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Abstract: During virus infection, the cascade signaling pathway that leads to the production of
proinflammatory cytokines is controlled at multiple levels to avoid detrimental overreaction. HACE1
has been characterized as an important tumor suppressor. Here, we identified HACE1 as an important
negative regulator of virus-triggered type I IFN signaling. Overexpression of HACE1 inhibited Sendai
virus- or poly (I:C)-induced signaling and resulted in reduced IFNB1 production and enhanced virus
replication. Knockdown of HACE1 expression exhibited the opposite effects. Ubiquitin E3 ligase
activity of the dead mutant HACE1/C876A had a comparable inhibitory function as WT HACE1,
suggesting that the suppressive function of HACE1 on virus-induced signaling is independent of its
E3 ligase activity. Further study indicated that HACE1 acted downstream of MAVS and upstream of
TBK1. Mechanistic studies showed that HACE1 exerts its inhibitory role on virus-induced signaling
by disrupting the MAVS-TRAF3 complex. Therefore, we uncovered a novel function of HACE1 in
innate immunity regulation.
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1. Introduction

To initiate an effective antiviral response, RNA viruses are recognized by pattern recognition
receptors (PRRs), such as Toll-like receptors (TLRs) and RIG-I-like receptors (RLRs), and then trigger
multiple signaling pathways to promote the production of proinflammatory cytokines, including
type I IFNs [1–4]. Aberrant overreaction may lead to proinflammatory diseases. Therefore, the intensity
and duration of the signaling are finely modulated at multiple steps of the signaling cascades [5,6].
In recent years, we have had great interest in the identification of the essential regulators in this
signaling pathway. This will provide potential therapeutic intervention and targets for infection,
inflammation or autoimmune diseases in the future.

RLRs are cytosol sensors, which include RIG-I, melanoma differentiation factor 5 (MDA5) and
laboratory of genetics and physiology 2 (LGP2) [7,8]. All three RLRs possess a DEXD-box RNA
helicase domain for RNA binding [9]. Except LGP2, both RIG-I and MDA5 also contain a caspase
recruitment domain (CARD) that is indispensable for downstream protein-protein interactions. Upon
viral infection, the activated RIG-I undergoes self-dimerization and structural changes that permit the
CARD domain of RIG-I to interact with the CARD domain of downstream essential adaptor protein
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MAVS (also known as IPS-1/Cardif/VISA) [10–13]. MAVS has a transmembrane domain (TM), that
guides it to the outer mitochondrial membrane. Besides, MAVS contains three TRAF-interacting
motifs (TIM), two included in the N-terminal proline-rich region (Pro), the other one located in the
C-terminal region [11,13]. Upon RNA virus infection, the downstream tumor necrosis factor (TNF)
receptor-associated factors (TRAFs) are recruited to MAVS, and the MAVS complex is formed [11,14].
This is a crucial step to initiate type I IFN signaling. TRAF2, 3, 5 and 6 are all MAVS binding partners
through different TIM. The MAVS-TRAF3 complex provides the essential platform for downstream
TBK1-dependent IRF3 or IRF7 activation. TRAF3 bridges the upstream MAVS and downstream
kinase TBK1 and assembles the active MAVS-TRAF3-TBK1 signaling complex [14,15]. Therefore, the
regulation on the MAVS-TRAF3 signalosome may be very important for the pathway.

