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Abstract: The Bunyavirales order includes at least fourteen families with diverse but related viruses,
which are transmitted to vertebrate hosts by arthropod or rodent vectors. These viruses are responsi-
ble for an increasing number of outbreaks worldwide and represent a threat to public health. Infection
in humans can be asymptomatic, or it may present with a range of conditions from a mild, febrile
illness to severe hemorrhagic syndromes and/or neurological complications. There is a need to
develop safe and effective vaccines, a process requiring better understanding of the adaptive immune
responses involved during infection. This review highlights the most recent findings regarding T
cell and antibody responses to the five Bunyavirales families with known human pathogens (Peribun-
yaviridae, Phenuiviridae, Hantaviridae, Nairoviridae, and Arenaviridae). Future studies that define and
characterize mechanistic correlates of protection against Bunyavirales infections or disease will help
inform the development of effective vaccines.

Keywords: T cells; antibodies; Bunyavirales; Peribunyaviridae; Phenuiviridae; Hantaviridae; Nairoviridae;
Arenaviridae; bunyaviruses

1. Introduction

The Bunyavirales order, as delineated by the International Committee on Taxonomy of
Viruses (ICTV), encompasses hundreds of viruses, colloquially known as “bunyaviruses”,
distributed across at least fourteen viral families (Arenaviridae, Cruliviridae, Discoviridae,
Fimoviridae, Hantaviridae, Leishbuviridae, Mypoviridae, Nairoviridae, Peribunyaviridae, Phas-
maviridae, Phenuiviridae, Tospoviridae, Tulasviridae, and Wupedeviridae) [1–3]. Apart from
hantaviruses and arenaviruses, which are primarily transmitted by rodents, most viruses
of the Bunyavirales order rely on arthropod vectors like mosquitoes, ticks, and sandflies for
transmission [4,5]. The proliferation of these vectors, influenced significantly by climate
change, has expanded the geographical reach of Bunyavirales, including countries across
the Americas, Europe, Asia, the Middle East, and Africa [6,7].

While the majority of viruses within the Bunyavirales order are not inherently pathogenic
to humans, five families (Peribunyaviridae, Phenuiviridae, Hantaviridae, Nairoviridae, and
Arenaviridae) include viruses responsible for human and other vertebrate infections. Human
infection may manifest as a mild, febrile illness with the potential to progress to fatal
hepatitis, hemorrhagic fever, or encephalitis [8]. To date, specific vaccines or antivirals
for the prevention or treatment of Bunyavirales infections are not approved. Given the
escalating risk of human exposure to these emerging and re-emerging viruses, there is a
need to develop effective vaccines, crucial not only for infection prevention but also to curb
the emergence of severe disease.

In this review, we provide a comprehensive examination of adaptive immune re-
sponses against the five Bunyavirales families with known human pathogens (Peribunyaviri-
dae, Phenuiviridae, Hantaviridae, Nairoviridae, and Arenaviridae), identify current gaps in our
understanding of protective mechanisms against these viruses, and suggest future research
priorities to address the existing unknowns in the field.
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2. Bunyavirales Structure and Life Cycle

Viruses within the Bunyavirales order contain enveloped, segmented single-stranded
ribonucleic acid (RNA) genomes of negative-sense or ambisense polarity [9]. Except for
the Arenaviridae family [10], viruses within Peribunyaviridae, Phenuiviridae, Hantaviridae, and
Nairoviridae families share a conserved genetic organization comprising three segments,
classified by size as small (S), medium (M), and large (L) (Figure 1A). Each segment serves
as a template for positive-sense antigenome replication and mRNA transcription. The S
segment encodes the nucleocapsid protein (N) and nonstructural protein s (NSs), which
has been shown to modulate the host cell antiviral response through innate immune
pathways [11]. The M segment encodes a glycosylated polyprotein precursor (GPC) that
undergoes cleavage by host cell proteases, resulting in the production of the envelope spike
proteins Gn and Gc [12,13]. In certain virus species, nonstructural protein m (NSm) has
been shown to play a role in viral assembly and regulation of apoptosis [12–14]. The L
segment encodes the L protein, an RNA-dependent RNA polymerase (RdRp) responsible
for transcription and replication of the S, M, and L segments [15].

Viruses 2024, 16, x FOR PEER REVIEW 2 of 32 
 

 

2. Bunyavirales Structure and Life Cycle 
Viruses within the Bunyavirales order contain enveloped, segmented single-stranded 

ribonucleic acid (RNA) genomes of negative-sense or ambisense polarity [9]. Except for 
the Arenaviridae family [10], viruses within Peribunyaviridae, Phenuiviridae, Hantaviridae, 
and Nairoviridae families share a conserved genetic organization comprising three seg-
ments, classified by size as small (S), medium (M), and large (L) (Figure 1A). Each segment 
serves as a template for positive-sense antigenome replication and mRNA transcription. 
The S segment encodes the nucleocapsid protein (N) and nonstructural protein s (NSs), 
which has been shown to modulate the host cell antiviral response through innate im-
mune pathways [11]. The M segment encodes a glycosylated polyprotein precursor (GPC) 
that undergoes cleavage by host cell proteases, resulting in the production of the envelope 
spike proteins Gn and Gc [12,13]. In certain virus species, nonstructural protein m (NSm) 
has been shown to play a role in viral assembly and regulation of apoptosis [12–14]. The 
L segment encodes the L protein, an RNA-dependent RNA polymerase (RdRp) responsi-
ble for transcription and replication of the S, M, and L segments [15]. 

 
Figure 1. Bunyavirales virions and envelopes, infectious cycle, and antibody response. (A) Schematic 
representation of Peribunyaviridae, Phenuinviridae, Hantaviridae, Nairoviridae, and Arenaviridae enve-
lope glycoproteins that enable virus entry into host cells. (B) Schematic representation of Bunya-
virales infectious cycles, depicting viral RNA in the host cytoplasm initiating replication of infectious 
virus components. Newly synthesized glycoproteins of viruses within Peribunyaviridae, Phenuinvir-
idae, Hantaviridae, and Nairoviridae form oligomers within the endoplasmic reticulum membrane and 
traffic to the Golgi apparatus for virion assembly and the subsequent budding of infectious particles. 
In contrast, Arenaviridae virions assemble at the cell membrane. (C) Schematic representation of neu-
tralizing and non-neutralizing antibodies against Bunyavirales. Antibodies are known to target spe-
cific Bunyavirales proteins, typically Gc, Gn, and N, with each virus family having its own distinct 
major targets and neutralizing capabilities due to the viruses� intricate nature. For the Peribunyaviri-
dae family, nAbs mainly target Gc, whereas antibodies against N are generally less common and 
non-neutralizing. For Phenuinviridae, Gn is the main target for nAbs, with N and Gc proteins 

Figure 1. Bunyavirales virions and envelopes, infectious cycle, and antibody response. (A) Schematic
representation of Peribunyaviridae, Phenuinviridae, Hantaviridae, Nairoviridae, and Arenaviridae en-
velope glycoproteins that enable virus entry into host cells. (B) Schematic representation of
Bunyavirales infectious cycles, depicting viral RNA in the host cytoplasm initiating replication of
infectious virus components. Newly synthesized glycoproteins of viruses within Peribunyaviridae,
Phenuinviridae, Hantaviridae, and Nairoviridae form oligomers within the endoplasmic reticulum
membrane and traffic to the Golgi apparatus for virion assembly and the subsequent budding of
infectious particles. In contrast, Arenaviridae virions assemble at the cell membrane. (C) Schematic
representation of neutralizing and non-neutralizing antibodies against Bunyavirales. Antibodies are
known to target specific Bunyavirales proteins, typically Gc, Gn, and N, with each virus family hav-
ing its own distinct major targets and neutralizing capabilities due to the viruses’ intricate nature.
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For the Peribunyaviridae family, nAbs mainly target Gc, whereas antibodies against N are generally
less common and non-neutralizing. For Phenuinviridae, Gn is the main target for nAbs, with N and
Gc proteins showing relatively less neutralization potential. For Hantaviridae, the most effective
nAbs are against Gn and Gc. For Nairoviridae, Gc has been demonstrated as the primary target
for the host nAbs, while other nNAbs directed at GP38 have been found to confer protection in
rodent models. For Arenaviridae, different immunological patterns have been noted in response to
Old and New World viruses. Typically, New World arenaviruses induce strong nAbs, while Old
World arenaviruses often evade these responses. Glycoprotein structures were retrieved from PDB
(Peribunyaviridae represented by La Crosse virus: 6H3W; Phenuiviridae represented by Rift Valley
fever virus: 6F9F; Hantaviridae represented by Andes virus: 6ZJM; Nairovoridae represented by
Crimean–Congo hemorrhagic fever virus: 8DC5; and, Arenaviridae represented by Lassa virus: 8EJH).
nAb: neutralizing antibodies, nNAbs: non-neutralizing antibodies.

