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Abstract: Hepatitis E virus (HEV), an important agent of viral hepatitis worldwide, can cause severe
courses of infection in pregnant women and immunosuppressed patients. To date, HEV infections can
only be treated with ribavirin (RBV). Major drawbacks of this therapy are that RBV is not approved
for administration to pregnant women and that the virus can acquire mutations, which render the
intra-host population less sensitive or even resistant to RBV. One of the proposed modes of action of
RBV is a direct mutagenic effect on viral genomes, inducing mismatches and subsequent nucleotide
substitutions. These transition events can drive the already error-prone viral replication beyond
an error threshold, causing viral population extinction. In contrast, the expanded heterogeneous viral
population can facilitate selection of mutant viruses with enhanced replication fitness. Emergence of
these mutant viruses can lead to therapeutic failure. Consequently, the onset of RBV treatment
in chronically HEV-infected individuals can result in two divergent outcomes: viral extinction
versus selection of fitness-enhanced viruses. Following an overview of RNA viruses treated with
RBV in clinics and a summary of the different antiviral modes of action of this drug, we focus on
the mutagenic effect of RBV on HEV intrahost populations, and how HEV is able to overcome
lethal mutagenesis.
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1. Introduction

Hepatitis E virus (HEV) was first described as novel agent responsible for enterically transmitted
non-A, non-B hepatitis by Reyes and colleagues in 1991 [1]. This was 35 years after the first documented
epidemic outbreak (1955–1956) of a retrospectively identified HEV infection—transmitted via the
fecal–oral route—in New Delhi, India [2].

HEV is a nonenveloped single-stranded RNA virus with a 7.2 kb genome of positive
orientation. Three open reading frames (ORFs) encode for: (1) the nonstructural proteins (ORF1),
comprising a methyltransferase, a papain-like cysteine protease, a helicase, and an RNA-dependent
RNA polymerase (RdRp), connected by a Y-domain and a hypervariable region (HVR); (2) the capsid
protein (ORF2); and (3) small proteins whose functions are not yet completely understood (ORF3) [3].
The viral subgenomic RNA is comparable to mammalian mRNAs, flanked by a 5′-methylguanine cap
and a 3′-poly(A) tail. HEV has recently been taxonomically reassigned to the genus Orthohepevirus in
the family of Hepeviridae [4]. Differences in the sequences of isolates led to the current classification
into seven genotypes, four of which infect humans. HEV-1 and HEV-2 (i.e., genotypes 1 and 2) are
solely human pathogens and are mainly transmitted orally by feces-contaminated drinking water.
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These genotypes are endemic in Africa, southeast Asia, and Mexico, while the zoonotic genotypes 3
and 4 are predominantly found in northern America, Europe, and northern Asia as summarized by the
Hepeviridae Study Group of the International Committee on the Taxonomy of Viruses [4] and others [5].

An infection with HEV is usually self-limiting, causing arthralgia, flu-like myalgia, vomiting,
and symptoms characteristic of hepatitis like jaundice and itching [6]. Progression to chronicity
is generally described for pregnant women and immunosuppressed individuals, such as patients
recovering form solid organ transplantation [7]. Data for HIV-coinfected patients are contradictory
and still under discussion, as extensively reviewed by Debes et al. [8,9]. According to the World
Health Organization (WHO), each year more than 20 million individuals are newly infected
with the HEV [10]. With more than three million symptomatic cases of HEV infection reported
worldwide each year and about 70,000 HEV-related deaths [6], HEV must be reconsidered to be
a major global health burden, with appropriate resources redirected toward effective control and
eventual eradication [11,12]. Recently, studies reporting extrahepatic manifestations of HEV have
accumulated, detailing potential connections between HEV infection and neurological disorders,
including Guillain-Barré syndrome [13–19].

Ribavirin (RBV) is a broad-spectrum antiviral agent with numerous clinical applications against
viral pathogens; it is currently the only treatment option for chronically infected HEV patients.
Several publications have documented the emergence of single-nucleotide variants (SNVs) in viral
genomes that cause either reduced RBV sensitivity or RBV resistance [20–23]. Recent studies also
indicate HEV acquired mutations under RBV therapy that decreased the sensitivity to RBV treatment
regimes in vitro and, most importantly, in vivo [24–26].