HACE1 (HECT domain and ankyrin repeat-containing E3 ubiquitin protein ligase 1) is a
HECT-type ubiquitin E3 ligase. The functions of HACE1 have not been fully understood. Until now, the
identified ubiquitinated substrates of HACE1 include active Rac1 [16,17], optineurin (OPTN) [18] and
Rab GTPases [19]. The catalytic cysteine (C876) of HACE1 is essential for its E3 ligase activity [16,20,21].
Mutation of C876 to serine or alanine will abolish its E3 ligase activity. HACE1 gene is located on
chromosome 6q21, a prominent tumor-suppressor region [20,22]. The tumor suppressive function
of HACE1 is also characterized. HACE1 is downregulated in multiple cancer types due to allelic
loss or promoter methylation, such as Wilms’ tumor, gastric cancer, lymphoma, hepatocellular
carcinoma, breast cancer, neuroblastoma, advanced colorectal cancer, etc. [23–29]. HACE1-deficient
mice developed spontaneous, late-onset cancer [20]. Re-expression of HACE1 in human tumor cells
directly abrogates in vitro and in vivo tumor growth, which is dependent on its E3 ligase activity. The
mechanical analysis for its growth control shows that HACE1 modulates the expression level of cyclin
D1, then reducing cell cycle progression [20]. Moreover, in breast cancer, HACE1 ubiquitinates and
promotes the degradation of Rac1, then leading to impaired Rac signaling [29]. In contrast, HACE1
deficiency results in enhanced Rac1 signaling, contributing to breast cancer progression [29–31]. In lung
cancer, HACE1 ubiquitinates OPTN and targets it for autophagic degradation. The HACE1-OPTN
axis synergistically suppresses the growth and tumorigenicity of lung cancer cells [18]. Moreover,
HACE1 is also involved in other biological processes or pathological conditions. For example, HACE1
mediates resistance to oxidative stress [32]. HACE1 regulates Golgi membrane fusion in cells [33].
It has protective roles in the pathology of neurodegenerative diseases, such as Huntington disease [32].
It also provides cardiac protection in response to hemodynamic stress [34]. However, the functions of
HACE1 in immune responses are not investigated.

In recent years, ubiquitination has been reported as an important post-transcriptional modification
to control the duration and intensity of antiviral immune responses [35]. Both HECT and RING domain
E3 ubiquitin ligases are identified as essential regulators in this pathway. For example, RNF125 is
reported to ubiquitinate and degrade MDA-5, RIG-I and MAVS [36]. The HECT domain containing
ubiquitin ligase AIP4 can ubiquitinate and degrade MAVS in collaboration with PCBP2 [37]. Our group
previously showed that Smurf2 promotes the ubiquitination and degradation of MAVS, as well [35].
In the search for unknown ubiquitin E3 ligases involved in antiviral signaling, some ubiquitin E3
ligases were used for the dual reporter luciferase assay. Then, HACE1 was suggested as a potential
candidate in the regulation of this pathway.

In this study, we demonstrate for the first time that HACE1 contributes to negative regulation of
the virus-induced type I IFN signaling via disrupting the MAVS-TRAF3 complex. HACE1 suppressed
virus-induced type I IFN signaling independently of its ubiquitin E3 ligase activity. This study
highlights the importance of HACE1 in the modulation of virus-induced type I IFN response.
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2. Materials and Methods

2.1. Cells and Reagents

HEK293T and HEK293 cells were cultured with high-glucose DMEM (Life Technologies,
New York, NY, USA) medium plus 10% heat-inactivated new-born bovine serum and supplemented
with antibiotics (100 U/mL penicillin, 100 µg/mL streptomycin). Cells were grown at 37 ˝C in a
humidified atmosphere with 5% CO2.

Mouse anti-Flag (M2) (Sigma-Aldrich, St. Louis, MO, USA), mouse anti-hemagglutinin
(HA) (Merck Millipore, Darmstadt, Germany), anti-GAPDH (BioWorld, Atlanta, GA, USA),
anti-HACE1 (Abcam, Cambridge, UK) and anti-GFP (Neobioscience, Shenzhen, China) were from the
indicated manufacturers.

2.2. Plasmids

Mammalian expression plasmids for human HA-tagged HACE1 and Flag-tagged Rac1 were
constructed by inserting the open reading frame of HACE1 or Rac1 into the N terminal HA or
Flag-tagged pRK vector. The mammalian expression plasmid for HACE1/C876A was constructed by
site-directed mutagenesis. All of these vectors were verified by sequencing. pcDNA3-Flag-TBK1 was a
gift from Tom Maniatis. pEF-Bos-Flag-RIG-I was a gift from Takashi Fujita. pcDNA3-Flag-MAVS was
a gift from Zhijian Chen. The pRL-TK-Renilla luciferase plasmid was from Promega (Madison, WI,
USA). IFN-β and ISRE luciferase reporter plasmids were provided by Hong-Bing Shu.

2.3. RNA Interference

All small interfering RNAs (siRNAs) (Gene-Pharma, Shanghai, China) were transfected
by PerMute (UcallM, Jiangsu, China) at 50 nM according to the manufacturers’ instructions.
To determine the efficiency of protein knockdown, at 48 h post-transfection, cells were harvested,
lysed and immunoblotted with rabbit anti-HACE1 Ab. The sequences of the individual
siRNAs were as follows: nonspecific control, 51-UUCUCCGAACGUGUCACGU-31; HACE1 #1,
51-UAUAGCGCUGAUGUCAACA-31; HACE1 #2, 51-GGUCUGUUUCUGAACUACU-31 [20].

