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Abstract: The Omicron variant of SARS-CoV-2, characterized by multiple subvariants including BA.1,
XBB.1.5, EG.5, and JN.1, became the predominant strain in early 2022. Studies indicate that Omicron
replicates less efficiently in lung tissue compared to the ancestral strain. However, the infectivity
of Omicron in the gastrointestinal tract is not fully defined, despite the fact that 70% of COVID-19
patients experience digestive disease symptoms. Here, using primary human colonoids, we found
that, regardless of individual variability, Omicron infects colon cells similarly or less effectively than
the ancestral strain or the Delta variant. The variant induced limited type III interferon expression
and showed no significant impact on epithelial integrity. Further experiments revealed inefficient
cell-to-cell spread and spike protein cleavage in the Omicron spike protein, possibly contributing to
its lower infectious particle levels. The findings highlight the variant-specific replication differences
in human colonoids, providing insights into the enteric tropism of Omicron and its relevance to long
COVID symptoms.

Keywords: SARS-CoV-2 Omicron BA.1; SARS-CoV-2 WA1; SARS-CoV-2 Delta; human primary
colonoids; intestinal infection; interferon responses; intestinal permeability; spike processing

1. Introduction

The Coronavirus Disease 2019 (COVID-19), caused by the Severe Acute Respiratory
Syndrome Coronavirus 2 (SARS-CoV-2), has and continues to contribute to illness and death
on a global scale [1]. Notably, the emergence of multiple variants of concern (VOCs) with
mutations in their spike protein, enhancing their interaction with the human angiotensin
converting enzyme 2 receptor (ACE2), has added complexity to the ongoing pandemic.
Following the four VOCs—Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), and Delta (D.1,
B.1.617.2), Omicron B.1.1.529 (comprising subvariants such as BA.1, XBB.1.5, and the recent
JN.1) ascended to predominance in early 2022, instigating renewed public apprehension.

The Omicron variant, characterized by an unprecedented 50 mutations, including over
30 within the spike protein compared to the ancestral strain, exhibits distinctive genomic
features contributing to its attenuated replication in the lung parenchyma relative to the
ancestral SARS-CoV-2 and other variants [2]. Notably, several of these mutations have
been associated with compromised neutralization of Omicron variants by sera from both
pre-Omicron convalescent individuals and vaccinated individuals, resulting in a reduc-
tion in the efficacy of antibodies utilized in clinical settings [3–6]. Additionally, Omicron
demonstrates an increased affinity for the ACE2 receptor [7]. Intriguingly, there is evi-
dence suggesting that Omicron may preferentially utilize the endosomal entry pathway
over the TMPRSS2-mediated plasma membrane fusion pathway, thereby prompting fur-
ther inquiries into Omicron’s tropism and infectivity [8,9]. These multifaceted molecular
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characteristics of the Omicron variant underscore the need for comprehensive investi-
gations to elucidate its distinct behavior and its implications for the dynamics of the
COVID-19 pandemic.

COVID-19 induces dysregulation of the gastrointestinal tract (GI), leading to abdom-
inal symptoms. Up to 70% of COVID-19 patients manifest at least one GI symptom, such
as nausea, vomiting, and diarrhea. Furthermore, viral RNA has been detected in stool
specimens for up to 7 months post-clearance of the virus from the lungs [10]. Thus, it is
crucial to understand the virulence and host immune responses of Omicron in various
target organs, including the GI tract. Given the pivotal role of ACE2 in facilitating cellu-
lar entry for SARS-CoV-2, various cell types expressing ACE2 are deemed susceptible
to viral infection and serve as potential target cells. Consequently, variations in ACE2
expression levels may influence the route of viral invasion and the pathogenicity of the
virus. Previous research, including our own, has demonstrated elevated expression lev-
els of ACE2 and TMPRSS2/4, the host receptor and proteases essential for SARS-CoV-2
cellular entry, respectively, in the human small and large intestines [11–13]. Notably, the
intestine, rather than the lung, has been identified as the organ with the highest expres-
sion levels of the viral receptor ACE2, underscoring the significance of investigating
intestinal involvement in SARS-CoV-2 infection [14,15]. This finding correlates with the
natural enteric pathogenicity observed in several animal coronaviruses (CoVs), which
are known to cause gastrointestinal (GI) diseases and spread via the fecal–oral route [16].
Furthermore, considerable quantities of SARS-CoV-2 RNA have been detected in stool
specimens from COVID-19 patients, although the isolation of infectious virus particles
from feces has shown variability across studies [17,18]. Nevertheless, the presence of
SARS-CoV-2 RNA in fecal samples raises concerns regarding the potential for fecal–oral
transmission of the virus.

