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Abstract: Nephropathis epidemica (NE), a mild form of hemorrhagic fever with renal syndrome
(HFRS), is an acute zoonotic disease endemic in the Republic of Tatarstan. This study aimed to assess
the impact of rosuvastatin on the clinical and laboratory results of NE. A total of 61 NE patients
and 30 controls were included in this study; 22 NE patients and 7 controls received a daily dose of
rosuvastatin (10 mg) for ten consecutive days. Serum samples were collected on days 1, 5, and 10 after
admission to the hospital. These samples were analyzed to determine the levels of lipids, cytokines,
and kidney toxicity markers. Our findings indicate that rosuvastatin reduced the duration of the
second wave of fever and alleviated back pain and headache symptoms. Additionally, low-density
lipoprotein cholesterol (LDL-C) serum levels were significantly decreased on days 5 and 10 upon
rosuvastatin treatment. Furthermore, rosuvastatin decreased the levels of cytokines in the serum,
particularly proinflammatory cytokines IL-1β and IL-8. NE patients had significantly altered levels
of the kidney toxicity markers albumin and osteopontin. The data from our study provide evidence
supporting the therapeutic potential of rosuvastatin in NE cases.

Keywords: nephropathia epidemica; statins; rosuvastatin

1. Introduction

Nephropathia epidemica (NE) is a mild form of hemorrhagic fever with renal syn-
drome (HFRS); a zoonotic disease endemic in Tatarstan, Russia [1]. The infection is ac-
quired through inhaling virus-contaminated aerosols or direct contact with infected small
mammals [2]. Orthohantavirus puumalaense (PUUV), a member of the Orthohantavirus genus,
is commonly isolated from NE patients and local rodents [3]. Previous studies have demon-
strated that PUUV is non-cytopathic in vitro [4], suggesting indirect mechanisms of disease
pathogenesis. It has been proposed that a “cytokine storm” contributes to the pathogenesis
of NE, as demonstrated by the activation of chemokines and proinflammatory cytokines [5].
Additionally, changes in serum lipid composition, specifically lower high-density lipopro-
tein cholesterol (HDL-C) levels have been observed in NE patients [6]. Our research has also
revealed an association between low triglyceride levels and the upregulation of interferon
γ (IFNγ) and interleukin (IL)-12 in NE serum [6]. Therefore, it could be suggested that the
decreased level of HDL-C and cytokine-induced inflammation are contributing factors in
the pathogenesis of NE.

Orthohantaviruses are enveloped viruses that use membrane fusion mechanisms to
release ribonucleocapsids into the cytoplasm [7]. The composition of membrane lipids
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therefore contributes to the early stages of virus entry. Cifuentes-Munoz et al., demon-
strated that cholesterol depletion of cell membranes significantly reduced orthohantavirus
infectivity [8]. Another study, by Chiang et al., also identified cholesterol-dependent
mechanisms as one of the main pathways for orthohantavirus entry [9]. Cholesterol is a
component of raft domains [10], which play a role in sorting membrane molecules, receptor
expression, and signal transduction [11]. The available evidence suggests that cell mem-
brane cholesterol contributes to orthohantavirus infection, as depletion of this molecule
leads to decreased infectivity of orthohantaviruses [12,13]. It has been proposed that the
interaction between orthohantavirus glycoproteins and the cell membrane depends on the
abundance of cholesterol.

NE is characterized by activating inflammatory mediators and cytokines [14–16].
Previous studies have demonstrated that serum levels of tumor necrosis factor α (TNF-α)
and IL-1β correlate with the severity of the disease [14,17]. Additionally, plasma levels
of IL-6 are a suggested indicator of NE severity [16]. Serum levels of IL-6, as well as the
chemokines CXCL10, CCL2, and CCL3, have been found to correlate with the clinical
symptoms of NE [14]. Our data also identified multiple upregulated cytokines in the serum
of NE patients, further supporting the role of a “cytokine storm” in the pathogenesis of
the disease [15]. In addition to contributing to disease severity and symptoms, increased
serum cytokine levels may also affect lipid composition as TNFα, IL-1, and IFNα can
stimulate hepatocyte fatty acid synthesis in vitro [18]. This increased lipid synthesis was
observed when doses of cytokines used were similar to those that induce fever in vivo [19],
a common physiological reaction to elevated cytokine levels [20]. Notably, triglycerides
can further promote TNF-α production by leukocytes, establishing a positive feedback
loop [21].

Orthohantavirus sensitivity to cholesterol levels suggests that disruption of sterol
synthesis may be a potential target for therapeutic development [12]. Statins are a group
of drugs that reduce cholesterol biosynthesis [22] by inhibiting the 3-hydroxy-3-methyl-
glutaryl coenzyme A (HMG-CoA) reductase, a rate-limiting enzyme in cholesterol syn-
thesis [23] and could be a supplemental treatment option for NE and HFRS. We therefore
aimed to investigate the therapeutic efficacy of rosuvastatin, a statin that inhibits HMG-CoA
reductase [24]. Additionally, rosuvastatin targets hepatocytes to increase the expression of
low-density lipoprotein cholesterol (LDL-C) receptors [25], which could potentially lower
LDL-C levels in the serum by increasing lipid uptake from circulation.

We analyzed the therapeutic efficacy of rosuvastatin (10 mg/day for 10 days) on
clinical symptoms and laboratory data in patients with NE. We then evaluated the effects of
the statin on NE symptoms, lipid and cytokine levels in the serum, and markers of kidney
toxicity.