2.4. Luciferase Assays

The luciferase assay was performed as described [38]. Cells (1.1 ˆ 105) were seeded on 24-well
plates and transfected the next day using VigoFect (Vigorous Biotechnology, Beijing, China) with
100 ng ISRE luciferase reporter, or IFN-β reporter and 1 ng pRL-SV40 plasmid, or with indicated
plasmids. In the same experiment, when necessary, an empty control plasmid was added to ensure
that each transfection received the same amount of total DNA. Then, 24 h after transfection, cells
were infected with SeV at the multiplicity of infection (MOI) of 20 or transfected with poly (I:C)
(InvivoGen, San Diego, CA, USA) using Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA) for
24 h, and luciferase activity was measured with the Dual-Luciferase reporter assay system (Promega)
according to the manufacturer’s instructions. Firefly luciferase activity was normalized based on
Renilla luciferase activity. All reporter assays were performed in duplicate and repeated at least three
times. The representative results are shown in each figure.

2.5. RT-PCR and Real-Time PCR

Total RNA was isolated using TRIzol reagent (Life Technologies). cDNA was synthesized using a
reverse transcription system (Promega) according to the manufacturer’s instructions. Quantitative
real-time polymerase chain reaction (PCR) was carried out with the Power SYBR Green PCR master
mix (Bio-Rad, Berkeley, CA, USA). Each reaction was in duplicate. The amounts of hIFNB1 were
amplified using the following primers: IFNB1-F: 51-ATTGCCTCAAGGACAGGATG-31 and IFNB1-R:
51-GGCCTTCAGGTAATGCAGAA-31; for monitoring of VSV (Vesicular Stomatitis Virus) infection,
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the cells were infected by VSV-GFP virus at MOI of 10. Then, the VSV genome was quantified
by real-time PCR using the following primers: VSV-F: 51-ACGGCGTACTTCCAGATGG-31; VSV-R:
51-CTCGGTTCAAGATCCAGGT-31.

2.6. Co-Immunoprecipitation and Immunoblot Analysis

HEK293T cells were transfected with indicated plasmids for 24 h. Then, the cells were lysed in lysis
buffer containing a proteinase inhibitor mixture (Roche, Indianapolis, IN, USA) and PMSF. Cell lysates
were incubated with 1 µg/mL anti-HA Ab or anti-Flag or control Ig (IgG) and protein A-Sepharose
(GE Healthcare, GE Healthcare, Calbiochem, Sweden) and resolved by SDS-PAGE. The blot was then
probed with anti-Flag or anti-HA Ab. IRDye 700-conjugated anti-IgG or HRP-conjugated anti-IgG was
used as a secondary Ab, and proteins were identified using the Odyssey imaging system or detected
by the ECL assay.

2.7. Statistical Analysis

Statistical analysis was carried out with SPSS 13.0. All data are shown as the mean ˘ SD. The mean
values from each group were compared by Student’s t-test. In all tests, p-values of less than 0.05 were
considered statistically significant.

3. Results

3.1. HACE1 Negatively Regulates Virus-Induced Type I IFN Signaling

By a small-scale screening of unknown ubiquitin E3 ligases in the regulation of virus-induced type
I IFN signaling by the dual-luciferase reporter, we identified HACE1 as a potential negative regulator
in this pathway. Then, we tried to systematically investigate whether HACE1 is indeed involved in the
regulation of virus-induced IFN signaling. As shown in Figure 1A, overexpression of HACE1 inhibited
SeV-induced activation of both ISRE (an interferon stimulated response element) and IFN-β promoter
in a dose-dependent manner in HEK293T cells. In addition, activation of the ISRE promoter primed
with the synthetic RNA duplex poly (I:C) was also inhibited by overexpression of HACE1 (Figure 1B).
To further support these results, the amount of IFNB1 was measured at various time points by reverse
transcription (RT)-PCR during the twelve hours of infection by Sendai virus. HACE1 suppressed
SeV-induced transcription of endogenous IFNB1 gene (Figure 1C). VSV is another representative
RNA virus for RIG-I signaling studies. It is easy to detect the virus replication. Consistent with the
suppressive function of HACE1 on virus-induced signaling, the replication of VSV was enhanced
when HACE1 was overexpressed (Figure 1D). These data together suggested that HACE1 negatively
regulates virus-induced type I IFN signaling.

