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Abstract: Southern rice black-streaked dwarf virus (SRBSDV), a new member of the genus 

Fijivirus, is a double-stranded RNA virus known to lack poly(A) tails. We now showed that 

some of SRBSDV mRNAs were indeed polyadenylated at the 3' terminus in plant hosts,  

and investigated the nature of 3' poly(A) tails. The non-abundant presence of SRBSDV 

mRNAs bearing polyadenylate tails suggested that these viral RNA were subjected to 

polyadenylation-stimulated degradation. The discovery of poly(A) tails in different families 

of viruses implies potentially a wide occurrence of the polyadenylation-assisted RNA 

degradation in viruses. 
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1. Introduction 

RNA of many eukaryotic viruses, ranging from DNA to RNA viruses, have 3' poly(A) tails [1], 

which are synthesized not only posttranscriptionally, but also by direct transcription from the poly(U) 

stretched template strand [2–5]. Regardless of synthesis mechanism used, the viral poly(A) tails have 

been considered to play crucial roles in RNA stability and translation, resembling roles of the stable 

poly(A) tails in eukaryotic mRNA [6,7]. Until recently, the function of poly(A) tails in destabilizing 

the viral RNA was revealed. The viral mRNA containing poly(A) or poly(A)-rich tails were detected 

in HeLa cells infected with Vaccinia virus (a double-stranded [ds] DNA virus) [8]. Furthermore, the 

polyadenylate tails were also found in Tobacco mosaic virus (TMV), Cucumber mosaic virus (CMV), 

Odontoglossum ring-spot virus (ORSV), Cucumber green mottle mosaic virus (CGMMV), Tobacco 

rattle virus (TRV), Turnip crinkle virus (TCV) and Tobacco necrosis virus (TNV) [9], seven 

positive-strand RNA viruses known to lack poly(A) tails and terminate 3'-termini with tRNA-like 

structure (TLS) or non-TLS heteropolymeric sequence [6]. The presence of poly(A) tails suggests that 

these viral RNAs are subjected to poly(A)-stimulated degradation. In this paper, the poly(A) and 

poly(A)-rich tails were first reported at the 3'-termini of the mRNAs of a dsRNA virus, Southern rice 

black-streaked dwarf virus (SRBSDV), generally recognized to lack poly(A) tails. 

SRBSDV has been proposed as a new member in the genus Fijivirus of the family Reoviridae [10], 

which causes a serious rice disease in South China and Vietnam in recent years [11,12]. SRBSDV is 

most closely related to but distinct from Rice black-streaked dwarf virus (RBSDV), which is also a 

member of the Fijivirus genus [10,13]. SRBSDV genome contains 10 segments, named as S1-S10 in 

the descending order of molecular weight. Comparison of 10 genomic segments of SRBSDV with their 

counterparts in RBSDV suggests that SRBSDV encodes 13 open reading frames (ORFs) and possesses 

6 putative structural proteins (P1, P2, P3, P4, P8, and P10) and 7 putative nonstructural proteins (P5-1, 

P5-2, P6, P7-1, P7-2, P9-1 and P9-2) [13]. At present, the functions of partial genes have been studied. 

The P6, encoded by S6, has been identified as an RNA silencing suppressor [14]. P7-1 induces the 

formation of tubules as vehicles for rapid spread of virions through basal lamina from midgut 

epithelium in its vector, the white-backed planthopper [15]. P9-1 is essential for viroplasm formation 

and viral replication in non-host insect cells and vector insects [16]. However, no reports are available 

to date to assign functions to the proteins encoded by other ORFs. The putative function of these 

proteins can only be postulated based on their RBSDV homologs. P1, P2, P3 and P4 are putative 

RNA-dependent RNA polymerase (RdRp), core protein, capping enzyme and outer-shell B-spike 

protein, respectively [13,17]. P8 and P10 are putative core and major outer capsid proteins, 

respectively [13,18]. SRBSDV mRNAs were considered to lack of poly(A) tails at the 3'-ends. 

However, in previous experiments, all 13 ORFs of the 10 RNA segments could be amplified via 

RT-PCR using oligo(dT)18 to prime cDNA synthesis as templates [19], suggesting that each SRBSDV 

mRNA might bear a potential poly(A) tail at the 3' terminus. In this paper, we confirmed that some of 

SRBSDV mRNAs were indeed polyadenylated at the 3' terminus in plant hosts. 
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2. Materials and Methods 

2.1 Virus and RNA Extraction 

SRBSDV isolate used in the experiment was obtained from rice and maize plants showing typical 

dwarf symptoms with white waxy galls in 2014 in 8 counties of 4 provinces in China, including Yunnan, 

Guizhou, Hunan, and Jiangxi provinces. Total RNA from infected rice and maize leaf and stem tissue 

were extracted following the standard protocol of TRIzol reagent (Invitrogen, Carlsbad, CA, USA). 

