VACV IHD.
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2.7. Passive Transfer of Mabs

Purified Mab to A27 or B5, or control antibody, was administered to animals in 3 doses of 50 µg or
100 µg per dose by intraperitoneal injection in 500 µL volumes of PBS. Dosing was 2 h before challenge,
5 days post-challenge, and 10 days post-challenge.

2.8. Statistical Analysis

Analysis of variance (ANOVA) or 2-way ANOVA was performed on weight data from individual
mice. Daily weight was calculated as a percentage of initial weight, and the minimum weight for each
mouse post-challenge used for comparisons.

3. Results

We vaccinated mice with combinations of VACV proteins adjuvanted with alhydrogel or CpG7909;
control VACV Lister; or PBS. Animals received 3 immunizations with proteins, at 21-day intervals.
The animals were challenged with VACV strain IHD 21 days after the 3rd immunization. For the
positive control, animals were scarified with VACV Lister, 28 days prior to the challenge. None of
the PBS vaccinated negative control animals died. Although this was unexpected, it is not without
precedent because of the wide dose range over which VACV mortality is observed in Balb/c mice, and
we expect to see some survivors at the dose given [37]. Nevertheless all the PBS vaccinated negative
control animals experienced heavy weight loss that approached the 30% cut-off for culling on humane
grounds. The combination of A27 and A33 with either adjuvant, and all four antigens with alhydrogel,
failed to provide significant protection from disease as measured by weight loss compared with PBS
controls (p ≥ 0.161, ANOVAs). All other vaccine combinations provided a level of protection from
disease (p between 0.038–0.005 for alhydrogel, and 0.002–0.0001 for CpG, ANOVAs). However, there
were marked differences between the different antigen combinations (p = 5.9 × 10−5, 2-way ANOVA)
(Figure 1). In general, protein subunit combinations adjuvanted with CpG performed better than the
same combination adjuvanted with alhydrogel (p = 6.7 × 10−4, 2-way ANOVA). The exception to
this was the combination of A27 and A33 proteins, where alhydrogel marginally outperformed CpG.
However this combination performed the worst of all combinations, with both adjuvants. The best
performing combination was the A27 and B5 proteins with CpG adjuvant, which did not significantly
differ from the positive control Lister vaccine (p = 0.23, ANOVA). All other combinations of antigen
and adjuvant were less efficacious than the Lister vaccine (p ≤ 0.004, ANOVAs).

Prior to challenge, blood was drawn from vaccinated animals at 14 days after each immunization
for serology, and serum stored at −20 ◦C. The antibody response in vaccinated animals was assessed
by ELISA against purified proteins. L1 was excluded from this analysis because it did not appear
to affect the outcome of challenges, and the quantity of serum from sequential bleeds was limited.
The antibody response to A27, A33 and B5 proteins was qualitatively and quantitatively different in
groups that had received the relevant vaccinations. The response to A27 developed fastest, and all
combinations generated a specific response; but the response to alhydrogel adjuvanted A27 developed
faster than to CpG adjuvanted A27 (Figure 2A). The response to A33 was limited, with a clear positive
seen in only two groups after the third bleed, with no obvious distinction between alhydrogel and CpG
adjuvants (Figure 2B). A strong response to B5 was observed, and in this case, there was no apparent
difference between alhydrogel and CpG adjuvants. Interestingly, some mice given PBS adjuvanted
with CpG developed a cross-reactive response to the B5 protein while others did not (Figure 2C).
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Figure 1. Vaccinia virus (VACV) Challenge of vaccinated animals. Daily post challenge weight profile 
for animals vaccinated with PBS ( ); PBS/CpG ( ); VACV Lister ( ); or protein subunits 
adjuvanted with alhydrogel or CpG; and challenged with 100 median lethal doses (MLD) of VACV 
IHD. Protein combinations were A27/B5/alhydrogel ( );A27/B5/CpG ( ); A33/B5/alhydrogel (
);A33/B5/CpG ( ); A27/A33/alhydrogel ( );A27/A33/CpG ( ); A27/A33/B5/alhydrogel ( ); 
A27/A33/B5/CpG ( ); A27/A33/B5/L1/alhydrogel ( ); or A27/A33/B5/L1/CpG ( ). Each animal 
received 10 µg (divalent, A), 6.7 µg (trivalent, B) or 5 µg (quadrivalent, B) of each protein for each 
immunization. A total of three immunizations were given at 21-day intervals, with challenge at 21 
days after the 3rd immunization. PBS/CpG was administered on the same schedule as protein 
immunizations. Lister vaccination was given only once, with a dose of 1 × 106 pfu on a shaved flank, 
as previously described [38]. Lister vaccinated animals were bled once 21 days post vaccination and 
challenged at 28 days post vaccination, with the other groups. PBS controls were on the same schedule 
as Lister vaccination. Data is presented as daily means of the weight of each surviving animal as a 
percentage of its initial weight. Statistical analysis was by Analysis of Variance (ANOVA) and 2-way 
ANOVA. 
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alhydrogel, and the IgG2a component increased relative to alhydrogel (p = 0.003, ANOVA) (Figure 3A).
A similar picture was found with responses to B5 protein (p = 0.006, ANOVA) (Figure 3B).Viruses 2017, 9, 378  7 of 15 
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and again, no significant difference was observed (p = 0.24, ANOVA). Similarly, extending the interval
between the 3rd immunization and the challenge from 21 days to 56 days resulted in the appearance
of an increase in morbidity measured by weight loss (Figure 4C), but this was not significant for
comparisons of minimum or cumulated weight (p = 0.3 and 0.18 respectively, ANOVAs).