In this article, we start with an overview of selected RNA viruses that are or have been clinically
treated with RBV, and summarize this drug’s different antiviral modes of action. The second part
focuses on the mutagenic effect of RBV on HEV intra-host populations and how HEV is able to
overcome the lethal mutagenesis induced by this guanosine analog.

2. RNA Viruses and Ribavirin

In 1972, RBV was described as a broad-spectrum antiviral against several DNA and RNA
viruses [27]. Since then, numerous studies have reported on the in vitro antiviral properties of RBV.
Figure 1 provides an overview of a selection of RNA viruses against which RBV was shown to be active:
hepatitis C virus (HCV, Flaviviridae), dengue virus (DENV, Flaviviridae), respiratory syncytial virus (RSV,
Paramyxoviridae), influenza A and B virus (Orthomyxoviridae), chikungunya virus (CHIKV, Togaviridae),
poliovirus (Picornaviridae), Hantaan virus (Bunyaviridae), and Lassa virus (Arenaviridae) [28,29]
(Figure 1). For further reading we would like to refer to other reviews like [29–31].

Studying multiple viruses from the family Flaviviridae, Crance et al. investigated the in vitro
antiviral properties of RBV against 11 flaviviruses including DENV, Japanese encephalitis virus (JEV),
and yellow fever virus (YFV). Inhibition of virus replication was observed for all tested flaviviruses [32].
Furthermore, effectiveness of RBV could be confirmed in vivo for YFV using a hamster model
by administering early upon infection [33,34]. However, these effects could not be confirmed in
a nonhuman primate model [33]. Therefore, further studies are required to evaluate the possible
application of RBV as a treatment option for YFV. Here, the dosage as well as the time points of
treatment represent the major hurdles, which need to be overcome [33]. Additionally, hemorrhagic
fever-causing viruses, which are categorized into the families of Arena-, Bunya-, and Togaviridae,
were demonstrated to be susceptible to inhibition by RBV (Figure 1). For example, for Lassa virus the
antiviral efficiency of RBV was proven both in vitro and in vivo in guinea pigs and monkeys [35,36].
Hantaviruses (i.e., Hantaan virus) and phleboviruses (i.e., Rift Valley fever virus, RVF) were also
shown to be susceptible to RBV treatment [35]. In a mouse model for Hantaan virus, an increase
of survival and milder signs of disease were described [35]. In experimental RVF infections of mice
and hamsters, RBV led to a prevention of death, delay of death, or the onset of milder symptoms,
depending on the time point of administration [35]. In general, higher doses of RBV were needed
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to inhibit flaviviruses compared to arena-, bunya-, and hantaviruses [33]. For CHIKV, RBV also
demonstrated antiviral effects, although to a lesser extent when compared to interferon-α (IFN-α).
Nevertheless, a synergistic effect of RBV and IFN-α could be demonstrated in vitro [37,38]. Moreover,
the antiviral properties of RBV could be shown for members of the Picornaviridae: both foot-and-mouth
disease virus (FMDV) [39,40] and poliovirus (PV) [41] were inhibited by RBV (Figure 1).
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Figure 1. Antiviral properties of ribavirin (RBV) against RNA viruses. The broad-spectrum antiviral
properties of RBV have been reported for several RNA viruses. Depicted is a selection of the different
viral families and the respective genus and species. Viruses for which RBV was clinically approved are
highlighted with an orange box. Viruses for which lethal mutagenesis or increased mutation rate was
proposed as a possible RBV mechanism are indicated in blue.