Viruses within the Bunyavirales order exhibit diverse envelope glycoproteins that
enable viral entry into host cells through surface receptors, many of which remain uniden-
tified (Figure 1A). Nevertheless, studies have identified dendritic cell-specific intercellular
adhesion molecule-3-grabbing non-integrin (DC-SIGN) and liver/lymph node-specific in-
tercellular adhesion molecule-3-grabbing non-integrin (L-SIGN) as receptors for viral entry
for several viruses within the Arenaviridae, Nairoviridea and Phenuiviridae families [16–18].
While DC-SIGN and L-SIGN have been implicated in Bunyavirales entry, it is important
to note that they likely serve as non-specific receptors, given that they are found on the
surface of dermal dendritic cells where vector-borne viruses are typically transmitted [19].
Bunyavirales enter host cells via clathrin-mediated, caveolin-mediated, or independent
endocytosis [20,21]. After cell entry, virions fuse with endosomes, and due to exposure
to a low pH, conformational changes are triggered in the glycoproteins. This event leads
to virion uncoating and the presentation of viral RNA in the host cytoplasm, initiating
viral replication. RdRp from the infectious particle facilitates genome replication, followed
by synthesis of all infectious virus components [22]. Newly synthesized glycoproteins
rapidly form oligomers within the endoplasmic reticulum (ER) membrane, subsequently
trafficking to the Golgi apparatus for virion assembly (Figure 1B). In the lumen of the
Golgi, the newly assembled genome segments interact with the cytoplasmic tail of Gn
and are packaged into viral particles [23]. Subsequently, the progeny viruses bud into
the secretory vesicles and traffic towards the plasma membrane, where they are released
into the extracellular space, although the pathway by which virions are secreted remains
unclear [23]. In contrast, arenaviruses and some hantaviruses have been shown to assemble
and bud at the cell surface or plasma membrane, distinguishing them from other viruses
within the Bunyavirales order [24–26]. Specific details regarding Bunyavirales structures and
life cycles have been extensively reviewed elsewhere [27].

3. T Cell Responses against Bunyavirales
3.1. Peribunyaviridae

The Peribunyaviridae family currently encompasses 7 genera and 219 virus species.
Among these, the Orthobunyavirus genus, including the California (CSG), Simbu (SSG),
and Bunyamwera serogroups, are the most extensively studied for their ability to cause
human infection [28,29]. This review specifically focuses on the adaptive immune response
to orthobunyaviruses.

The characterization of immunodominant T cell epitopes is lacking for most orthobun-
yaviruses. Previous studies have primarily observed T cell responses against specific
protein subunits, mainly GPC and/or N [30,31]. Immunoinformatic studies have identified
and predicted virus-specific CD4+ and CD8+ T cell epitopes within GPC and N for the
Jamestown Canyon (JCV), Oropouche Virus (OROV), and Bunyamwera virus (BUNV),
showing a high affinity with human major histocompatibility complex class I (MHC-I) and
MHC-II (Table 1) [30–33]. While these studies suggest the potential development and use
of multi-epitope vaccines, future in vivo studies are required to validate immunogenicity,
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efficacy, and protection. Notably, the immunogenicity of glycoproteins and N has been
confirmed in mice lacking interferon alpha/beta receptors (IFNAR−/−) for the La Crosse
virus (LACV) and Schmallenberg virus (SBV) (Table 1) [34,35]. Ex vivo studies confirming
T cell responses to entire proteomes have not been conducted for any virus in this family.

Table 1. Bunyavirales T cell epitopes predicted by immunoinformatic analysis and/or confirmed by
ex vivo and in vivo studies.

Virus T Cell Type Epitope Host Approach

Peribunyaviridae

OROV CD8+

Glycoproteins
TSSWGCEEY (1043–1051)

CSMCGLIHY (48–56)
LAIDTGCLY (4–12)

Humans Immunoinformatics [30]

BUNV CD8+/CD4+

N protein
KRSEWEVTL (55–63)

AIGIYKVQRKEMEPK (161–75)
Humans

Immunoinformatics [32]

Glycoproteins
YQPTELTRS (716–724)

YKAHDKEET (782–790)
ILGTGTPKF (1172–1180)

Immunoinformatics [33]

JCV

CD8+

N protein
AAKAKAALA (26–34)
AALARKPER (152–161)
ADHGESVSL (175–183)

ADHGESVSLS (157–165)
YPLTIGIYRV (108–117)

Humans Immunoinformatics [31]

CD4+

N protein
AALARKPER (146–154)
ADHGESVSL (160–169)
DVEQLKWGR (119–127)

EIYLSFFPG (183–191)
FLIKFGVKL (141–149)

SBV CD8+
N protein

Glycoprotein
Gc (678–947)

IFNAR−/− mice
Ubiquitinated and

non-ubiquitinated cDNA
immunization [34]

LACV CD4+ Glycoprotein
N protein IFNAR−/− mice DNA vaccination [35]

SBV CD8+ N protein IFNAR−/− mice
Bacterially expressed

(SBV-N) [36]

Phenuiviridae

TOSV CD4+

N protein
VKMMIVLNL (58–66)

Glycoprotein
VMILGLLSS (824–832)

Humans Immunoinformatics [37]

SFTSV CD8+/CD4+
Panel of peptides

8 peptides within RdRp
8 peptides within glycoprotein

Humans Immunoinformatics [38]
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Table 1. Cont.

Virus T Cell Type Epitope Host Approach

RVFV

CD4+

Glycoprotein
LPALAVFALAPVVFA (139–153)
PALAVFALAPVVFAE (140–154)
GIAMTVLPALAVFAL (133–147)

GSWNFFDWFSGLMSW (1138–1152)
FFLLIYLGRTGLSKM (1174–1188)

N protein
HMMHPSFAGMVDPSL (143–158)

Humans Immunoinformatics [39]

CD8+

Glycoprotein
AVFALAPVV (143–151)
LAVFALAPV (142–150)
FALAPVVFA (145–153)
VFALAPVVF (144–152)
IAMTVLPAL (134–142)

FFDWFSGLM (1142–1150)
FLLIYLGRT (1142–1150)

N protein
MMHPSFAGM (144–152)

CD8+/CD4+

Panel of peptides
14 peptides within N

13 peptides within Gn
16 peptides within Gc

Humans Ex vivo stimulation as-
says/immunoinformatics [40]

CD8+
N protein

VLSEWLPVT (121–129)
ILDAHSLYL (165–173)

Humans

Ex vivo assays using
N-transduced dendritic cells

primed with CD8 T cells from
HLA-A2 donors [41]

CD8+
N protein

NAAVNSNFI (201–210)
Mice C57BL/6

Ex vivo stimulation assay of
vaccinated mice [42]

CD4+
N protein

VREFAYQGFDARRVI (25–40)
AYQGFDARRVIELLK (29–44)

Hantaviridae

Orthohantaviruses
(multiple) CD8+/CD4+

A panel of cross-reactive epitopes
between multiple
orthohantaviruses

6 peptides within glycoprotein
2 peptides within nucleocapsid

2 peptides within RdRp
1 peptide within NS protein

Humans Immunoinformatics [43]

HTNV CD8+

N protein
NAHEGQLVI (12–20)
ISNQEPLKL (421–429)

Humans Ex vivo stimulation [44]

N protein
TSFVVPILLKALYML (127–141)

YMLTTRGRQTTKDNK (139–153)
IEPCKLLPDTAAVSL (241–255)
LRKKSSFYQSYLRRT (355–369)

Humans Ex vivo stimulation [45]

N protein
RYRTAVCGL (197–205)
KLLPDTAAV (245–253)
GPATNRDYL (258–266)

Humans Ex vivo stimulation [46]
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Table 1. Cont.