Additionally, GI disorders may persist beyond the acute phase of infection, contribut-
ing to the post-acute sequelae of COVID-19, known as long COVID, which includes symp-
toms such as fatigue, post-exertional malaise, memory impairment, and other neurocogni-
tive deficits [19–21]. Notably, studies have reported a reduction in serotonin production,
primarily synthesized in the intestine, following SARS-CoV-2 infection, resulting in mem-
ory impairment in a murine model [21]. Intriguingly, analyses of published metabolomics
datasets from various COVID-19 patient cohorts have consistently demonstrated a marked
depletion in serotonin levels among the metabolites identified, which reinforces the role of
the GI tract in SARS-CoV-2 infection [22].

In this study, we show that in the context of donor intrinsic genetic heterogeneity,
the SARS-CoV-2 Omicron variant infects human colonoids similarly, if not less effectively,
than the ancestral WT (WA1) strain or the Delta variant. This investigation establishes a
foundational understanding for subsequent studies aimed at elucidating the mechanisms
governing intestinal infection and pathogenesis by the Omicron variant.

2. Materials and Methods

All study procedures and reagents were approved by the Washington University IRB
(#202011003). Primary colon epithelial cells (colonoids) were derived from healthy donor
biopsies and cultured as previously described [23]. Each SARS-CoV-2 isolate and passage
was confirmed by RNA sequencing (Supplemental Table S1). Supernatant from infected
transwell colonoid monolayers was titrated by focus forming assays. Fixed monolayers
were stained for SARS-CoV-2 nucleocapsid (N), actin, and DAPI prior to confocal imaging.
Expression levels of SARS-CoV-2 N, GAPDH (Glyceraldehyde 3-phosphate dehydroge-
nase), interferon lambda (IFNL3), interferon beta (IFNB), and MX1 were quantified by
RT-qPCR (primers and probes in Supplemental Table S2). HEK293-hACE2-TMPRSS2 cells
were transfected with plasmids encoding variant spike proteins and plasmids encoding
GFP and imaged at 24 h post-transfection for syncytia formation. HEK293-hACE2 cells
were transfected with plasmids encoding variant spike proteins and plasmids encoding
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empty vector control or V5-tagged host proteases TMPRSS2 or furin and analyzed for spike
cleavage using Western blot at 24 h post-transfection.

Colonoid culture, infection, and harvesting: Primary intestinal epithelial cells were derived
from the colon biopsies of four patients (211A, 235A, 251A, 262A) (Table S3). Briefly, each
biopsy was minced with scissors before digestion with dispase. The tissue was strained
through a 70 µm filter and cells were embedded in Matrigel (3D culture, Sigma, Cat:
CLS354234-1EA, St. Louis, MO, USA) and maintained in 50% L-WRN conditioned medium
supplemented with 10 µM each Y-27632 (R&D Systems, Cat: 1254/10 mg, Minneapolis,
MN, USA) and SB431542 (R&D Systems, Cat: 1614/10 mg), as described previously [24].
For 2D cultures, transwell (Corning, Cat: 3470, Corning, NY, USA) devices with polyester
membranes with 0.4 µm pore size were pre-treated with 1:10 Matrigel in PBS for 30 min at
37 ◦C. Colonoids were seeded into transwells and maintained for 7 days in 50% L-WRN
conditioned medium containing 10 µM Y-27632. Differentiation was performed using
Dulbecco’s modified Eagle medium/F12 (Sigma, Cat: D6429-500ML) supplemented with
20% FBS (Sigma, Cat: F6178), L-glutamine, penicillin/streptomycin, and 10 µM Y-27632
for 3 days before infection. Infections were conducted apically at an MOI of 0.01 for 1 h at
37 ◦C, after which the viral inoculum was removed, replaced with differentiation media,
and incubated for 24 h. For viral RT-qPCR quantification, cell lysates were harvested in
TRIzol and RNA was extracted according to the manufacturer’s protocol.