While displaying broad antiviral activity against a wide range of RNA viruses, clinical data
on the application of RBV are still limited and restricted to only a few viruses. Initially, RBV was
considered as a treatment option for influenza A and B virus infections. However, clinical trials
showed inconclusive data; although some studies reported an improvement of symptoms of influenza
virus infection, results were generally inconsistent [42,43]. Due to lack of conclusive data from
clinical trials, coupled with the development of alternative antiviral therapies, RBV has never
been approved for the treatment of influenza virus. Nonetheless, Lassa virus, HCV, and RSV are
prominent examples of viruses for which RBV has received approval as an antiviral compound for
clinical application [44]. RBV was shown to be effective in treating patients suffering from Lassa
fever [45] and can be administered orally, intravenously, or as pre- or post-exposure prophylaxis [46].
In 1998, RBV was approved by the Food and Drug Administration (FDA) as a treatment option
for HCV [47] and was, in combination with pegylated IFN-α, the standard treatment for chronic
HCV infection for over two decades [48]. It has been shown that after failure of a monotherapy
with IFN-α alone, a combination therapy with RBV is more effective than subsequent repetition of
IFN-α monotherapy [49]. However, the sustained virological response (SVR) rates varied among
genotypes, and dual therapy was associated with severe side effects [48]. Nowadays, RBV is no longer
the standard-of-care anti-HCV therapy, and has been replaced by direct-acting antivirals (DAAs).
Initial trials for the treatment of RSV infection showed a reduced duration of hospitalization and
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requirement of mechanical ventilation [50,51]. A routine use of RBV in RSV-infected children is not
recommended; however, treatment can be considered for individual cases [50].

Taken together, since its first description as an antiviral in 1972, RBV has been shown to be active
against a broad range of RNA viruses. However, due to limited clinical trial data supporting its in vivo
efficacy, clinical applications are currently limited to a minority of viruses.

3. Multiple Modes of Action for Ribavirin

The broad antiviral effect of RBV against numerous RNA viruses suggests different modes of
action for the molecule; indeed, several antiviral mechanisms have been described in the past [29,52]
and are summarized in Figure 2A. Among the indirect mechanisms, a T-cell-mediated effect was
described for HCV (Figure 2A). Here, the balance of T helper cells was changed by switching from
a T helper type 2 phenotype to a T helper type 1 [29]. In a study by Hultgren et al., an inhibition of
in vitro T-cell proliferation as well as a change in secreted cytokines was observed [53]. Simultaneously,
alanine transaminase (ALT) levels in serum were reduced with no change in HCV titers [53].
Furthermore, an early switch of a T helper type 1 immune response to a T helper type 2 immune
response was associated with disease progression and the development of chronicity [54]. Thus,
RBV restored the T helper 1 phenotype needed for balanced expression and secretion of cytokines
produced from type 1 and 2 T helper cells [29]. Another example where an immunomodulatory
effect was described for RBV is in RSV infection. It was proposed that a T helper type 2 cytokine
response initiated the cascade leading to airway hyper-reactivity, which in turn can be blocked by RBV
treatment [55] (Figure 2A).

Another indirect mode of action for RBV is the inhibition of the cellular inosine monophosphate
dehydrogenase (IMPDH), which was already proposed in 1973 [56] (Figure 2A). After uptake into the
cell, RBV is phosphorylated to RBV mono-, di-, and triphosphate (RMP, RDP, and RTP, respectively).
RMP represents a good mimic of inosine monophosphate (IMP) and thereby inhibits the synthesis of
IMP to xanthosine monophosphate (XMP) by IMPDH. Consequently, no guanosine monophosphate
(GMP), and subsequently guanosine triphosphate (GTP), can be synthesized. In vitro, replication of
measles virus in Vero cells could be blocked by the addition of XMP, GMP, and to a lesser extent,
also IMP [56], which underlines the mode of action of RMP. A linear correlation of the depletion
of GTP pools and in vitro antiviral activity of RBV against human parainfluenza virus 3 and YFV
was confirmed [57]. Furthermore, the addition of guanosine to cell cultures restored the antiviral
activity of RBV against GB virus B (GBV-B) [58]. In contrast, in vitro experiments with Lassa virus
and Hantaan virus indicated that RBV did not primarily act via depletion of GTP pools for these
two viruses [59,60]. Moreover, experiments with influenza A virus showed no linear correlation of
intracellular GTP pools and viral replication with increasing concentrations of RBV [61]. Additionally,
the authors did not observe a complete restoration of influenza A virus replication after addition of
guanosine [61]. No effect of guanosine or GMP on the antiviral effect of RBV against influenza A virus
in mice could be demonstrated [62]. Overall, these data suggest that other mechanisms for the mode
of action of RBV exist.