Virus T Cell Type Epitope Host Approach

HTNV/SNV

CD8+ ILQDMRNTI
(HTNV, aa 334–342; SNV, aa 333–341) Humans

In silico prediction of
conserved epitopes, validation

of peptides ex vivo using
patients’ PBMCs [47]

CD8+/CD4+

N protein
ERIDDFLAA (234–242)
LPIILKALY (131–139)

GIQLDQKIII (372–380)

Humans Ex vivo stimulation assays [48]

HTNV
Glycoprotein

LIWTGMIDL (358–366)
Humans

In silico prediction and
evaluation of efficacy in

transgenic mice [49]

ANDV CD8+
Glycoprotein Gn

SLFSLMPDVAHSLAV (461–475)
Humans Ex vivo stimulation [50]

PUUV CD8+
Glycoprotein Gn

HWMDATFNL (731–739)
Humans Ex vivo stimulation [51]

Nairoviridae

CCHFV

CD8+/CD4+

Panel of peptides
3 peptides within Gc
2 peptides within Gn

Humans Immunoinformatics [52]

A panel of peptides
5 peptides within N protein

4 peptides within Glycoprotein
Humans Immunoinformatics [53]

RdRp
DCSSTPPDR (197–202)

Humans Immunoinformatic [54]

CD8+

A panel of peptides
4 peptides within NSm
5 peptides within GP38

Humans Ex vivo stimulation [55]

N protein
Gc Humans Ex vivo stimulation [56]

Gc
NSm C57BL/6 mice Ex vivo stimulation [57]

Arenaviridae

LASV

CD8+

Glycoprotein
MRMAWGGSY (192–200)

N protein
ALTDLGLIY (201–210)

Humans Immunoinformatics [58]

CD4+
A panel of peptides

4 peptides within glycoprotein
4 peptides within N protein

Humans Immunoinformatics [58]

LASV CD8+

A panel of peptides
12 epitopes within glycoprotein

and/or N
Humans Ex vivo stimulation [59]

N (1–91)
N (411–491)

GP2 (92–172)

Humans Ex vivo stimulation [60]
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Table 1. Cont.

Virus T Cell Type Epitope Host Approach

LASV CD4+

4 highly conserved peptides
between Old and New World

arenaviruses within
GP2 (289–301)

Humans Ex vivo stimulation [61]

6 peptides within N protein Humans Ex vivo stimulation [62]

LASV/cross-
reacts with

LCMV
CD4+

Glycoprotein
IEQQADNMITEMLQK (403–417)

C3H/HeJ mice Ex vivo stimulation [63]

In the case of LACV, DNA vaccination in IFNAR−/− mice with LACV Gn/Gc induced
complete protection mediated by CD4+ T cells, while N DNA vaccination provided partial
protection [35]. Similar findings were observed for SBV vaccination, where DNA encoding
the Gc ectodomain induced CD8+ T cell-mediated protection [34]. Additionally, subunit-
or DNA-based N vaccines have both been shown to reduce clinical signs and significantly
decrease viremia upon SBV challenge, eliciting CD8+ T cell-mediated responses [34,36].

While most studies on T cell responses to orthobunyaviruses have been conducted us-
ing animal models, human T cell responses remain understudied. Notably, LACV’s clinical
importance has led to comprehensive studies on cellular responses, especially consider-
ing its status as the leading cause of pediatric viral encephalitis in the United States [64].
Children exhibit higher susceptibility to LACV infection, while adults typically experience
asymptomatic or mild infections. This age-related susceptibility can be recapitulated in
murine models, providing opportunities to study innate and adaptive immune responses
against LACV and other related orthobunyaviruses.

In wild-type C57BL/6 mice, both CD4+ and CD8+ T cells (and B cells) play a role
in LACV infection [65]. Although these cell types did not impact neurological disease in
weanling mice (3–4 weeks old), they were crucial for protecting adult mice (6–8 weeks old)
from LACV pathogenesis [65]. Natural killer (NK) cells did not appear to have a major
role in protection against LACV, as their depletion in adult mice did not impact pathogen-
esis [65]. These findings underscore the importance of the adaptive immune response in
preventing LACV neurological disease, beyond the innate immune response alone.

Given the limited information on T cell responses and immunodominant epitopes,
progress in vaccine development for viruses within the Peribunyaviridae family is hampered.
The characterization of adaptive immune responses to natural infection, along with the
in vivo validation of computationally predicted vaccine peptides, is essential to overcome
this gap.

3.2. Phenuiviridae

The Phenuiviridae family currently encompasses 22 genera and 151 virus species,
demonstrating a broad host range that includes humans, animals, plants, and fungi [66]. In
2018, the World Health Organization identified the Rift Valley fever virus (RVFV) and severe
fever with thrombocytopenia syndrome virus (SFTSV) as emerging threats, underscoring
the urgency for accelerated research and development efforts [67]. RVFV, transmitted by
mosquitoes, is prevalent across Africa and the Middle East. Although typically inducing
mild, self-limiting disease, severe complications such as hepatitis, encephalitis, or death
can occur [68]. The impact and economic toll of RVFV on local domestic livestock, includ-
ing abortion storms, highlights the significant risks it poses to global food security and
public health [69]. SFTSV, transmitted by ticks, causes a highly fatal condition marked by
hemorrhagic symptoms [70]. Toscana virus (TOSV), another re-emerging member of this
family, ranks among the top etiological agents of aseptic meningitis, and is transmitted by
sand flies [71].
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Efforts have been made to identify RVFV, SFTSV, and TOSV epitopes targeted by T
cells. Using immunoinformatic approaches, TOSV studies identified T cell epitopes within
Gn, Gn, and N, leaving the rest of the viral proteome with unknown immunogenicity [37].
In contrast, the entire proteomes of RVFV and SFTSV were analyzed for immunogenicity, re-
vealing immunodominant T cell epitopes within glycoproteins and N but also nonstructural
proteins (Table 1) [38,39].

In humans vaccinated with formalin-inactivated RVFV, CD4+ and CD8+ T cell targets
within Gn, Gc, and N were confirmed in ex vivo assays (Table 1) [40]. Another research
group defined two HLA-A-2-directed RVFV N epitopes using N-transduced dendritic cells
(DCs) to prime CD8+ T cells from HLA-A-2 donors [41]. In vivo assays of T cell responses
in mice vaccinated with attenuated RVFV strains also demonstrated that two epitopes
within N were robustly targeted (Table 1) [42]. For SFTSV, immunoinformatic screening
suggested peptides within RdRp and glycoproteins, leading to the in silico evaluation of a
multi-epitope vaccine (Table 1) [38]. The same approach predicted CD4+ T cell responses
against epitopes within the TOSV N and glycoproteins as being highly immunogenic
(Table 1) [37]. However, the in vivo evaluation of epitope-specific T cells from humans
vaccinated or infected with SFTSV or TOSV has not been performed.

The immunogenicity of Gn, Gc, and N for RVFV, SFTSV and TOSV has been confirmed
with vaccine studies in animal models, emphasizing a protective role for virus-specific CD4+
and CD8+ T cells [72–80]. Gn immunization in goats using a recombinant Capripoxvirus
vaccine induced protection against RVFV challenge, mediated through a CD4+ T cell re-
sponse [72]. BALB/c mice vaccinated with a single dose of a DNA vaccine encoding the
RVFV Gn/Gc showed no viremia or clinical disease, with glycoprotein-specific CD8+ T cell
responses, while N-based vaccination conferred only partial protection [73]. Notably, this
vaccine regimen failed to protect IFNAR−/− mice from RVFV lethal infection, suggesting
the involvement of innate immunity in protection [73]. For SFTSV, vaccine studies involving
ferrets and IFNAR−/− mice revealed that a DNA plasmid encoding Gn/Gc induced pro-
tection primarily through antigen-specific T cell responses [75–79]. This effect occurred in
the absence of detectable antibodies against surface glycoproteins in immunized mice [76].
The same antigens, when produced via mRNA vaccination, induced a balanced Th1/Th2
response in mice [77,78]. Similarly, BALB/c mice were fully protected from a lethal dose of
TOSV when vaccinated with recombinant Gc and N (but not when vaccinated with single
antigens), demonstrating a potent CD8+ T cell response associated with significant IFN-γ
expression [80].