Viral propagation and sequencing: All virus passages were conducted in Vero E6 TM-
PRSS2 cells, as previously described [25]. Viral stock was harvested in TRIzol and RNA
was extracted according to the manufacturer’s protocol. SARS-CoV-2 sequences were
enriched using the ARTIC v4.1 primer set for SARS-CoV-2 viral enrichment and sequenced
on the Illumina NovaSeq platform. Output sequences were trimmed and aligned with
the SARS-CoV-2 reference (NC_045512.2) by The Genome Technology Access Center at
Washington University in St. Louis.

Immunofluorescence: Transwells were fixed in 4% paraformaldehyde (PFA) for 20 min
at room temperature and stained with anti-SARS-CoV-2 N antibody (40588-T62; Sino
Biological, Beijing, China), phalloidin (Alexa Fluor 647), and DAPI for immunofluorescence
confocal imaging.

Focus Forming Assay: Vero E6-TMPRSS2 cells were seeded at 2.5 × 104 cells/well
in 96-well plates and grown overnight in Dulbecco’s Modified Eagle Medium (Thermo
Fisher, Waltham, MA USA) supplemented to contain 10% heat-inactivated fetal bovine
serum, 10 mM HEPES, and 100 U/mL penicillin/100 and U/mL streptomycin to reach
confluency. Cells were transferred to a biosafety level 3 (BSL-3) facility for infection
with viral supernatant collected from the apical compartment of infected transwells.
Cells were incubated with 100 µL of viral supernatant at 37 ◦C for 1 h, after which viral
supernatant was removed, replaced with 100 µL of a prewarmed overlay mixture of
2X MEM + 4% FBS with 2% methylcellulose in a 1:1 ratio, and incubated for 30 h at
37 ◦C [25]. After overlay removal, cells were washed 6 times with PBS and fixed with 4%
PFA for 20 min, before removal of PFA and replacement with PBS. Plates were removed
from the BSL-3 facility and permeabilized with PBS + 0.1% Triton-X100 for 10 min at
room temperature, washed twice with PBS + 0.1% Tween-20 (PBST), and blocked with
PBST with 1% BSA and 10% FBS for 1 h at room temperature. Upon removal of the
blocking buffer, cells were incubated overnight at 4 ◦C with a primary anti-SARS-CoV-2
N (40588-T62; Sino Biological) antibody (1:1000 dilution in PBST + 1% BSA). Cells were
later washed in PBST, incubated for 45 min at room temperature with secondary Goat
anti-Rabbit IgG (Heavy chain) Superclonal Recombinant Secondary Antibody, HRP
(Thermo Fisher Scientific A27036) (1:1000 dilution in PBST + 1% BSA), washed with
PBST, and developed with AEC substrate kit, Peroxidase (HRP) and methods (Vector
Laboratories SK-4200, Newark, CA, USA). Foci were quantified under an ECHO Revolve
microscope (Discover Echo, San Diego, CA, USA).

Syncytia assay: HEK293-hACE2-TMPRSS2 cells were transfected using Lipofectamine
3000 reagent and manufacturer’s methods (Thermo Fisher L3000015) with plasmids en-
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coding variant spike proteins (WT pTwist-SARS-CoV-2 ∆18, plasmid #164436; pTwist-
SARS-CoV-2 ∆18 B.1.617.2v1, plasmid #179905; pTwist-SARS-CoV-2 ∆18 B.1.1.529, plasmid
#179907, all acquired from Addgene, Watertown, MA, USA) and plasmids encoding EGFP-
N1 and imaged at 24 h post-transfection for syncytia formation.