3.2. Knockdown of HACE1 Augments Virus-Induced Type I IFN Signaling

Next, to investigate the functions of endogenous HACE1 on virus-induced type I IFN signaling, we
knocked down the expression of HACE1 in HEK293 cells. Two siRNA oligos against HACE1 were used,
and the knockdown efficiency was monitored. As shown in Figure 2A, both #1 and #2 siRNA oligos
can remarkably reduce the expression of endogenous HACE1 in HEK293 cells. Compared to control
cells, knockdown of HACE1 expression augmented SeV-induced IFNB1 gene transcription (Figure 2B)
and inhibited VSV replication (Figure 2C). Thus, HACE1 is a negative regulator in virus-induced
type I IFN signaling.
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Figure 1. HACE1 negatively regulates virus-induced type I IFN signaling. (A) Overexpression of
HACE1 inhibited SeV-induced ISRE and IFN-β promoter activation in a dose-dependent manner;
(B) HACE1 inhibited ISRE and IFN-β promoter activation by transfected poly (I:C) in HEK293T cells;
(C) overexpression of HACE1 inhibited SeV-induced transcription of IFNB1. HEK293T cells were
seeded on 24-well plates and transfected the next day with mock control or HACE1-expressing vector.
Twenty-four hours later, cells were left uninfected or infected with SeV. Cells were harvested at the
indicated time point; (D) Overexpression of HACE1 promoted VSV replication. HEK293T cells were
seeded on 24-well plates and transfected the next day with mock control or HACE1-expressing vector.
Twelve hours later, cells were infected with VSV-GFP. Cells were harvested at the indicated time point.
For (A,B), all data are representative of at least three independent experiments. For (C,D), all data are
representative of at least two independent experiments. * p < 0.05; ** p < 0.01; *** p < 0.001.
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Figure 2. HACE1 knockdown augments anti-viral signaling. (A) HEK293 cells were transfected with
control or siRNA oligos against HACE1; then 36 h later, the knockdown efficiency was monitored by
Western blot; (B) Knockdown of HACE1 augmented SeV-induced IFNB1 production; (C) knockdown
of HACE1 inhibited VSV replication. HEK293 cells were seeded on 12-well plates and transfected
the next day with control or HACE1 #2 siRNA at 50 nM. Thirty six hours later, cells were infected
with VSV-GFP. Cells were harvested at the indicated time point. Data are representative of at least
two independent experiments. * p < 0.05.



Viruses 2016, 8, 146 6 of 12

3.3. The Suppressive Function of HACE1 Is Independent of Its E3 Ligase Activity

HACE1 has been documented to act as a ubiquitin E3 ligase. So far, only a few ubiquitinated
substrates have been identified, including Rac1, Optineurin (OPTN) and Rab GTPases [16,18,19].
The catalytic cysteine (C876) is indispensable for its E3 ubiquitin ligase activity [16,20,21]. Then,
we tried to determine whether the E3 ligase activity of HACE1 is required for the inhibition of
virus-induced type I IFN signaling. It is well-known that the catalytic cysteine (C876) of HACE1 is
indispensable for its E3 ligase activity [20]. Therefore, we constructed a mutant HACE1 in which the
amino acid cysteine 876 was mutated into alanine (Figure 3A). Consistent with the previous report,
WT HACE1 can promote the degradation of Rac1, whereas the HACE1/C876A mutant lost the ability
to degrade Rac1, indicating the lost E3 ligase activity of HACE1/C876A (Figure 3B). Reporter assays
showed that SeV-induced or poly (I:C)-induced activation of ISRE and IFN-β promoter activities were
inhibited by HACE1/C876A to a similar degree as WT HACE1 (Figure 3C,D). These data indicate that
HACE1 inhibits virus-induced type I IFN induction independently of its E3 ligase activity.
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Figure 3. HACE1 inhibited antiviral signaling independently of its ubiquitin E3 ligase activity.
(A) The expression of sequencing verified that HACE1/C876A was monitored by Western Blot.
HACE1/C876A expression vector; (B) HACE1/C876A lost the ability to promote the degradation of
Rac1. HEK293T cells were coexpressed with Rac1 and increasing amounts of HA-tagged WT HACE1 or
HACE1/C876A. Twenty-four hours after transfection, the cells were harvested and detected by Western
blot; (C) HACE1/C876A still has the ability to inhibit SeV-induced ISRE or IFN-β activation. HEK293T
cells were seeded on 24-well plates and were transfected the next day with mock control, HACE1 or
HACE1/C876A expressing vector, together with ISRE or IFN-β reporter vector. Twenty-four hours
later, cells were infected with SeV or left uninfected for 24 h before luciferase assays were performed;
(D) HACE1/C876A inhibited ISRE and IFN-β promoter activation by transfected poly (I:C) in HEK293T
cells. Data are representative of at least three independent experiments. * p < 0.05; *** p < 0.001.