Furthermore, studies in C57BL/6 mice showed that CD4+ T cells, largely Type 1 T
helper cells (Th1)/T follicular helper cells (Tfh) subtypes, play a protective role, with the
T-box transcription factor TBX21 (T-bet), Cluster of Differentiation 40 (CD40), Cluster of
Differentiation 40 Ligand (CD40L), and MCH II pathways crucial in mediating defense
against RVFV encephalitis [42]. In a separate study using immunocompetent mice, infec-
tion with an attenuated RVFV strain induced an expansion of NK cells, monocytes, and
both CD4+ and CD8+ T cells [81]. Depleting C57Bl/6 mice of CD4+ and CD8+ T cells
increased the frequency of encephalitis, supporting that these cell types contribute to the
prevention of disease [81,82]. It is worth noting that adaptive immune responses against
RVFV, due to its rapid progression and high lethality in rodent models, have mostly been
explored using attenuated strains or recombinant viral proteins [42,81,83–85]. In contrast,
T cell responses to SFTSV have been well studied in human patients. Non-surviving pa-
tients exhibit decreased cell counts, including CD3+, CD4+, and CD8+ T cells, suggesting
immune dysfunction in SFTSV disease progression [86,87]. CD4+ T cell deficiency and
Th1/Th2 imbalance correlate with increased viral load, serum enzymes, cytokines, and
disease severity [88–91]. Surviving patients have an increased expression of activation
markers in T cells [92]. Specifically, CD8+ T cells exhibit a proliferative activated phenotype
demonstrated by an increased expression of CD69 and CD25, secreting a higher level of
IFN-γ and granzyme B with enhanced antiviral responses, further supporting that cellular
responses play a protective role against infection [93].
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Studies on human T cell responses against TOSV are lacking, as well as on other
clinically important viruses within the Phenuiviridae family, including the Heartland virus
(HRTV), Arumowot virus (AMTV), Uukuniemi virus (UUKV), Guertu virus (GTV), Punta
Toro virus (PTV), and sandfly fever Sicilian virus (SFSV). Future studies are needed to
better understand cellular immunity against these globally relevant pathogens, aiming to
identify correlates of protective immunity that will aid the development of vaccines.

3.3. Hantaviridae

The Hantaviridae family encompasses 7 genera and 54 species, responsible for diverse
human diseases. Old World hantaviruses in Asia and Europe cause hemorrhagic fever with
renal syndrome (HFRS), while New World hantaviruses in North and South America induce
hantavirus cardiopulmonary syndrome (HCPS) [94]. Hantaviruses have evolved multiple
immune evasion strategies to establish long-term infections in their natural hosts without
causing noticeable illness, in order to ensure their survival and facilitate transmission
to other hosts, including humans [95]. Hantaviruses can downregulate viral antigen
expression and interfere with host antiviral responses by modulating cellular signaling
pathways, as well as suppressing the immune response by inducing regulatory T cells,
enabling the virus to persist [96]. The role of the adaptive immune response in either
protection or pathogenesis remains a topic of ongoing investigation [97,98].

Immunoinformatic studies have aimed to identify immunodominant T cell epitopes
within hantavirus proteins, with the majority revealing epitopes in N followed by glycopro-
teins (Table 1) [43,49,99]. When T cell responses against entire proteomes were analyzed for
orthohantaviruses, epitopes within glycoproteins, N, and RdRp and other non-structural
proteins were predicted to have high immunogenicity (Table 1) [43]. In 1999, the first
demonstration of human T cell responses to the Hantan virus (HTNV) suggested that
the CD8+ T cells elicited upon infection are limited to N, recognizing two immunodom-
inant epitopes [44]. Advances in the field in later years revealed an expanded panel of
immunodominant epitopes within the HTNV N in HFRS patients (Table 1) [45,46,100].
Further detailed characterization suggested HTNV N epitopes restricted by various hu-
man leukocyte antigens (HLAs), conserved in both HTNV and Sin Nombre virus (SNV)
(Table 1) [47,48]. Moreover, the cross-reactivity of N-specific CD8+ T cells against several
hantaviruses has been reported in human studies [44,46,101]. Additionally, multiple obser-
vations of Gn- and Gc-specific T cell responses have been reported in patients infected with
HTNV and the Andes virus (ANDV) (Table 1) [49,50]. ANDV epitopes located within the
Gn carboxyl-terminus were immunodominant, as compared to those from within N and
Gc in HCPS patients, and CD8+ T cells targeting ANDV Gn acquire a long-lasting effector
phenotype [50]. CD8+ T cells from patients infected with the Puumala virus (PUUV) also
exhibit strong responses against a recombinant vaccinia virus expressing N and the second
half of Gn [51]. Notably, virus-specific CD8+ T cell responses during HFRS play a crucial
role in HTNV clearance, being efficient releasers of cytotoxic mediators, adopting a memory
effector phenotype and its recruitment at an early stage of HFRS [100,102–104]. Similarly,
an increase in both CD4+ and CD8+ T cells across disease stages correlates with delayed
viral clearance in HCPS patients [105,106].

The involvement of CD8+ T cells in hantavirus infection is not fully elucidated. Find-
ings in human patients demonstrated a proportional increase in circulating HTNV-infected
CD8+ T cells and disease severity [107]. A recent study in HCPS patients observed an
increase in both CD4+ and CD8+ T cells across disease stages, correlating with delayed viral
clearance, while in HFRS, the frequency of HTNV-specific effector CD8+ T cells is higher
during mild stages compared to the acute phase [105,106]. While CD4+ T cell responses
have received less attention, studies suggest a mixed Th1/Th2 profile, based on cytokine
profiles in HTNV-infected human sera [108,109]. However, there is no clear correlation
between effector CD4+ T cells and clinical outcomes.

Insights into protective hantavirus-specific T cell responses have also been obtained
from antigen immunization using animal models. BALB/c mice vaccinated with E. coli-
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expressed PUUV N developed proliferative Th cells that secreted immune modulators [110].
The HTNV N- and glycoprotein-derived immunodominant epitopes previously identified
using in silico methods were used to immunize HLA-A2.1/K(b) transgenic mice, both
inducing protective T cell responses [49,99,111] Notably, immunization with a multi-epitope
HTNV vaccine containing subunits of both N and glycoprotein produced stronger T cell
responses, compared to single immunization with either epitope in both human cells and
transgenic mice [112,113].

N protein is relatively conserved and highly immunogenic among hantaviruses [110,114–116].
Given this observation, a study demonstrated cross-protective immune responses against
PUUV, Topografov virus (TOPV), ANDV, and Dobrava virus (DOBV) by immunizing bank
voles with recombinant N (rN) from different hantaviruses [117]. When rN-immunized
mice were challenged against PUUV, cellular responses were more instrumental than the
humoral response in this cross-protective immunity [117]. Based on this cross-reactivity
study and all the previously mentioned findings, a universal T cell-based vaccine targeting
multiple viruses might be achievable and promising in the case of hantaviruses. Addi-
tionally, given that multiple immunodominant epitopes within N, Gn, and Gc have been
identified in different studies, an unbiased screening of T cell responses against conserved
regions of the hantavirus proteome may enable a narrowing down of immunodominant
targets that could be useful for cross-protective vaccine development.

3.4. Nairoviridae

The Nairoviridae family currently encompasses 3 genera and 58 virus species. These
viruses are maintained in arthropods and transmitted primarily by ticks to mammals,
birds, and bats. Among them, the most significant human pathogen is the Crimean–Congo
hemorrhagic fever virus (CCHFV), prevalent in Asia, Africa, and Southern and Eastern
Europe [118]. The Nairobi sheep disease virus (NSDV) is also noteworthy within this family
due to its veterinary impact, causing highly lethal disease in small ruminants in Africa and
India [119].

Research efforts to better understand adaptive immune responses against CCHFV
have addressed notable gaps [120]. Using immunoinformatic approaches, several studies
identified CD4+ and CD8+ T cell-specific epitopes within CCHFV GPC, N, and RdRp
proteins (Table 1) [52,53,121]. In silico analysis further pinpointed six regions of the CCHFV
glycoprotein with high antigenic potential [52]. The epitope “DCSSTPPDR” in RdRp was
also identified as particularly immunogenic (Table 1) [54]. Furthermore, CCHFV survivors
demonstrated strong IFN-γ responses against the NSm region of the GP38 protein in ex
vivo assays (Table 1) [55]. Another study of CCHFV survivors identified cellular responses
against N, indicating a preference for non-Gn/Gc epitopes [56]. Confirming these human
findings, immunodominant epitopes were also identified in the N-terminus of Gc followed
by NSm as the primary CD8+ T cell targets in CCHFV-infected mice [57].