The influence of RBV on the expression of IFN-stimulated genes (ISG) is controversial in the
literature. Most studies, both in vivo and in vitro, come from the HCV and RSV fields. RBV is able to
increase the antiviral effects of an IFN-based therapy and restore IFN-responsiveness in HCV-infected
livers [63–66]. Also, a direct, IFN-independent upregulation of ISGs has been proposed [67,68].
However, a recent study with HCV patients receiving RBV monotherapy showed a downregulation of
abnormally preactivated ISGs through chromatin remodeling and modulation of histone methylation,
resulting in a higher liver susceptibility to IFN by lowering the baseline expression of certain ISGs [69].
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Figure 2. Mode of action of ribavirin. (A) Several antiviral mechanisms for ribavirin have been
proposed and are depicted schematically. Among these are effects on the immune clearance, inhibition
of inosine monophosphate dehydrogenase (IMPDH), influence on interferon-stimulated genes (ISGs),
inhibition of viral replication, inhibition of capping, and RNA mutagenesis; (B) The mutagenic effect on
RNA is visualized in more detail. In altering the synthesis of (−)RNA and (+)RNA, RBV is randomly
incorporated in the nascent strands and subsequently leads to transition events causing C–U (a),
U–C (b) and G–A (c) or A–G substitutions. CTL: cytotoxic T lymphocyte; Th1: T helper cell, type 1;
Th2: T helper cell, type 2; TNFα: Tumor necrosis factor alpha; INFγ: interferon gamma; IMP: inosine
monophosphate; GMP: guanosine monophosphate; GTP: guanosine triphosphate.
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Some RNA viruses, as well as cellular mRNAs, harbor a 7-methylguanosine cap structure at
the 5′ end [70]. The RBV-induced reduction of GTP pools within the cell was proposed to also have
an effect on the capping efficiency of RNA viruses (Figure 2A). For example, DENV encodes for
a 2′-O-methyltranferase at the N-terminus of the NS5 polymerase, termed NS5MTaseDV. NS5MTaseDV

binds GTP and catalyzes the formation of a 5′ cap structure [71]. After RBV treatment, less GTP is
present and RTP was shown to compete for binding to the NS5MTaseDV, thereby blocking the synthesis
of the 5′ cap [71]. Likewise, RBV directly and strongly inhibited the viral mRNA guanylyltransferase
of vaccinia virus and thus prevented capping of nascent viral RNA [72,73]. However, this mechanism
is controversially discussed in literature [72–75], and not all RNA viruses display a 7-methylguanosine
cap structure at the 5′ end. Therefore, this mode of action cannot account exclusively for the observed
effects of RBV.

Another suggested mechanism is the direct impact of RBV treatment on the function of viral
polymerases (Figure 2A,B). Here, RTP is thought to directly inhibit viral RNA replication by being
recognized by the viral polymerase and thereby leading to chain termination or preventing the
binding of other nucleotides important for elongation [76]. In a cell-free system, RTP was shown to
inhibit the RNA polymerase of influenza A virus [77]. Moreover, inhibition of viral RNA synthesis of
vesicular stomatitis virus (VSV) in the presence of RMP, RDP, and RTP was described with the
triphosphorylated form being the least active [78]. This would argue against a mode of action
that is based on the incorporation of RTP in the nascent viral RNA in VSV. In the same study,
an inhibitory effect of RDP on La Crosse virus RNA synthesis was also reported [78]. Interestingly,
Crotty et al. could demonstrate that RTP is indeed employed by PV RdRp, and that integrated
RBV acts as mutagen [41]. Another example of an effect of RTP on the viral polymerase is the
case of reovirus. Rankin et al. proposed that RTP binds close to the catalytic site of the transcriptase,
thereby affecting the helicase function and subsequently lowering the binding affinity of viral RNA [79].
As a consequence, elongation of the viral RNA is inhibited. Interestingly, no effect on the capping
activity was demonstrated [79]. The nucleotide binding site of the polymerase is highly conserved
among HCV genotypes, supporting this proposed mechanism [76]. Indeed, in vitro analysis showed
a minor decrease of HCV replication [52,76,80]. However, in clinical trials with RBV monotherapy,
only a mild decrease of HCV replication was noticed [81,82].