The isolate was identified as SRBSDV excluding RBSDV by reverse transcription RT-PCR using 

specific primers for distinguishing the two viruses [20]. 

2.2 Rapid Amplification of cDNA End (RACE) PCR 

To confirm characterization of the polyadenylate tails associated with viral mRNAs, the 3' Rapid 

Amplification of cDNA End (RACE) PCR was performed using BD SMART™ RACE cDNA 

Amplification Kit (TaKaRa, Dalian, Liaoning, China). In this case, reverse transcription reactions were 

performed using total RNA (respectively from infected rice and maize) as templates and adapter-oligo(dT) 

primer (P1) (Table 1) to prime first cDNA strand synthesis. 10 specific upstream primers and 10 nested 

primers respectively corresponding to SRBSDV each mRNA were designed according to China isolate 

HuNyy sequence information (GenBank No. JQ034348-JQ034357) (Table 1). Each of upstream primers 

was paired with adapter primer P2 (as downstream primer) for the 1st PCR amplification using 

PrimeSTAR HS DNA polymerase (TaKaRa) and cDNA as template. The PCR products from the 1st 

PCR reaction were subjected to a subsequent the 2nd PCR run with nested primers and adapter primer 

P3 (Figure 1A). The amplified products were analyzed by 1.5% agarose gel electrophoresis, and the 

resulting bands, in agreement with the predicted sizes, were individually cloned into pGEM-T Easy 

vector (Promega, Madison, USA) and subjected to sequence analysis. Approximately 5–10 clones from 

each isolate were randomly selected and sequenced. 

Table 1. PCR primers used in the experiment. 

Primer Sequence (5'→3') Target 
Reference  

GenBank No. 

S1-F TCAGTGCTCAAGGCTCACAAGATTGAAG 
S1-mRNA JQ034348 

S1-nested-F ATTCATGAACTTAATGGGCGCAGAGTG 

S2-F CGGCACATCTTCACCCGCAGACTTC 
S2-mRNA JQ034349 

S2-nested-F CTGATGAATTGCTCGACCGTTACATTAG 

S3-F GATGGGATTAGCGAAATTGCATTTGGAG 
S3-mRNA JQ034350 

S3-nested-F TGCATGGACATTCATTTTCAGATCAAG 

S4-F TAGATTTTGTTATTCCCGGTGTTCGAGAAG 
S4-mRNA JQ034351 

S4-nested-F AGTGCGGATGTGGCTGCAGATAAATTC 

S5-F TGTGATCAGTGCCATGTCCACTAGCATC 
S5-mRNA JQ034352 

S5-nested-F AATCATCCCTGTGCGCTTCGACTTAG 

S6-F CGATACTCTGATGAAACAGGCGAAGCTC 
S6-mRNA JQ034353 

S6-nested-F TGAGAACCAATGGAGCGCGTATGGA 

S7-F ACTACTTCAGCTGAAGATGTCGACGCAC S7-mRNA JQ034354 
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Table 1. Cont. 

Primer Sequence (5'→3') Target 
Reference  

GenBank No. 

S7-nested-F TTGGCAAGCGATGGAAAGAAGATGG   

S8-F CGTATTGGACGATGAGCGCAACTTTG 
S8-mRNA JQ034355 

S8-nested-F TGAATTAGCGTTCGTACCTCATTCGCTG 

S9-F TTGGACTTGGCTAACTACGTTCGACAAC 
S9-mRNA JQ034356 

S9-nested-F GGAATTGGATGATCGAGTTGAAAAATTGG 

S10-F CTCCCTGCATCGATTACATCAAACTTGG 
S10-mRNA JQ034357 

S10-nested-F GCCAACAATTTATTGAAGGCGGATCG 

S10-NVP TTCCATCTCTATCATTCAGTCAAG S10-mRNA  

Adapter-oligo(dT) (P1) 
GCTGTCAACGATACGCTACGTAAC 

GGCATGACAGTG(T)18VN 
Poly(A) tails  

Adapter primer P2 GCTGTCAACGATACGCTACGTAACG Adapter  

Adapter primer P3 CGCTACGTAACGGCATGACAGTG Adapter  

3. Results and Discussion 

After 3' RACE, the 3'-termini sequences of viral mRNAs were obtained, and the results indicated that 

SRBSDV mRNAs indeed possessed ploy(A) or poly(A)-rich tails in plant hosts. Taking S10-mRNA as 

an example to analyze the nature of poly(A) and poly(A)-rich tails, a total of 42 polyadenylated viral 

mRNA molecules were cloned from rice and maize plants. In addition to 10 mRNAs bearing poly(A) 

tails exclusively comprised of adenosines, a large number of mRNAs possessed poly(A)-rich tails 

(Figure 1B). Notably, the heterogeneity of these poly(A)-rich tails was confined to their 5' ends, and 

they all terminated in homogenous adenosines (17–23 nt) (Figure 1B), which was possibly due to the 

3' bias of oligo(dT)-dependent reverse transcription. Most poly(A)-rich tails were not at the 

downstream of S10-mRNA entire 3' untranslated region (UTR), and replaced partial 3' UTR sequences. 