Vaccine studies have also supported a role for protective T cell responses against
CCHFV challenge [122,123]. Mice vaccinated with DNA encoding the CCHFV GPC pro-
tected against disease, mediated primarily by CD8+ T cells [122]. However, in a separate
study, signal transducer and activator of transcription 1 knockout (STAT1−/−) mice immu-
nized with the Gn and Gc ectodomains failed to be protected against disease upon CCHFV
challenge, even with detectable serum neutralizing antibodies (nAbs) [124]. In a separate
study, IFNAR−/− mice immunized with nucleoside-modified mRNA-lipid nanoparticles
encoding CCHFV glycoproteins or N demonstrated strong, protective cellular immune
responses [123]. An adoptive transfer of serum Abs and T cells from mice immunized
with a modified vaccinia Ankara virus vector expressing the CCHFV glycoprotein pro-
tected recipient mice against lethal challenge [125]. Depletion of either CD4+ or CD8+ T
cells significantly increased mortality in infected mice, underscoring the essential role for
these cell types in protection against severe disease [126]. Finally, recent findings have
also highlighted a crucial role for CD8+ T cells in efficiently controlling acute infection in
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wild-type mice, rapidly acquiring CCHFV-specific antiviral effector functions, including
the production of antiviral cytokines [57].

While early studies in CCHFV patients suggest that cellular immunity enhances sur-
vival during acute infection [56,127], the exact mechanisms by which T cells contribute
to survival remain to be investigated. Adaptive immune responses to other nairoviruses,
especially NSV, are also underexplored. The Hazara virus (HAZV), closely related to
CCHFV, has served as a biosafety level 2 (BSL-2) surrogate model for CCHFV research,
facilitating research without the requirement and constraints of a high-containment BSL-4
environment. Studies on HAZV have helped reveal important insights into CCHFV im-
munopathogenesis; however, ex vivo and in vivo studies exploring T cell responses against
HAZV require further investigation [128,129]. Further understanding the mechanisms
of viral clearance mediated by T cells will be important for designing effective vaccines
against CCHFV and other nairoviruses.

3.5. Arenaviridae

The Arenaviridae family currently encompasses 5 genera and 74 virus species with
the capability of causing infections in diverse hosts. Mammarenaviruses, which include
pathogens typically not infecting mammals beyond their primary reservoir hosts, post a
threat to humans through direct contact with infected rodents, their droppings, or urine, the
ingestion of contaminated food, or the inhalation of aerosolized droplets from contaminated
rodent excreta, secreta, or body parts [130]. Human diseases caused by mammarenaviruses
include Lassa fever (LF), caused by the Lassa virus (LASV) in Western Africa. The Lujo
virus (LUJV) has also recently caused a small but severe outbreak in Southern Africa [131].
Other mammarenaviruses, including the Junin (JUNV), Machupo (MACV), Guanarito
(GTOV), Sabia (SBAV), and Chapare (CHAPV) viruses, cause human disease most often
associated with hemorrhagic syndromes throughout South America. Arenaviridae also in-
cludes lymphocytic choriomeningitis virus (LCMV), a well-studied virus that has facilitated
many advances in the fields of virology and immunology, although not a major focus of
this review [132].

Beyond studies involving LCMV, T cell responses against LASV and other mammare-
naviruses have also been characterized [58–60,133]. These studies focused on identifying
immunogenic epitopes against entire proteomes for several mammarenavirus strains (LASV,
LUJV, CHAPV, JUNV, MACV, GTOV, and SABV), with the goal of identifying conserved epi-
topes among the family [58,133–135]. Immunoinformatic analysis identified several highly
immunogenic epitopes, mostly all located in conserved regions of GPC and N [58]. Ex vivo
stimulation of LF survivor cells narrowed down the panel of immunodominant epitopes to
12 CD8+ T cell-positive epitopes within GPC and N which induced broad peptide-specific
T cell responses, supported by predictive HLA-binding algorithms (Table 1) [59,60]. Fur-
ther, four immunodominant CD4+ T cell epitopes, which are highly conserved between
Old and New World arenaviruses, were identified and mainly localized to a short stretch
of 13 amino acids located in the N-terminal part of GP2 (289–301) (Table 1) [61]. Another
study also showed strong human memory CD4+ T cell responses against N during LASV
infection [62]. In mice, CD4+ T cells specific to the GPC (403–417) of LASV can mediate a
cross-protective immunity to LCMV infection [63]. Notably, the immunogenicity of GPC
peptide candidates was evaluated in HLA-A*0201 mice, which were protected against
challenge with a recombinant vaccinia virus that expressed the LASV GPC [136,137].

In human LASV infection, T cells play a major role in controlling acute infection, as
patients recover in the absence of a measurable nAb response [138,139] Furthermore, treat-
ment with immune plasma did not protect LF patients, strongly suggesting a critical role
of cell-mediated immunity against LASV infection in humans [140]. Survival and LASV
clearance in humans correlate with robust virus-specific CD4+ and CD8+ T cell responses
during acute stages, coupled with elevated early IFN levels [59]. In contrast, severe LF
cases are associated with weak LASV-specific T cell responses and non-specific T cell acti-



Viruses 2024, 16, 483 12 of 32

vation [141,142]. Currently, our understanding of CD4+ T cell response to LASV infection
is limited to observations of LASV-specific CD4+ T cells in convalescent patients [61,62].

Our knowledge about JUNV-specific T cell responses is restricted to a few mouse
studies, which implicated T cells in the clearance of virus from infected organs and their
correlation with disease severity [143,144]. The precise roles of CD4+ and CD8+ T cells,
along with their epitope targets, remain unknown. Further investigations will help improve
our understanding of the immunopathogenesis of JUNV and other arenavirus infections.
Given that T cells play a protective role during infections with arenavirus, even in the
absence of nAb responses, cross-protective T vaccines should be a major focus of future
vaccine design and testing.

4. Antibody Responses against Bunyavirales
4.1. Peribunyaviridea

A distinctive characteristic of orthobunyaviruses is the genetic relatedness of viruses
within serogroups, leading to cross-reactive Abs across the genus, including CSG and
SSG members [145–147]. However, whether cross-reactive Abs can protect against multi-
ple infections remains uncertain. Human and animal infections with orthobunyaviruses
elicit nAbs, as evidenced by studies analyzing serum Abs against viral cell lysates with
confirmatory neutralization assays [148–151]. In a separate study, individuals previously
infected with INKV had strong Ab responses against N during the acute febrile phase, with
more pronounced Gc Abs during convalescence [152]. These studies are noteworthy as
they contribute to the limited research exploring human Ab responses against orthobun-
yaviruses, emphasizing a substantial gap in our understanding of the humoral response to
these viruses.

Nevertheless, animal models have helped play a role in identifying specific proteins
targeted by nAbs, revealing that envelope glycoproteins and N are the primary targets
(Figure 1C). Mouse-derived monoclonal antibodies (mAbs) against LACV, TAHV, and SBV
envelope glycoproteins and N were shown to be both specific and cross-reactive, but only
the glycoprotein mAbs had neutralizing effects [153,154]. These findings were supported
by several other studies on CSG and SSG serogroups, demonstrating the effect of nAbs
against Gc [146,155,156]. However, the complex arrangement of envelope glycoproteins
on the orthobunyavirus virion, characterized by trimeric spikes, has posed challenges in
determining precise nAb epitopes [157]. The Gc protein, particularly the head domain
(amino terminal subdomain), is targeted by LACV and SBV nAbs [158,159]. An X-ray
crystallography study of the SBV glycoprotein also confirmed that mAbs bind to the
projecting spikes, and that the immunization of mice with the head-stalk of Gc elicits
sterilizing immunity [157]. Similar observations were reported for LACV and AKAV using
mAbs produced in BALB/c mice [159–161]. High N-specific Ab titers are also frequently
reported during infection with orthobunyaviruses. However, antibodies against N exhibit
sub-neutralizing or non-neutralizing activity, as observed in mice and rabbits infected with
LACV, TAHV, SBV, and the Cache valley virus (CCV) [147,153–155,162].