In recent years, a mutagenic effect of RBV via its incorporation into newly synthesized RNA
genomes, leading to viral extinction was described for several RNA viruses (Figure 2B). In contrast
to DNA viruses, the major characteristic of RNA viruses is the occurrence of a cloud of related but
genetically distinct variants in infected patients, often referred to as a quasispecies. However, the term
“quasispecies” refers to a particular mutation–selection balance, with natural selection acting on the
group rather than on the individual [83,84]. It is not simply a surrogate for genetic heterogeneity [85].
While quasispecies behavior has been demonstrated experimentally in artificially expanded poliovirus
populations in infected mice [86], evidence is lacking for quasispecies’ behavior in many viruses,
including HEV. These diverse intra-host viral populations are the result of the lack of proofreading
activity of RdRp. However, due to this high variation, viral isolates are close to the error threshold,
which would lead to reduction in viral fitness [87]. Incorporation of RBV into newly synthesized
RNA genomes thereby increases the frequency of mutations in the population, pushing the virus
over an error threshold and resulting in viral extinction. This mechanism of action for RBV has been
described, at least in vitro, for FMDV [21], poliovirus [28], HCV [88], GBV-B [58], Hantaan virus [89],
and HEV [25,26].

Ever since the first reports by Sidwell et al. describing RBV as a broad-spectrum antiviral [27],
there have been multiple discussions about its mechanisms of action. Of course one has to always
keep in mind that in vitro data, where most of the proposed models arose from, cannot just be
translated into in vivo situations. Remarkably enough, monotherapy with RBV is only potently
effective against Lassa virus [45] and HEV [90,91]. Future studies should address questions regarding
the biocompatibility of RBV and its availability in the targeted liver to investigate if intracellular
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concentrations can account for the different proposed mechanisms—for example, to outcompete
cellular nucleoside triphosphates (NTPs) for misincorporation.

In summary, several mechanisms have been postulated for RBV activity. Among these, there are
indirect, immunomodulatory mechanisms and effects on IMPDH. Furthermore, mechanisms on the
virus itself were described by inhibition of the capping efficiency, the viral polymerase, and a mutagenic
effect on newly synthesized RNA genomes.

4. Hepatitis E Virus as Intra-Host Viral Populations

RNA viruses do not exist as a clonal population of genomes within the infected host, but rather
diversify into a swarm of related but non-identical genome sequences [83]. This heterogeneous viral
population—also referred to as mutant cloud, mutant swarm, or mutant spectra—is capable of better
adapting to changing environmental conditions and rapidly evolving, during passage from host to host,
due to its high heterogeneity. The concept of quasispecies was mainly developed by Manfred Eigen and
Peter Schuster [92]. By demonstrating viral heterogeneity for FMDV [93,94] and VSV [95,96] Domingo
and colleagues and Holland and colleagues were the first to extrapolate this concept to virology [84,97].

These viral populations are the product of very high replication rates found in RNA viruses,
coupled with a lack of an RdRp proofreading function. For HCV, it is estimated that between 1011 and
1012 new virions are produced in one infected individual per day [98,99]. Estimates for HEV do not
currently exist, although comparably high replication rates can be assumed. There is data on 3′-end
repair mechanisms identified in small RNA viral polymerases [100]. In coronaviruses, for example,
a 3′-to-5′ exoribonuclease (ExoN) domain within the nonstructural protein 14 was identified as being
essential for high-fidelity replication [101,102]; for HCV, pyrophosphorolytic and NTP-mediated
nucleotide excision activity of the NS5B RdRp have been described as viral mechanisms for removing
misincorporated bases [103,104]. Despite these reports, most RNA viruses, and most likely also HEV,
do not have any real proofreading capability, causing an error-prone replication of viral genomes.
Together with the short generation times, this results in highly diverse intra-host populations [96].