To further examine the effect of compressing the immunization schedule an additional experiment
was performed in which all the immunization intervals, and the interval between 3rd immunization
and challenge, were reduced to 14 days, for both CpG7909 and alhydrogel adjuvanted A27 and B5
proteins. This further compression reduced the efficacy of the vaccination relative to the Lister vaccine,
and the level of protection was the same as that achieved with alhydrogel as an adjuvant (p = 0.2,
ANOVA) (Figure 4D).

To examine the role played by cell mediated immunity in protecting from disease in this model,
we took mice immunized with A27 and B5 proteins in CpG 7909 adjuvant, and depleted CD4+, CD8+,
or CD4+ and CD8+ T cells prior to challenge with VACV IHD. T cell depletions were performed
by administration of depleting monoclonal antibodies (Mabs) to the appropriate T cell marker, or
a control antibody to a non-relevant antigen. In all situations, vaccinated animals were protected
relative to unvaccinated controls (p ≤ 0.002, ANOVAs). For CpG 7909 adjuvanted A27 and B5 proteins,
depletion of CD4+ cells, singly or in combination with depletion of CD8+ cells, did not alter efficacy
relative to animals receiving the non-relevant antibody (p = 0.48 and 0.49 respectively, ANOVAs).
However, depletion of CD8+ cells alone appeared to increase the efficacy of the vaccine with respect
to weight loss, with a P value between the confidence limits (p = 0.016, ANOVA; average percentage
difference 6.4%) (Figure 5A). Conversely, where Lister vaccinated animals were depleted of CD8+ cells,
singly or in combination with depletion of CD4+ cells, there was no difference in efficacy relative
to animals receiving the non-relevant antibody (p = 0.05 and 0.09 respectively, ANOVAs). However,
animals depleted of CD4+ cells alone appeared to show increased efficacy relative to those receiving
non-relevant antibody (p = 0.006, ANOVA; average percentage difference 5.3%) (Figure 5B). There
was no statistical difference between subunit/CpG7909 and Lister vaccinated animals, receiving the
non-relevant antibody (p = 0.65, ANOVA).