To evaluate the potency and efficacy of antigen-specific Ab responses to orthobun-
yaviruses, vaccine studies in animals have been crucial to improving our understand-
ing [163–165]. IFNAR−/− mice vaccinated with DNA encoding LACV Gc produced nAbs
that exhibited a high degree of protection against LACV challenge [165,166]. In rhesus
monkeys, a recombinant chimeric LACV expressing JCV surface glycoproteins induced
cross-reactive nAbs against JCV, LACV, and TAHV, protecting against viremia after JCV
infection [164]. BALB/c mice immunized with chimeric vesicular stomatitis virus en-
coding the OROV GPC demonstrated an nAb response, associated with reduced OROV
viremia [167]. Additionally, IFNAR−/− mice immunized with the SBV subunit of the Gc
head domain were protected upon SBV challenge [157].

Numerous uncertainties surround Ab responses to orthobunyaviruses, necessitating
further investigations. A critical aspect is the detailed mapping of human Abs to specific
viral antigens, urging us to transcend the assumption that only structural glycoproteins
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and N are targeted. For example, Abs against dengue virus nonstructural protein 1 (NS1)
proved to have protective effects in both mice and humans [168–170]. It will be important
to study the involvement of non-structural proteins in eliciting Abs against orthobun-
yaviruses. Moreover, there is a need to analyze both neutralizing and non-neutralizing
effector functions against these targets, probing whether they correlate with protection
from severe disease. This comprehensive approach will deepen our understanding of the
intricate dynamics of Ab responses to orthobunyaviruses that may aid in the development
of both vaccines and Ab-based therapeutics.

4.2. Phenuiviridae

Studies on Abs isolated from human patients infected with RVFV, SFTSV, the Heart-
land virus (HRTV), and Guertu virus (GTV) have highlighted Gn as the primary target
of nAbs, followed by N and Gc, which exhibit comparatively lower neutralizing activity
(Figure 1C) [171–174]. Mapping the antigenic sites on RVFV envelope glycoproteins using
mAbs has helped identify specific epitopes crucial for neutralization [175]. The crystal
structures of RVFV and SFTSV glycoproteins help elucidate the mechanisms of neutraliza-
tion [176]. The Gn structure of these viruses reveals three subdomains (domains I, II, and
III), displaying a compact triangular shape [176]. Importantly, helices α6 in subdomain III
of the Gn head are a key component for neutralization, as demonstrated by the structure of
SFTSV Gn and human monoclonal nAbs [176]. The structural insights suggest that nAbs
may impede phenuivirus glycoprotein rearrangement, hindering the exposure of fusion
loops in Gc to endosomal membranes upon virus entry into the host cell [172,176,177].
The structure indicates that domain III is an ideal region recognized by specific nAbs,
while domain II is likely recognized by nAbs that cross-react with related viruses [176].
Another study identified two major neutralization sites on RVFV Gn corresponding to
positions (173TQEDATCK180) and (271CPPK274) [172]. Similar findings were observed using
SFTSV human mAbs, binding a linear epitope in the ectodomain of Gn and effectively
neutralizing all clinical isolates of SFTSV [178]. Additionally, a recent study identified two
TOSV epitopes within the amino-terminal half of Gn as the primary targets for human
nAbs [179]. In RVFV and TOSV infection, Abs targeting NSs have been reported, albeit in
low levels [180–182].

Human infections with RVFV, SFTSV, and TOSV lead to the development of nAbs,
exhibiting similar serological kinetics across all three viruses [171,178,183,184]. Patients
infected with these viruses generate virus-specific IgM early at symptoms onset, with IgG
Abs emerging around 15–30 days from onset, which can persist for years in convalescent
sera [180,181,185,186]. Ab responses have been proven to contribute to protection and
improved clinical outcomes in SFTSV-infected human patients. nAbs targeting SFTSV
Gn play an essential role in the survival of patients with SFTS, detected in survivors but
not fatal cases, potentially due to B cell class switching failure [187–189]. Several animal
studies have also confirmed protective immunity post-RVFV infection and glycoprotein
subunit vaccination, correlating with the development of virus-specific nAbs [172,190–193].
Intriguingly, the passive transfer of non-neutralizing Gn Abs demonstrated a capacity
to restrict RVFV disease progression in BALB/c mice [194]. The efficacy of Abs against
Gn SFTSV was also demonstrated in mice immunized with a Gn mRNA vaccine, pro-
ducing robust nAbs that fully protect mice from a lethal dose of SFTSV, resulting in no
fatalities [195]. Additional passive serum transfer experiments revealed that sera collected
from IFNAR−/− mice inoculated with recombinant SFTSV GPC, but not with N, conferred
protective immunity against lethal SFTSV challenge in naïve mice [79].

Clearly, Ab responses are effective in protecting against infections with Phenuiviridae
viruses, underscoring the importance of developing mAb-based therapeutics. The well-
characterized nature of RVFV, SFTSV, and TOSV facilitates the design of Ab therapeutic
strategies targeting broadly recognized antigenic epitopes, which could serve to protect
against potential pathogenic viruses yet to emerge from this family.
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4.3. Hantaviridae

Studies have consistently demonstrated that patient-derived Abs predominantly tar-
get Gn and Gc, followed by N (Figure 1C) [196,197]. Despite decades of research on
hantaviruses, the intricate arrangement of Gn/Gc remains largely unknown, although
four Gn protomers and four Gc protomers are thought to make up the surface exposed
spikes [198,199]. It is noteworthy that Gn constitutes the distal part of the spike and is
exposed to the extracellular space, in contrast to Gc, which is less exposed [200]. Recent
antigenic mapping studies and the functional characterization of nAbs against hantaviruses
have provided insights into their targets and mechanisms. Two broadly nAbs to SNV
target the interface between Gn/Gc and domain I of Gc, neutralizing through fusion in-
hibition [201]. Another study characterized a highly potent SNV nAb targeting the Gn
subcomponent of the heterodimer assembly, crucial for viral entry [202]. Other Abs spe-
cific to ANDV block viral entry, targeting different antigenic sites on the head domain of
Gn [201]. Earlier studies mapped critical residues on Gc essential for neutralization against
PUUV [203,204]. nAbs against PUUV Gc recognize conserved regions in the fusion loop
sequences and the main chain of variable Gn sequences, effectively locking the Gn/Gc
heterodimer in its prefusion conformation [205,206]. In contrast, non-neutralizing Abs
against Gn, isolated in rabbits immunized with HTNV Gn, target spatially distinct epitopes
in the N-terminal region of the HTNV Gn ectodomain [207]. Although less frequent, studies
on Abs against N elicited during HTNV natural infection indicate the presence of N-specific
IgG, particularly in early infection in human patients [196]. B cell epitopes in the PUUV N
protein, evaluated in immunized bank voles, localized within the amino-terminal region of
the protein, elicit N-specific IgG during early infection in human patients [116,208]. The
in silico prediction of B cell epitopes in ANDV and SNV N proteins reveals promiscuous
epitopes identified in the C-terminus of the protein [209].

Efforts to establish a link between Ab responses and protection against infection with
hantaviruses have shown promising results. The preclinical evaluation of mAbs against
Gn/Gc showed they were highly protective against lethal challenge in a Syrian hamster
model of ANDV infection [210,211]. Single doses of an nAb recognizing both Gn and Gc
protected Syrian hamsters and bank voles challenged with highly virulent ANDV and
PUUV [206]. Early evidence indicates that an nAb response to either Gn or Gc alone is
also sufficient to prevent HTNV infection in hamsters [212]. Furthermore, HTNV mAbs
targeting glycoproteins have provided a protection against challenge in various rodent
models [213,214]. Among a panel of murine mAbs recognizing HTNV N and Gn, only
Gn-specific Abs provided full protection in vivo against HTNV infection in susceptible
mice that received monoclonal nAbs one day before and two days after being exposed to
HTNV [215].

In humans, the humoral response plays a significant role in providing protective
immunity against hantaviruses [97]. Passive transfer of hyperimmune ANDV human sera
to treat HCPS showed a decrease in the case fatality rate [216]. Low titers of IgG Abs
are associated with moderate-to-severe disease outcomes of HFRS and HCPS [217–223].
Neutralizing mAbs isolated from SNV- and ANDV-infected human patients have shown
therapeutic efficacy at clinically relevant doses in hamsters infected with these viruses [217].