As expected, HEV also exists as a heterogeneous population within infected
individuals [25,26,105–107]. Early publications relied on the classical tools for detecting diversification
of viral genomes, including restriction fragment length polymorphism (RFLP) and haplotype
profiling [105,106] or clonal sequencing [107] to characterize HEV intra-host diversity. Recently,
next-generation sequencing (NGS) methods have been utilized to study the distribution of SNVs in
HEV genomes over time [25,26].

HEV and most other RNA virus populations exist in close proximity to the so-called genomic error
threshold, which defines a maximum error rate that still guarantees the maintenance and transmission
of the genetic information of the master sequence [83,84]. A replication and, most importantly,
mutation rate beyond this extinction threshold causes a sharp reduction in the efficiency of transmission
of the genetic information contained in the population master sequence to the next generation of viral
progeny, a phenomenon sometimes referred to as error catastrophe [108]: the majority of genomes
in the population are nonfunctional. Broad-spectrum antiviral agents like RBV can cause increased
mutation rates, and potentially can result in the extinction of the virus population in a process
called lethal mutagenesis [108]. However, the mutated viral intra-host populations can acquire
mutations accounting for drug resistance or decreased sensitivity to RBV as a direct consequence of the
boosted complexity of the mutational spectra. This has been shown for several viruses like HCV [20],
FMDV [21], PV [22], Sindbis virus [23], and also for HEV [24–26]. The dynamics of HEV populations
in patients under RBV therapy is not fully understood, but recent studies and reports from other RNA
viruses point to a dichotomy of opposing outcomes resulting from RBV therapy: RBV-induced lethal
mutagenesis resulting in viral extinction versus the accumulation of mutations beneficial to the virus
in the population, which can lead to therapeutic failure [25,26].

As a consequence of the emergence of RBV-resistant mutations and subsequent treatment
failure, clinicians could draw back on combination therapies to overcome or avoid this phenomenon.
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Possible combinations are one mutagen and a conventional antiviral drug or using several RNA
mutagens in combination or sequence as proposed by Perales and Domingo [109–111].

5. Hepatitis E Virus and Mechanisms of Ribavirin Action

HEV is one of the pathogenic viruses that can currently only be treated with RBV as an off-label
drug. IFN-α as an alternative therapy has been evaluated in small patient cohorts with limited success
and considerable side effects [112,113]. In addition, in vitro data suggests careful assessment of IFNs
when treating HEV [114,115]. Considering high mortality rates of over 20% for genotype-1-infected
pregnant women [116,117], the urgent need for extensive research in the field of novel anti-HEV
treatment regimens is required. Patients who fail to achieve sustained virological responses after
RBV therapy for HEV have no further treatment options: this is particularly of importance in a solid
organ transplant setting, as a reduction of immunosuppression beyond a certain level will lead to the
rejection of the allograft [118,119], and hepatitis caused by HEV cannot be impeded.

Recently, two independent studies were able to correlate RBV treatment failure with the emergence
of novel single-nucleotide variations in the viral genome during treatment [25,26]. Both research groups
identified a variant previously described, G1634R [24], as well as other new variants, K1383N, D1384G,
K1398R, V1479I, and Y1587F, all in the polymerase region of ORF1. In addition, Todt et al. also
determined nine additional SNVs in ORFs 2 and 3 [26]. In both studies, K1383N mutations emerged
in several patients; additionally, an overall increase in viral intra-host heterogeneity could be
shown [25,26]. The authors demonstrated significant increases in the number of sites exhibiting
SNVs, synonymous as well as nonsynonymous, in viral populations after the first administration of
RBV in nine patients. This phenomenon was observed for all ORFs of the HEV genome. Interestingly,
this increase in heterogeneity was reversible with a decline in the number of SNV sites when RBV
treatment was stopped. Strikingly, none of the described variants that became dominant in the viral
populations under treatment resulted in a decreased sensitivity to RBV when cloned into an HEV
subgenomic reporter replicon in tissue culture. Only G1634R mutations altered the viral replication
efficacy, increasing replication rates [24,26], while RBV sensitivity was unmodified [24,26,120].
Why RBV treatment fails in some patients, while others are able to clear the virus under RBV
monotherapy, remains an open question.