Spike cleavage assay: Plasmids encoding variant spike proteins (WT pTwist-SARS-CoV-
2 ∆18, plasmid #164436; pTwist-SARS-CoV-2 ∆18 B.1.617.2v1, plasmid #179905; pTwist-
SARS-CoV-2 ∆18 B.1.1.529, plasmid #179907) and plasmids encoding either EGFP-N1
(control), pcDNA3.1/nV5-TMPRSS2 [12], or pLenti6.3/V5-furin host proteases (generated
in-house via Gateway cloning) were co-transfected into HEK293-hACE2 cells. Lipofec-
tamine 3000 reagent and manufacturer’s methods (Thermo Fisher L3000015) were used for
all transfections. At 24 h post-transfection, cells were washed with PBS, lysed with RIPA
buffer (Thermo Fisher Scientific 89901) supplemented with Halt Protease Inhibitor Cocktail
(100X) (Thermo Fisher Scientific 78429), and incubated on ice for 10 min. Cell lysates were
then subjected to centrifugation at 13,500 RPM for 10 min at 4 ◦C to remove cell debris and
nucleus. Protein samples were boiled in 2X Laemmli Sample Buffer (Bio-Rad, San Francisco,
CA, USA) containing 5% β-mercaptoethanol at 95 ◦C for 5 min. Prepared samples were run
in 4–12% Mini-PROTEAN TGX Precast protein gels (Bio-Rad 4561085) and transferred onto
nitrocellulose membranes using the Bio-Rad wet/tank blotting system. Membranes were
blocked in 5% BSA in TBS + 0.1% Tween-20 (TBST) at room temperature before incubation
with primary antibodies at 4 ◦C overnight. Membranes were then washed three times
with TBST and incubated in secondary antibodies diluted in 5% BSA in TBST at room
temperature for 1 h. Finally, membranes were washed with TBST and visualized by using
ChemiDoc imaging system (Bio-Rad).

Primary antibodies: SARS-CoV-2 Spike S2 Rabbit pAb (Sino Biological 40590-T62),
SARS-CoV-2 Spike S1 RBD Rabbit pAb (Sino Biological 40592-T62), V5-Tag Rabbit mAb
(Cell Signaling Technology 13202S, Danvers, MA, USA), and GAPDH (BioLegend 631402,
San Diego, CA , USA). Secondary antibodies: Goat anti-Rabbit IgG (Heavy chain), Superclonal
Recombinant Secondary Antibody, HRP (Thermo Fisher Scientific A27036).

Statistical Analysis: All data were subjected to the Shapiro-Wilk test for normality
and were subjected to parametric or non-parametric analysis of variance (ANOVA) as
appropriate. Statistics were performed using GraphPad Prism 10.

3. Results
3.1. Omicron Variant SARS-CoV-2 Infects Human Colon-Derived Organoids

Healthy donor-derived colonoids were seeded onto 2D transwell monolayers, differen-
tiated, and apically infected by the SARS-CoV-2 WA1 strain to determine the optimal time
points for intracellular viral RNA measurement. We found that for colonoids obtained from
two individual donors (211A and 251A), the levels of viral RNA increased by 1–2 logs within
the first 24 h and represented the majority of viral replication (Supplemental Figure S1).
In the next set of experiments, we extended our analysis to colonoids derived from four
individual donors and different SARS-CoV-2 strains including WT, Delta, or Omicron BA.1
using an MOI of 0.01 and a 24 h infection period. Compared to WT and Delta, Omicron
showed significantly increased replication as measured by intracellular viral RNA levels in
211A and 251A (Figure 1). Despite inter-individual differences in infectivity with each vari-
ant, a consistent trend was observed in the colonoids derived from donor 262A (Figure 1).
To corroborate active replication, we conducted immunofluorescence to visualize intracel-
lular SARS-CoV-2 N antigens in infected colonoids (Figure 2). We additionally performed a
focus-forming assay to measure the amount of infectious SARS-CoV-2 progenies secreted
into the apical colonoid supernatants. Intriguingly, Omicron produced comparable (211A
and 251A) or numerically lower levels of infectious viruses than Delta and WT (235A and
262A) (Supplemental Figure S2). This higher ratio of viral RNA to infectious virus titer
suggests that Omicron is potentially less infectious in the intestine in some individuals than
WT and Delta.
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Figure 1. SARS-CoV-2 RNA increase in donor derived colonoids. Colonoid lines in 2D transwell
monolayers derived from four donors were infected with indicated SARS-CoV-2 variants at an MOI of
0.01. RNA was harvested at 24 h post infection and SARS-CoV-2 N level was quantified by RT-qPCR
and normalized to GAPDH. (Mean with SEM (standard error of the mean)), one-way ANOVA with
Tukey’s multiple comparisons test. ** p < 0.01, *** p < 0.001).