In a final experiment we assessed the ability of two Mabs, to A27 and B5, to protect mice from
VACV challenge. Mabs were administered to animals by intraperitoneal injection at doses of 50 µg
and 100 µg per animal, singly or in combination. Control animals received an equal quantity of
non-relevant rat IgG, or mouse IgG from animals previously vaccinated with VACV Lister. 24 h
after administration, animals were challenged with VACV as for previous experiments. 4/6 animals
receiving 50 µg, and 5/6 receiving 100 µg of anti-A27 died after VACV challenge, similar to the
animals receiving non-relevant rat IgG. However, all animals receiving anti-B5 Mab, singly or in
combination, survived. All animals receiving anti-Lister 100 µg Lister IgG survived, but only 50% of
those receiving the 50 µg dose survived (Figure 6A,B). When weight profiles were examined, with
the exception of treatment with anti-B5, no treatment was equivalent to vaccination with the Lister
vaccine (p ≤ 1.4 × 10−7, ANOVAs). For treatment with anti-B5 Mab, singly or in combination with
anti-A27, 50 µg doses of Mab were less efficacious than Lister vaccine (p ≤ 0.002, ANOVAs), while
treatment with 100 µg Mab was equivalent to Lister vaccination (p ≥ 0.06), with respect to minimum
weight post-challenge. There was no difference between minimum weight of animals treated with
anti-B5 or anti-B5 with anti-A27 (p = 0.32, 2-way ANOVA), but anti-B5 alone or in combination was
more efficacious than any other antibody treatment (p ≤ 0.0002, 2-way ANOVAs). Nevertheless,
treatment with anti-Lister IgG was more efficacious than treatment with anti-A27 Mab or non-relevant
IgG (p = 4.3 × 10−5 and 0.004 respectively, 2-way ANOVAs). However, treatment with anti-A27 Mab
offered no benefit over the non-relevant IgG control (p = 0.12, 2-way ANOVA).
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Figure 4. Effects of protein concentration and altered dosing interval. Animals were vaccinated with
divalent A27/B5/CpG vaccines under the same dosing/challenge schedule as for Figure 1, with protein

concentrations (per dose) of 5 µg A27 and 5 µg B5 (

Viruses 2017, 9, 378 10 of 15 

 

) 
c ) 
for animals receiving 5 µg/dose of each protei  
intervals and the 3rd immunization/challenge interval to 14 days for material adjuvanted with 
CpG79 ) 
u er 
the same dosing/challenge schedule as for Figure 1. Weight data is presented as daily means of the 
weight of each surviving animal as a percentage of its initial weight. Statistical analysis was by 
ANOVA and 2-way ANOVA. n = 6 animals per group. 

Figure 5. Effects of T cell subset depletion. Animals were vaccinated with PBS ( ), or with divalent 
A27/B5/CpG (A) or Lister (B) vaccines under the same dosing/challenge schedule as for Figure 1, with 
protein concentrations (per dose) of 10 µg A27 and 10 µg B5. Animals were further treated with anti-
CD4 ( , ); anti-CD8 ( , ); anti-CD4 and anti-CD8 ( , ); or non-relevant Mab ( , ) 
as described in material methods. Weight data is presented as daily means of the weight of each 
surviving animal as a percentage of its initial weight. Statistical analysis was by ANOVA and 2-way 
ANOVA. n = 6 animals per group. 
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4. Discussion

Several previous studies have examined the efficacy of protein subunit vaccines for prevention of
orthopoxvirus disease [19,21–27]. In this study, we have attempted to improve subunit vaccine
approaches by formulation with a CpG adjuvant. CpG 7909 is a Toll-Like-Receptor-9 (TLR9)
agonist [30,31], which we anticipated to modulate the immune response to protein antigens in a
qualitative manner, relative to a more traditional adjuvant such as alhydrogel.

The combination of A27 and B5 proteins with CpG 7909 performed better than all other
combinations, including the combinations that included both A27 and B5, with A33 and/or L1.
This was not due to the different amounts of A27 and B5 proteins in the divalent, trivalent and
quadrivalent combinations, and we surmise it may reflect competition between the various antigens
for recognition by the adaptive immune system. The A27/B5/CpG7909 vaccine was equivalent to
scarification with the traditional live Lister vaccine, indicating exceptionally good protection from
orthopoxvirus disease in this model. Kinetic analysis of the humeral immune response demonstrated
differences not only between antigens—with antibodies to A27 appearing before antibodies to other
antigens—but also between adjuvants. Alhydrogel stimulated a more rapid development of A27
specific antibodies than CpG7909; however, there was no apparent difference between the adjuvants
for kinetics of the response to B5. When the isotype of antibodies was examined, alhydrogel was found
to bias to IgG1 antibodies for both A27 and B5, while CpG7909 was found to bias towards IgG2a.
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This is interesting from a mechanistic viewpoint, showing that the adjuvants induce qualitatively
different immune responses for the same antigen. IgG2a responses are indicative of a cell-mediated
response, and the data suggests that CpG7909 is facilitating the induction of cell-mediated immunity,
where alhydrogel may be facilitating induction of a primarily humeral response.