3.4. HACE1 Negatively Regulates Virus-Triggered Signaling Downstream of MAVS and Upstream of TBK1

Upon viral infection, recognition of viral RNA by RIG-I induced a downstream signaling cascade,
including MAVS, TBK1, IRF3 [39]. We next sought to determine a step within the signaling pathway
that HACE1 targets. As shown in Figure 4, ISRE and IFN-β promoter activity were activated by
transfection of an active form of RIG-I (RIG-IN), MAVS, TBK1 and an activated form of IRF3 (IRF3/5D),
respectively. Co-expression of HACE1 inhibited RIG-IN, MAVS-induced ISRE or IFN-β reporter
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activation (Figure 4A,B). On the other hand, it had no apparent effects on TBK1 or IRF3-5D-induced
ISRE or IFN-β reporter activation. These data suggested that HACE1 acted downstream of MAVS and
upstream of TBK1 in the virus-induced signaling.Viruses 2016, 8, x  7 of 11 
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Figure 4. HACE1 targets downstream of MAVS and upstream of TBK1. (A) Effects of HACE1 on ISRE
activation by various signaling components in a dose-dependent manner; (B) effects of HACE1 on
IFN-β activation by various signaling components in a dose-dependent manner. HEK293T cells were
seeded on 24-well plates and transfected the next day with indicated signaling molecules, IFN-β or
ISRE luciferase reporter and pRL-SV40 plasmid and increasing doses of HACE1 for 24 h. The luciferase
activities were quantified by normalizing with Renilla luciferase activities. Data are representative of at
least three independent experiments. * p < 0.05; ** p < 0.01; *** p < 0.001.

3.5. HACE1 Suppresses Virus-Induced Signaling by Disrupting the MAVS-TRAF3 Complex

As suggested by Figure 4, HACE1 modulated the virus-induced signaling downstream of MAVS
and upstream of TBK1. Then, we tried to investigate the exact mechanisms underlying the suppressive
function of HACE1. We coexpressed HACE1 with MAVS, TRAF3 and TBK1. Unexpectedly, HACE1
cannot interact with either MAVS or TBK1. It interacted with TRAF3 (Figure 5A,B). HACE1 is a
HECT ubiquitin E3 ligase. Then, we tested whether HACE1 can promote the degradation of TRAF3.
As shown in Figure 5C, HACE1 cannot degrade TRAF3. This is consistent with the results above
(Figure 3C,D) that the HACE1/C876A mutant has a comparable inhibitory function to WT HACE1 on
virus-induced signaling.

It has been reported that the MAVS and TRAF3 complex is essential for virus-induced
signaling [14,15]. Then, we detected the impact of HACE1 expression on the MAVS-TRAF3 complex.
With the increase of the expression level of HACE1, the formation of the complex of MAVS-TRAF3
was severely impaired (Figure 5D). These data indicate that HACE1 may negatively regulate the
virus-induced signaling by disrupting the MAVS-TRAF3 complex.
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Figure 5. HACE1 impedes the formation of the MAVS-TRAF3 complex. (A,B) HACE1 interacted
with TRAF3 in a mammalian overexpression system. HEK293T cells were transfected with the
mock control, Flag-tagged MAVS, Flag-tagged TRAF3 or Flag-tagged TBK1 and HA-tagged HACE1.
Co-immunoprecipitation was performed with indicated antibodies, and then, the membrane was
blotted with anti-Flag or anti-HA Ab; (C) HACE1 did not promote the degradation of TRAF3.
HEK293T cells were coexpressed with Flag-tagged TRAF3 and increasing amounts of HA-tagged
HACE1. Twenty-four hours after transfection, the cells were harvested and detected by Western blot.
(D) HACE1 disrupts the MAVS-TRAF3 complex. HEK293 cells were transfected with Flag-MAVS and
GFP-TRAF3 with an increasing amount of HA-HACE1. Flag-MAVS was immunoprecipitated, and
the membrane was immunoblotted with anti-GFP antibody. Data are representative of at least three
independent experiments.