For example, the tail of isolate LX-1 replaced 3' UTR sequence of S10-mRNA from the nucleotide 

1753 (Figure 1B). In some poly(A)-rich tails (isolate JH-1, LX-1, PT-1, PT-5, YJ-1 and YJ-4), there 

were more non-viral nucleotides (35–208 nt) preceded polyadenylates, which was considered to 

originate from host plants. In order to further certify the presence of poly(A) tails and exclude 

non-specificity of reverse transcription reaction, these non-viral nucleotides was used to design 

downstream primers (e.g., S10-NVP) to perform PCR with upstream primer from S10 (Figure 1A), and 

the result of amplification was positive (data no shown), indicating sufficiently the existence of mRNA 

bearing ployadenylate tails. Moreover, poly(A) or poly(A)-rich tails were also discovered at the 3'-ends 

of viral S1-S9 mRNAs (Figure 2). All amplified products based on 3' RACE were weak (data no 

shown), implying that a small fraction of SRBSDV mRNAs was polyadenylated. 
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(B) 

Figure 1. The 3' Rapid Amplification of cDNA End (RACE) detection of the polyadenylated 

southern rice black-streaked dwarf virus (SRBSDV) S10-mRNA. (A) Schematic diagram of 

the primers in S10-mRNA. The primers are displayed as arrowheads (Table 1), and the gray 

box, black box and red box indicate respectively partial ORF, 3' UTR and non-viral 

nucleotides in S10-mRNA. (B) Nature of 3' polyadenylate tails associated with S10-mRNA 

in plant. The poly(A) and poly(A)-rich tails of S10-mRNA are schematically presented, and 

vertical dashed lines with numbers indicate the exact positions of polyadenylate tails. 

Nucleotide compositions of the tails are shown, and long non-viral nucleotides are shown 

with Xn. Isolate names in parentheses, DY: Duyun, PT: Pingtang, Guizhou province;  

JH: Jianghua, Hunan province; KM: Kunming, LC: Longchuan, YJ (YJM): Yingjiang,  

ZT: Zhaotong, Yunnan province; LX: Luxi, Jiangxi province. The number after abbreviation 

is the numbering of isolate clones. YJM isolates are from maize, and others are from rice. 
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Figure 2. Nature of 3' polyadenylate tails associated with SRBSDV S1-S9 mRNAs in plant. 

The poly(A) and poly(A)-rich tails of S1-S9 mRNAs are schematically presented respectively, 

and vertical dashed lines with numbers indicate the exact positions of polyadenylate tails. 

Nucleotide compositions of the tails are shown, and long non-viral nucleotides are shown 

with Xn. Isolate names in parentheses, KM: Kunming (from rice), YJM: Yingjiang (from 

maize), Yunnan province. The number after abbreviation is the numbering of isolate clones. 

To our knowledge, dsRNA viruses are lack of poly(A) tails at the 3'-ends of the genome segments 

and their mRNAs. Interestingly, in this paper, we demonstrated that some viral mRNA molecules were 

polyadenylated at their 3'-terminus in plant cells infected with SRBSDV (a dsRNA virus). Besides their 

crucial roles for mRNA stability and translation efficiency, the polyadenylate tails were recently 

described as involved in viral RNA degradation [8]. The Poly(A)-stimulated RNA degradation occurs 

throughout the prokaryotic and eukaryotic cells [21–26]. Generally, the degradation process comprises 

three sequential steps: endonucleolytic cleavage, addition of polyadenylate tails to the cleavage 

products, and exonucleolytic degradation [21,26,27]. The transient poly(A) or poly(A)-rich stretches 

can act as landing sites to recruit 3'-5' exoribonucleases for further degradation [21,22,26,27], which 

might be one of ancestral roles of polyadenylation. This evolutionarily conserved mechanism has been 

confirmed to play critical roles in rapidly removing redundant RNAs in cells, thereby maintaining the 

stability of gene expression [26,28,29]. 

In this study, the non-abundant presence of SRBSDV mRNAs bearing polyadenylate tails was 

considered to represent degradation intermediates of an RNA decay pathway, rather than to convey 

protection to mRNAs. Recently, a dsDNA virus, Vaccinia virus, was linked with the conserved RNA 
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degradation mechanism, and non-abundant, fragmented viral mRNAs bearing poly(A) or poly(A)-rich 

tails were detected in human cells infected with this virus [8]. Such polyadenylation-stimulated RNA 

degradation was also found in seven positive-strand RNA viruses from distinct virus families and 

genera known to lack poly(A) tails [9]. The discovery of poly(A) tails in three different types of 

viruses (positive-strand RNA virus, dsDNA and dsRNA virus) implies potentially a wide occurrence 

of the polyadenylation-assisted RNA degradation in viruses, which might represent a yet-unknown 

interaction between virus and host. 
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