Ab therapeutic trials for hantaviruses are primarily focused on targeting Gn and Gc,
with the goal to generate robust and long-lasting nAbs responses [224]. Given the pivotal
role of the humoral response in protection against multiple hantaviruses, future work
should prioritize the development of broadly nAb therapeutics.

4.4. Nairoviridea

Despite limited structural information regarding the CCHFV envelope, Gc has been
identified as the primary target of host nAbs (Figure 1C). Most mAbs used in antigen
mapping are isolated from immunized mice [225,226]. A recent study addressed this gap
by designing a trimeric protein including most of the ectodomain region of the CCHFV
Gc [227]. The structure confirmed that CCHFV Gc is a class II fusion protein; unexpectedly,
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however, CCHFV Gc adopted hybrid architectural features of the fusion loops compared to
hantaviruses and domain III from phenuiviruses [227]. The modeled target sites were vali-
dated by a separate study analyzing serum Abs from CCHFV human survivors [227,228].
These studies revealed six distinct sites in the Gc subunit targeted by potent Abs, with
major neutralizing activity concentrated against the highly conserved fusion loop in the
C-terminus of the Gc and domain II [228]. Abs targeting the fusion loop site effectively
block the insertion of the fusion loop into the target membrane, while those binding to
domain II prevent the conformational transition of Gc by blocking the formation of the post-
fusion homotrimer [227]. Additionally, CCHFV encodes a secreted glycoprotein (GP38) of
unknown function that is also a target of non-neutralizing Abs [229]. mAbs recognizing N
were also reported in sera from humans infected with CCHFV and animals infected with
NSDV [230–232].

Contrary to the direct correlation between neutralization and protective potency ob-
served in some viral infections, the Ab response to CCHFV does not strictly adhere to
this pattern. Studies testing nAbs specific to Gc in mice demonstrated partial or limited
protection [225,233]. In contrast, non-neutralizing Abs targeting the Gn polyprotein pre-
cursor (pre-Gn) and/or GP38 provided protection in mice, especially when administered
prior to viral challenge [225,233,234]. To date, 13G8 has been identified as the sole pro-
tective mAb against CCFHV in STAT1−/− mice, demonstrating its binding to GP38 at
a subnanomolar affinity [229]. Interestingly, the effectiveness of GP38-targeting Abs in
providing protection depend on complement activity, suggesting that Ab effector functions,
such as complement-mediated lysis and phagocytosis, play a crucial role in protecting
against severe disease [233]. These findings underscore the potential utility of existing
recombinant mAbs against CCHFV, while indicating the need for new mAbs with enhanced
potency and additional functions beyond neutralization. Responding to this need, a recent
study illustrated the efficacy of bispecific antibodies (bsAbs) by incorporating variable
domains from a wide range of nAbs to boost their antiviral efficacy. The structural basis of
the mechanism of action of these bsAbs shows the two Fabs (ADI-36121 and ADI-37801)
acting in concert to block membrane fusion, with one targeting the fusion loops and the
other blocking Gc trimer formation [235,236].

CCHFV infection triggers the production of nAbs in human patients, detected as early
as 10 days after disease onset [237]. Notably, undetectable levels of nAbs are observed
in fatal cases, while survivors exhibit low levels, suggesting that Abs may play a role in
protection from lethal CCHFV infection [237]. Our knowledge about the efficacy of human
Abs generated in response to CCHFV infection is limited to IgM and IgG seroprevalence
studies, although a few recent studies isolated CCHFV-specific mAbs against glycoprotein
and GP38, validating their protective efficacy in mice [229,235]. Nevertheless, a major gap
in our knowledge regarding CCHFV is the unknown mechanisms of viral entry into the
cell. As such, studies focusing on mAbs that can block viral entry, as well as target the
GP38, of nairoviruses may help improve the design of future Ab therapeutics.

4.5. Arenaviridae

Distinct patterns of antibody responses are observed in Old and New World are-
naviruses, reflecting differences in Abs and their protective potency [238,239]. While New
World viruses typically elicit robust nAb responses, Old World viruses generally evade
such responses (Figure 1C) [239]. However, in both cases, Abs primarily target the sur-
face GPC [240]. Arenavirus GPC is composed of a receptor-binding subunit GP1 and a
transmembrane fusion subunit GP2 [200].

The weak Ab response against LASV can be attributed to the unique structure
of the LASV GPC, which mediates entry into target cells and is the primary target of
nAbs [241,242]. The virion form of GPC is metastable and heavily glycosylated, presenting
a thick carbohydrate coat that challenges the elicitation of nAbs [239,241]. The glycan
shield mainly serves to evade immune responses and can undermine the protective, neu-
tralizing capacity of Ab immunity [241]. Another challenge for the development of potent
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Abs is the existence of several distinct LASV lineages, each improving resistance to Ab
neutralization [241,243].

Targets for nAbs in LASV survivors were identified in one of the largest anti-LASV
Abs isolation studies to date, defining the canonical Abs competition groups: GP1-A,
GPC-A, GPC-B, and GPC-C [244]. Half of the mAbs isolated bind the GP2 fusion subunit
(GPC-B), one-fourth recognize the GP1 receptor-binding subunit (GP1-A), and the remain-
ing fourth are specific to the assembled GPC, requiring both GP1 and GP2 subunits for
recognition (GPC-C, GPC-A) [245–248]. nAbs recognize the same pattern of epitopes on
the JUNV glycoprotein [249]. The isolated mAbs against GPC in mice and JUNV survivors
strongly bind GP1, responsible for receptor recognition, mimicking an important receptor
contact [249,250]. A JUNV GP2-directed mAb prevents membrane fusion by binding to
an intermediate form of the protein on the fusion pathway [251]. mAbs specific to MACV
were also found to have a potent neutralization activity in vitro against pseudotype and
native MACV [252].

Protective Ab responses directed against viral proteins in animals have also been char-
acterized. LASV GPC immunization using various formulations induces potent protective
humoral responses in animals, also confirmed by passive transfer experiments [253]. Even
though these immunization strategies mostly induce binding but non-neutralizing Abs,
they still provide protection, likely facilitated by cellular immune responses or antibody-
dependent cellular cytotoxicity [253–255]. LCMV induces Abs against N and GP2 soon
after infection, reaching higher titers, whereas nAbs exclusively target GP1 and remain
undetectable for the first two months after infection in mice [256–259].

nAbs may not be the sole determinate of survival in humans acutely infected by LASV.
Surprisingly, half of individuals who successfully recover from LASV infection either fail to
produce nAbs or do not achieve effective titers, even during late convalescence and several
months of follow-up [140,260–262]. The development of low nAb titers may not occur until
at least two months post-infection, a delay reflected in the persistence of IgM Abs against
LASV GPC and a disruption in the expected class switching to IgG during the course of
human infection [263].

Early attempts at passively transferred serum therapy in humans underscored the lim-
ited protective potency of nAbs against LASV infection [140]. The failure of this approach
was directly linked to the use of whole plasma, which may contain low nAb levels, or the
inability of Abs to target mutated virus strains [140]. Nevertheless, ongoing research aims
to investigate whether nAbs with virus strain specificity, delivered in sufficient quantity,
can serve as an effective treatment for LF when provided passively. The limited successful
treatment of LASV infection in cynomolgus macaques and LASV patients has been re-
ported, using plasma from LASV survivors as a treatment modality [140,262]. Conversely,
administering neutralizing mAbs to non-human primates provided protection against
severe LF, even when given at low doses and late in the disease course [264].

In contrast to LASV, nAbs play a crucial role in virus clearance for Argentine hem-
orrhagic fever (AFV) patients infected with JUNV [265]. Convalescent plasma stands
out as the most promising, and currently the only, approved treatment for AHF [266].
Patients with AHF who were treated with immune plasma within eight days of disease
onset had a much lower mortality rate than those given normal plasma [267]. Moreover,
the generation of nAbs has been established as a key measure of successful vaccination
against JUNV [268]. A potential therapeutic approach, utilizing a humanized anti-GPC
neutralizing mAb, demonstrated protective efficacy against JUNV challenge in non-human
primates [269]. Notably, while a variety of potential vaccines have been explored, the only
available vaccine for an arenavirus is the live-attenuated Candid#1 strain of the Junin virus,
which is exclusively licensed in Argentina and has been in use since 1992 for people at risk.
The FDA has not approved this vaccine due to the possibility that the virus may revert back
to a more transmissive or pathogenic strain [270].