It is interesting to note the results of treating animals vaccinated with A27/B5/CpG7909 or VACV
Lister, with CD4+ and/or CD8+ depleting antibodies prior to challenge. On the surface it appears that
depleting CD8+ cells enhanced the protective effect of A27/B5/CpG7909, while depletion of CD4+
cells enhanced the protective effect of VACV Lister. It is notable that VACV Lister recipients experience
a dip in weight in the immediate post-challenge period, but this quickly recovers, and it is tempting to
hypothesize that this may be an immune mediated effect of a strong, ongoing immune response that
encounters a large bolus of antigen. CD4+ cells may be an essential mediator of such an effect, and
their removal could thus give an apparent increase in efficacy, by negating immune-mediated illness.

In the case of A27/B5/CpG7909, there is a comparable dip in post-challenge weight, but this
occurs several days later post-challenge. Thus, the post-challenge dip in weight for A27/B5/CpG7909
recipients may reflect a virus mediated disease state, rather than an immune-mediated one. However,
it is difficult to see how depletion of CD8+ cells would alleviate a virus-mediated disease state. In both
situations it is necessary to understand how depletion of both CD4+ and CD8+ cells does not result in
reduced efficacy relative to animals treated with the non-relevant antibody.

One explanation that fits the data is that for A27/B5/CpG7909 recipients, CD8+ cells are effectors
of a slow-starting, transient, immune-mediated illness, while for VACV Lister recipients CD4+ cells
are effectors of a fast-starting transient immune mediated illness. In this scenario protection from
disease owes much to pre-existing antibody, and thus transient depletion of both CD4+ and CD8+
T cells would not result in animals succumbing to virus-mediated disease. The demonstration that
passively administered anti-B5 Mab gives good protection against VACV challenge is evidence in favor
of this explanation (the failure of the anti-A27 Mab to protect may be due to the particular Mab used
rather than the immunogenic properties of the antigen). A proper examination of this possibility is
beyond the scope of this paper, but bears future investigation. In particular, it is interesting to note that
the equivalence of A27/B5/CpG7909 and the traditional Lister vaccine is determined on the basis of
weight loss after challenge, but the kinetics of weight loss appear to be different for the two vaccines,
and differential effects of depletion of CD4+ and CD8+ suggest that there are mechanistic differences
between CpG adjuvant effects and the live vaccine.

In summary, we have shown that adjuvanting VACV proteins with a TLR9 agonist CpG as a
subunit vaccine is able to give protection against a lethal orthopoxvirus challenge. Other researchers
have examined protein subunits as potential orthopoxvirus vaccines, and have achieved protection
with antigens such as A33, which was not protective in our study. However, these required a minimum
of 3 doses to achieve protection, and the data are thus not inconsistent with our findings. Interestingly,
these studies using non-CpG adjuvants generated primarily IgG1 antibodies, and required a minimum
of 3 doses to achieve protection equivalent to vaccination with live VACV Wyeth vaccine, even when
B5 was used as an antigen [22]. Thus, our data demonstrate that CpG7909 offers advantages over
more traditional adjuvants, inducing an antibody response qualitatively more similar to live VACV
(IgG2a/Th1), and reducing the number of doses required to generate an equivalent level of protection
to live VACV. Other studies have shown the value of CpG7909 for induction of immune responses to
orthopoxviruses, by combining CpG adjuvant with alum-based adjuvant. In these studies, multiple
doses were also required, and antibody responses were predominantly IgG1, however this may be due
to the researchers having combined CpG7909 with alum, rather than using CpG7909 by itself [23,26].
A saponin-based adjuvant, QS-21, has been shown elsewhere to reduce the number of immunizations
to no more than two, and to bias to an IgG2a antibody response, in a similar manner to our findings
here [25].

Our study confirms previous findings that a divalent antigen combination can offer better
protection than tri- or quadrivalent vaccines. The failure of L1 to offer any protection in our study
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may be due to the reduced number of immunizations we have used. Other researchers have shown
that, from antigens of the intracellular mature virus form of VACV, A27 is inferior to L1 as a subunit
vaccine [22]. It is, therefore, interesting to speculate about the significance of the failure of anti-A27
Mab to protect against VACV by passive transfer, which raises the possibility that the B5 component of
the A27/B5 combination might be solely responsible for the protection provided by A27/B5/CpG7909.
However, there are other studies in which anti-A27 Mab has offered good protection by passive
transfer [39], and we cannot therefore conclude that the A27 component of our divalent combination is
not contributing to protection. The discrepancy between different studies with respect to efficacy of
anti-A27 Mabs in passive protection may be due to differences in the Mabs, perhaps with respect to
isotype, or to the specific epitope recognized.
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