3.2. Interferon Responses in Human Colonoids to SARS-CoV-2 Variants

Type I and III interferons (IFNs) are induced in response to various pathogens, playing
an important role in initiating the expression of interferon-stimulated genes (ISGs) crucial
for antiviral immune responses at the mucosal barrier. In the context of COVID-19, a
correlation has been identified between its severity and deficiencies in type I IFN, while
stronger type I IFN responses are associated with asymptomatic infection [26]. Notably,
treatment with type III interferon has been reported to accelerate the clearance of SARS-CoV-
2 [27]. To investigate the type I and type III responses in human colonoids, we challenged
them with multiple SARS-CoV-2 variants and subsequently quantified the RNA expression
levels. We found that Omicron induced variable, but statistically similar, levels of type III
IFN (IFNL3) expression, compared to the other SARS-CoV-2 variants, but not different from
the mock infected control (Figure 3A). There was a minimal induction of type I IFN (IFN-β)
and MX1, a canonical ISG highly induced by both type I and III IFNs, at 24 h post-infection
(Figure 3B,C). This may be attributed to a dampened IFN response at the early stages of
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SARS-CoV-2 infection, as evidenced by detectable IFN-β and MX1 expression at 48 and
72 h post-infection (Supplemental Figure S3).
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3.3. SARS-CoV-2 Infection Does Not Compromise the Integrity of Primary Human
Intestinal Colonoids

In addition to assessing innate immune responses, we investigated the potential
impact of multiple VOCs of SARS-CoV-2 infection on the integrity of the intestinal barrier,
as it represents a plausible mechanism for the occurrence of diarrhea. To address this, we
measured transepithelial electrical resistance (TEER) in primary human enteroids multiple
times post-infection. Notably, our findings reveal that throughout the course of infection,
none of the tested SARS-CoV-2 strains resulted in a reduction in TEER relative to the
baseline, indicating the absence of epithelial barrier compromise (Figure 4). This suggests
that factors other than a leaky gut may underlie the development of diarrheal symptoms
during SARS-CoV-2 infection.
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3.4. The Omicron Variant Exhibits Lower Syncytia Formation and Impaired Spike Processing in
Human Colonoids

To understand the molecular basis and reconcile the disparity between the high abun-
dance of viral RNA and the low virus titer observed in the Omicron variant within human
intestinal epithelial cells, we conducted an investigation into the nature of the Omicron
spike protein. Utilizing HEK293 cells engineered to stably express human ACE2 and
TMPRSS2, we ectopically expressed spike proteins from various SARS-CoV-2 variants [12].
Our findings revealed that the Omicron spike protein induced the formation of fewer and
smaller syncytia by fluorescence microscopy compared to either WT or Delta variants
(Figure 5), consistent with a recent study [8]. Given the prevalence of increased numbers
and sizes of syncytia observed with the wild-type (WT) and Delta variants, we hypothe-
sized that the diminished syncytium formation and reduced fusogenicity observed with the
Omicron variant could be linked to a lower efficacy of spike protein cleavage. In line with
our prior findings, we found that the cleavage levels of S1, by TMPRSS2 and furin proteases,
were notably higher for the Delta variant compared to WT. Similarly, the cleavage levels of
S2 were also higher for Delta compared to WT. In contrast, we noted an inefficient cleavage
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of the Omicron spike protein into both the S1 and S2 compared to Delta and WT variants
(Figure 6). Our findings indicate that the Omicron spike protein undergoes less efficient
cleavage and exhibits reduced fusogenicity compared to the spike proteins of both the
Delta variant and early-pandemic SARS-CoV-2. This may suggest possible attenuation of
Omicron upon viral egress, when processed into mature infectious viruses. Taken together,
these data collectively suggest that although Omicron may have similar infectivity as the
WT and Delta variants in the first round of infection, it is less effective at cell-to-cell spread
and producing viral progenies.
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4. Discussion

In this study, we found that the SARS-CoV-2 Omicron BA.1 variant effectively infects
healthy donor-derived colonoids, producing high levels of intracellular viral RNA in some
donors, but comparably lower levels of infectious particles. We also found that Omicron
induced a weak IFN response after 24 h, possibly due to reduced recognition by cytosolic
sensors or viral antagonism of IFN responses. Interestingly, at 48 and 72 hpi, there is
an increase in the production of IFNB, which may suggest that this pathway could be
relevant in restricting SARS-CoV-2 virus infection in primary human intestinal cells. In
concordance with our findings, previous studies show that the type 1 interferon pathway
show a more potent effect restricting the rotavirus infection in human enteroids than
the type III interferon pathway [28]. This suggests that type I IFN may be the critical
IFN for limiting enteric virus replication in the human intestine. To date, only one study
has compared the infectivity of SARS-CoV-2 variants in human enteroids. Using spike
pseudotyped lentiviral viruses and a luciferase-based reporter assay to quantify infection,
the authors observed a 2.5- and 5-fold higher infection of colonoids with the Omicron
pseudotype spike compared to Delta and D614G spikes, respectively [11]. The use of an
authentic SARS-CoV-2 virus and quantitation of both viral RNA and infectious particles
in our study may help explain this potential discrepancy. Furthermore, our observations
of diminished syncytia formation and impaired spike processing in the Omicron variant
support the reduced infectivity observed in human colonoids.