Considering the promising prospects of mAb therapy for arenaviruses, future research
should prioritize enhancing the neutralizing potency of Abs for more efficient and poten-
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tially cross-functional therapeutic use. Moreover, relying solely on plasma transfer as a
therapy for JUNV is challenging due to limitation in quantity, variability in quality, and
inherent safety risks, such as the potential transmission of transfusion-borne diseases. A
deeper characterization of human mAbs is essential to improve the array of therapy options
available for LASV, JUNV, and other arenaviruses.

5. Bunyavirales Vaccines and Therapeutic Strategies

The history of Bunyavirales vaccines is marked by the absence of licensed or globally
approved vaccines for human use against any bunyavirus. In response to RVFV outbreaks,
two single-dose live-attenuated vaccines (DDVas and RVFV-4S) are undergoing preclinical
development for potential human use [271]. Another promising candidate, an adenovirus-
vectored vaccine (ChAd-Ox1 RVF) expressing RVFV glycoproteins, has advanced to phase
I clinical studies following demonstrated efficacy in animal models [272,273]. Additionally,
the inactivated virus vaccine Hantavax, targeting HTNV and the Seoul virus (SEOV), has
progressed to human clinical trials in Korea and China [274,275]. Encouragingly, ongoing
phase 2 trials in the US are evaluating DNA-based vaccines targeting HTNV, PUUV, and
ANDV [224].

The slow progress in developing effective Bunyavirales vaccines can be attributed
in large part to the lack in research funding and the unclear guidelines for producing
vaccine candidates against these relatively newly emerging and diverse viruses. Despite
considerable efforts to assess vaccine efficiency in animal models, the preference between
inducing T cell responses or Abs remains unclear. Furthermore, safety and efficacy elements
have not been adequately explored for Bunyavirales vaccination trials in animals. In certain
cases, such as orthobunyaviruses, the lack of knowledge concerning the host adaptive
immune response impedes the prediction of vaccine candidate behavior.

Bunyavirales vaccines should ideally generate a balance of potent T cells and nAbs
capable of clearing the virus. This is made possible by an in-depth characterization of
the mechanistic correlates of immunity during infection, disease, and/or vaccination
(Figure 2A). However, defined correlates of immunity have yet to emerge for most viruses
within the Bunyavirales order. For example, glycoprotein-based vaccines in the Phenuiviri-
dae family, such as DNA vaccination against SFTSV glycoprotein, mainly produce cell-
mediated immunity with no detectable Abs against the glycoprotein [76]. In contrast,
glycoprotein-based vaccines against RVFV induce strong protective nAbs [172,190,193].
Notably, non-neutralizing glycoprotein Abs can also restrict RVFV disease progression
in mice [194]. In the Hantaviridae family, evidence from glycoprotein recombinant vac-
cines shows that Abs alone are sufficient to protect against infection, while glycoprotein
peptide-based vaccines in other studies induce strong CD8+ T cell responses [212]. For the
Nairoviridae family, CCHFV glycoprotein vaccines primarily promote protection through
CD8+ T cell-,mediated mechanisms, with neutralization not proven necessary for pro-
tection, as GP38 vaccines achieve protection though non-neutralizing Abs [122,123,233].
Similarly, glycoprotein-based vaccines provide protection primarily via cellular immunity
against LASV infection [254,255]. Furthermore, vaccines targeting the N protein have
faced challenges in inducing full protection for certain bunyaviruses in animals, while N
mRNA vaccines induced protection against CCHFV infection mostly through cell-mediated
responses [35,79,123]. Non-structural proteins have not been considered as vaccine candi-
dates for any bunyaviruses, although their efficacy remains to be determined.

The induction of potent nAb responses seems to be preferential for viruses within
Phenuiviridea, Hantaviridea, Nairoviridae, and Arenaviridae (New World viruses). Given the
potency of Abs against these viruses, Ab-based therapies have been considered as a post-
exposure treatment modality. mAbs have been identified in animals to protect against some
bunyavirus infections, such as anti-GP38 in CCHFV [233], anti-glycoprotein in LASV [264],
and anti-glycoprotein JUNV [276]. A patent for the humanized Ab against SFTSV has also
recently been registered (CN102942629B) [178]. Studies involving neutralization assays and
the passive transfer of serum from immunized or infected animals to recipients provide
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insights into potential Ab-based therapeutic options [212,221,277,278]. An understanding
of adaptive immune responses has also guided the exploration of treatment options based
on cytokine mediators. For instance, the transfer of Abs to block specific cytokines, as in the
case of SFTSV, is thought to provide protection [279]. Notably, the transfer of anti-IL-6 Abs
significantly increased the survival of mice following SFTSV infection [279]. This approach
is particularly relevant, given that SFTSV infection induces the production of high levels of
IFN-γ and IL-6 in the serum, lymph nodes, and spleen [279].
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design necessitates in-depth characterization of mechanistic correlates of immunity involving im-
munoinformatics analysis to help identify T cell and antibody targets, followed by ex vivo and in vivo
characterization of adaptive immune responses during infection and/or vaccination. (B) Design of
vaccine candidates should be tailored towards preventing or treating infections by specific viruses,
with a long-term goal of potentially developing and testing cross-protective Bunyavirales vaccines.
(C) Various delivery modalities can be employed for vaccine candidates including traditional ap-
proaches like inactivated/live attenuated viruses or protein-based vaccines, or more novel methods
such as mRNA vaccines or monoclonal antibody therapies.

Despite these developments, innovative vaccine approaches capable of inducing
potent T cell responses have been explored in certain infections, where T cells are implicated
as a crucial correlate of protection [280,281]. This is particularly noteworthy in CCHFV and
LASV, as well as being potentially applicable to all other viruses within the Bunyavirales
order [122,270]. For example, non-infectious bacterial toxins have been shown to deliver
full-length viral antigens into the cells to induce potent CD4+ and CD8+ T cell responses
via the MHC I and II pathways [282–285]. Whether these fusion immunogens can serve as
T cell-based vaccines to help improve Ab-based vaccines and therapeutics in the context of
Bunyavirales infections is an area of active investigation.

Creating an ideal Bunyavirales vaccine is a complex process that involves various other
considerations. Bunyavirales outbreaks are infrequent; however, when they do occur, they do
so most often in resource-limited regions [286–289]. This phenomenon has resulted in a lack
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of emphasis on bridging the gaps necessary to develop vaccines against these viruses. With
constrained support, the comprehensive characterization of adaptive immune responses
to each specific virus becomes an impractical endeavor. Consequently, the most viable
option to developing effective Bunyavirales vaccines likely relies on the design and testing
of universal, cross-protective vaccines capable of targeting multiple bunyaviruses within
each of the families (Figure 2B). The observed cross-reactivity within each viral family
lends feasibility and applicability to such an approach, opening avenues for significant
advancements in combating these infectious threats, regardless of vaccine or therapeutic
modality (Figure 2C) [145,173,290–293].

6. Concluding Remarks

With no globally approved vaccines for any virus in the order and only a few in
early stages of clinical trials, the current state of Bunyavirales awareness requires strategic
interventions. Despite the efforts addressed in this review to understand the dynamics of
virus-specific adaptive immune response, substantial gaps persist in the field, emphasizing
a need for strategies to address the challenges in vaccine development and the study of
diseases induced by viruses within the Bunyavirales order.
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2. Abudurexiti, A.; Adkins, S.; Alioto, D.; Alkhovsky, S.V.; Avšič-Županc, T.; Ballinger, M.J.; Bente, D.A.; Beer, M.; Bergeron, É.; Blair,
C.D.; et al. Taxonomy of the order Bunyavirales: Update 2019. Arch. Virol. 2019, 164, 1949–1965. [CrossRef] [PubMed]

3. Kuhn, J.H.; Adkins, S.; Alioto, D.; Alkhovsky, S.V.; Amarasinghe, G.K.; Anthony, S.J.; Avšič-Županc, T.; Ayllón, M.A.; Bahl, J.;
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