RBV has been shown to block HEV replication through a depletion of cellular GTP pools in
cell culture model systems [121], in addition to the strong mutagenic effect of RBV on the HEV
genome in vivo described above. RBV inhibits the IMPDH, thus causing a two-fold reduction of
the intracellular GTP pools and increasing CTP and UTP concentrations at the same time [122,123].
HEV genome replication is a cyclic process of alternating synthesis of negative-strand RNA and
positive-strand RNA [124]. During the replication process, the extrinsically administered, RTP is
randomly incorporated into the nascent negative-stranded RNA as a result of pairing with either
of the pyrimidine bases cytidine or uracil (Figure 2B, upper panel). This negative-stranded
antigenome RNA then serves as a template for subsequent production of positive-stranded genomic
RNA. The RdRp subsequently incorporates, again randomly, a cytidine or uracil at RBV residues
located in the antigenome template (Figure 2B, middle panel). These stochastic incorporations
lead to nucleotide substitutions in the newly synthesized viral genomes. Additionally, RBV will
also be incorporated in the positive-stranded RNA genome, leading to increased amounts of
replication-defective viral genomes packaged into the capsid, ultimately leading to an increase in
frequency of replication-defective virions. Additionally, new antigenome templates can be produced
from defective positive-stranded genomes, so misincorporations are amplified in the replication process
(Figure 2B, lower panel). This results in the fixation of transitional substitutions in nascent RNAs.
Transitional purine-to-purine (G<>A) or pyrimidine-to-pyrimidine (C<>T) nucleotide substitutions
are preferentially enriched during RBV monotherapy, leading to the observed synonymous exchanges
as well as to the amino acid replacements favorable for the survival of the viral population [25,26].
Whether RBV also inhibits the HEV methyltransferase comparably to the direct inhibition of the
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vaccinia virus guanylyltransferase (see above), or if the RTP is incorporated as a cap analog [72,73]
(thus impacting correct translation) has not been investigated yet.

The mutagenic effect of RBV-based therapy can have divergent effects on HEV populations,
which may impact the therapy success. On the one hand, RBV increases the mutation rate in the viral
genome, driving the population towards its extinction threshold. In contrast, the increased variability in
the viral population can result in selection of variants with improved replication fitness which become
dominant in the viral population and are associated with therapeutic failure. These advantageous
variants could be (i) a downregulation of the replication machinery, thus preventing the accumulation
of more mutations, as shown from in vitro data when reverse engineering the K1383N variant into
HEV cell culture systems [25], and (ii) an increase in viral polymerase fidelity as hypothesized by
Debing et al. for the K1383N variant—a mutant with a substitution in the F1-motif of the RdRp—which
could hinder the incorporation of RBV into the viral genome. In fact, the lab of Esteban Domingo was
able to dissect a multistep process of viral adaption to a mutagenic nucleoside analog in FMDV that
led to an extinction escape by changing the fidelity of the polymerase [125].

6. Conclusions

HEV is a life-threatening infection when immunosuppressed individuals fail to achieve an SVR
during RBV treatment. Currently, clinicians do not have alternative therapy regimens available.
Recent studies have suggested that the heterogeneous viral population is able to acquire SNVs that
decrease RBV sensitivity [25,26]. Their data supports a conclusion whereupon the mutagenic effect of
the broad-spectrum antiviral agent leads to increased heterogeneity in the intra-host viral population
introducing a race between the virus trying to gain and accumulate beneficial variations and the
mutagenic potential of RBV intended to drive the virus beyond an error threshold and thus into lethal
mutagenesis resulting in viral extinction.
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