We found that barrier function, as measured by TEER, was not impaired by any of
the variants in human-derived intestinal epithelial monolayers. This is in contrast with
previous reports indicating alterations in tight junctions [29] and changes in permeability
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by SARS-CoV-2 [30]. However, these studies were conducted using Vero E6 cells and
human pulmonary microvascular endothelial cells. Potential tissue- or segment-specific
effects may explain the differences in this observation. Volcic and colleagues made the
preliminary observation that the Omicron variant of SARS-CoV-2 caused less damage to
mucosal integrity and barrier function in a colon epithelial model based on the Caco-2 cell
line [31]. In this study, they also demonstrated that TMPRSS2 inhibition with Camostat
effectively prevented SARS-CoV-2 infection in their model. In contrast, they found that
cathepsin inhibition, which is relevant to the endosomal SARS-CoV-2 entry mechanism,
did not prevent barrier disfunction. These results should be verified in organoid models
that more accurately reflect normal colon physiology and diversity among individuals.

GI symptoms in COVID-19 patients are strikingly frequent and have generated great
interest for understanding how SARS-CoV-2 interacts with intestinal physiology. Dis-
ease states and commonly prescribed anti-inflammatory drugs can modulate intestinal
ACE2 and protease expression, which potentially may have altered infectivity and disease
severity in the initial waves of the pandemic [23,32,33]. Further, COVID-19 causes gut
microbial dysbiosis and microbial diversity does not recover to pre-infection levels, even
6 months post-initial infection [34]. These investigations also revealed that changes in the
gut microbial composition of COVID-19 patients are characterized by an enrichment of
opportunistic pathogens, such as Streptococcus and Clostridium, alongside a depletion of
beneficial commensals, such as Bifidobacterium and Lactobacillus [35]. In addition, both viral
infection and perturbed gut microbiota have the potential to disturb the normal function
of the gut barrier and lead to impaired intestinal permeability and the degradation of
tight junction proteins, such as occludin, junctional adhesion molecule-A, and claudin-1.
This disruption can promote the translocation of opportunistic microorganisms into the
bloodstream, ultimately triggering systemic inflammation [36]. Furthermore, it is posited
that such dysbiosis may be one potential contributor to long COVID. It is now of great
interest to examine these possibilities in further studies in the context of Omicron and other
SARS-CoV-2 variants. Due to the presence of viral RNA in stool and wastewater, there
was concern for potential fecal–oral SARS-CoV-2 transmission [17]. Here, we show that
at least in the colon, the Omicron variant efficiently replicates but does not produce more
infectious virus particles than other variants at 24 hpi. However, we cannot disregard
the possibility that virus production by the Omicron variant may increase at later time
points post-infection, thereby potentially raising concerns regarding gastrointestinal (GI)
virus shedding.

In summary, our study establishes SARS-CoV-2 variant specific replication differences
in human colonoids and stresses the importance of genetic heterogeneity and donor vari-
ation as a key factor to consider in organoid studies. Our findings of high viral RNA
and low infectious virus levels are also reminiscent of the discrepancy seen in COVID-19
patient stool samples, further highlighting enteroid systems as a useful tool to interrogate
virus-host interactions. As the pandemic evolves, there is already evidence for future
variants that can have unique features of transmission and pathogenesis. As a potential
viral reservoir, it is crucial to understand the molecular mechanisms of Omicron infection
in the intestines and further examine the relevance to long COVID symptoms.
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//www.mdpi.com/article/10.3390/v16040634/s1, Figure S1: Kinetics of SARS-CoV-2 replication
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Figure S3: Temporal dynamics of type I IFN expression; Table S1. Virus sequencing results: Spike
Mutations in SARS-CoV-2 variants sequenced by NovaSeq; Table S2. qPCR Primers and Probes;
Table S3. Background of the colonoids donors.
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