4. Discussion

In the present study, we provide evidence for the first time that HACE1 is an important negative
regulator of virus-induced type I IFN signaling. Additionally, this suppressive function is E3 ligase
activity independent. HACE1 plays its suppressive role downstream of MAVS and upstream of
TBK1. Co-immunoprecipitation assays showed that HACE1 did not interact with MAVS or TBK1.
Unexpectedly, it binds TRAF3, which interacts with MAVS and forms a platform for RNA virus
signaling. HACE1 does not promote the degradation of TRAF3. This is consistent with the data that
HACE1 negatively regulates the virus-induced signaling independent of the E3 ligase activity. Further
studies shown that HACE1 can disrupt the MAVS-TRAF3 complex. This provides a mechanistic
explanation for the suppressive function of HACE1 on virus-induced innate immune response.

HACE1 is a HECT-type E3 ligase. The most studied function of HACE1 is its involvement in
tumor development. This function is E3 ligase dependent [40]. HACE1 can also function in an E3 ligase
independent manner. For example, HACE1 can repress the transcriptional activity of RARα1 and
RARβ3. Mutation of the putative catalytic cysteine (C876) does not alter the repressive effect of HACE1
on the transcriptional activity of RARβ3 [21]. HACE1 can mediate p62-dependent selective autophagic
turnover of ubiquitinated proteins. This process is achieved by protein-protein interaction through
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its ankyrin repeat domain and is independent of its E3 ligase activity [34]. Under stress conditions,
HACE1 cleared the ubiquitinated proteins in an E3 ligase activity independent manner. Here, we
demonstrated that HACE1 suppressed virus-induced signaling independently of its E3 ligase activity,
suggesting that HACE1 exerts diverse biological functions by different mechanisms.

Several viral or cellular negative regulators may hijack TRAF3 or the TRAF3 complex to mediate
immune evasion. Herpes simplex virus 1 ubiquitin-specific protease UL36 deubiquitinates TRAF3 [41].
A few SARS coronavirus proteins are identified as viral negative regulators, which target the TRAF3
signalosome [42]. SARS coronavirus papain-like protease binds and disrupts the STING-TRAF3-TBK1
complex [43]. SARS coronavirus M protein or open-reading frame-9b impedes the formation of
the TRAF3/TANK/TBK1/IKKε complex or the MAVS/TRAF3/TRAF6 complex, respectively [44].
Besides, some studies reported endogenous physiological negative regulators that target TRAF3
or the MAVS-TRAF3 complex. The linear ubiquitin assembly complex (LUBAC) downregulates
virus-mediated IFN induction by targeting NEMO for linear ubiquitination. Then, linear ubiquitinated
NEMO is associated with TRAF3 and disrupts the MAVS-TRAF3 complex, which inhibits IFN
activation [45]. MIP-T3, a ciliary protein, is also a TRAF3 binding protein, which acts as a cellular
inhibitor in virus-induced IFN production. MIP-T3 impedes the formation of multiple TRAF3
signaling complex, such as the MAVS-TRAF3 complex, the TRAF3-TBK1 or TRAF3-IKKε complex [46].
The ubiquitin E3 ligase Triad3A targets TRAF3 for degradation to negatively regulate the RIG-I
signaling [47]. Here, we elucidate a novel role of HACE1 in virus-induced signaling, which also targets
the central MAVS-TRAF3 complex.

The interaction of proteins with TRAF family members were mediated by the TRAF interaction
motif. We also analyzed the structure of HACE1 and found that there is a potential TIM between
amino acid 357 to amino acid 365 (FKPLELLWH); we mutated central amino acid PLE to AAA, and
then performed the luciferase assays. The results showed that this mutant lost the ability to suppress
virus-induced signaling, indicating that the suppressive function of HACE1 is dependent on the
complete TRAF interaction motif. Further studies will focus on the link of the spontaneous mutation
of HACE1 with inflammation or tumor development, which will be intriguing.

5. Conclusions

In this study, we identified a novel function of HACE1 on virus-induced type I IFN signaling,
which targets the MAVS-TRAF3 complex and impedes the assembly of the MAVS-TRAF3 complex.
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