2. Materials and Methods
2.1. Subjects

Serum samples were collected from 61 patients diagnosed with moderate NE and
30 controls at the Agafonov Republican Clinical Hospital for Infectious Diseases in the
Republic of Tatarstan. The serum samples were collected on days 1, 5, and 10 after hos-
pitalization. Additionally, urine samples were collected on day 10 of hospitalization.
Clinical and laboratory records of the patients were also collected. The diagnosis of NE
was established based on clinical presentation and confirmed serologically by detecting
anti-orthohantavirus antibodies using ELISA. The samples were collected following the
standard operating procedure protocol used in the hospital for diagnosing orthohantavirus
infection and stored at −80 ◦C until further use.

2.2. The Severity of the Disease

The severity of the disease was determined according to the National Diagnostic Crite-
ria for infectious diseases by Yuschuk and Vengerov, as well as recently updated criteria [26].
Moderate NE was characterized by fever (39.5 ◦C), headache, frequent vomiting, lumbar
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pain, abdominal pain, hemorrhages, oliguria (<300 mL/day), increased serum levels of
blood urea nitrogen (BUN) (>18 mM/L), and serum creatinine (sCr) (>300 µM/L).

2.3. Statin Treatment

All 61 patients received standard therapy for NE, which aimed to maintain fluid and
electrolyte balance and control fluid output. None of these patients developed severe
thrombocytopenia requiring platelet transfusion, and hemodialysis was not required. A
sub-group of 22 patients received rosuvastatin (ros-NE; 10 mg once daily for ten days)
in addition to standard therapy. Blood and serum samples were collected from these
patients on day one of hospitalization, prior to the initiation of treatment. Follow-up
samples were collected on days 5 and 10. The patients receiving only standard therapy and
those receiving standard therapy combined with rosuvastatin were similar in age, sex, and
disease severity.

2.4. Controls

Of the controls, 7 received rosuvastatin (ros-control; 10 mg once per day for ten days).
Serum samples were collected from these controls on day one before receiving the first dose
of rosuvastatin and on days 5 and 10 during the treatment period.

2.5. Inclusion Criteria

Males and females aged 17–90 years old diagnosed with a moderate form of NE were
included in this study.

2.6. Exclusion Criteria

Patients with mild and severe forms of NE were excluded. Patients younger than
17 years old were also omitted. Additionally, patients with co-morbidities including di-
abetes, hypertension, chronic kidney insufficiency, and cancer were excluded from this
study.

2.7. Ethics Statement

The Ethics Committee of the Kazan State Medical Academy (KSMA) approved this
study, and signed informed consent was obtained from each patient and control according
to the guidelines adopted under this protocol (protocol 6/11 of the meeting of the Ethics
Committee of the KSMA dated 26 November 2020).

2.8. Othohantavirus ELISA

The Hantagnost diagnostic ELISA kit (Institute of Poliomyelitis and Viral Encephalitis,
Moscow, Russia) was used to detect hantavirus-specific antibodies following the manufac-
turer’s instructions. Briefly, serum samples from NE patients and controls were diluted
1:100 in PBS and incubated for 60 min at 37 ◦C in a 96-well plate coated with pre-adsorbed
orthohantavirus antigens. After three washes (0.5% Tween20 in PBS, PBS-T), the wells were
incubated with anti-human IgG-HRP conjugated antibodies (1:10,000 in PBS-T, American
Qualex Technologies, San Clemente USA) for 30 min at 37 ◦C. Subsequently, the wells
were washed three times with 0.5% Tween20 in PBS, followed by incubation with 3,3′,5,5′

Tetramethylbenzidine (Chema Medica, Moscow, Russia). The reaction was stopped by
adding 10% phosphoric acid (TatKhimProduct, Kazan, Russia). The data were measured
using a microplate reader Tecan 200 (Tecan, Switzerland) at OD450 with a reference OD650.

ELISA results were calculated using following equation:

PC = ODs/ODc

PC—positivity coefficient;
ODs—optic density at 450 of the patient’s serum sample;
ODc—optic density critical.
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ODc = ODcontr + 0.3

ODcont—optic density of negative control serum samples.

2.9. Serum Lipid Analysis

Cholesterol levels were determined using a Cholesterol LiquiColor Test on the Hu-
mastar 600 biochemical analyzer as per the manufacturer’s instructions. A measurement
method of an enzymatic colorimetric (CHOD-PAP) assay with an anti-lipid factor was
used.

The level of triglycerides was determined using a Triglycerides LiquiColor Test (Mono)
on the Humastar 600 biochemical analyzer, according to the manufacturer’s instructions. A
measurement method of an enzymatic colorimetric (GPO-PAP) assay with an anti-lipid
factor was used.

The level of LDL-C and HDL-C was determined using an LDL Cholesterol LiquiColor
Test or HDL Cholesterol LiquiColor Test, respectively on the Humastar 600 biochemical
analyzer as per the manufacturer’s instructions with a direct homogeneous enzymatic
measurement method.

2.10. RT-PCR Detection and Sequencing of PUUV Transcripts

Total RNA was extracted from 100µL of blood using the TRIzol® reagent (Life Tech-
nologies, Carlsbad, CA, USA). cDNA synthesis was performed using the Thermo Scientific
RevertAid Reverse Transcriptase (Thermo Fisher Scientific, Waltham, MA, USA) following
the manufacturer’s instructions. Two rounds of PCR were conducted to amplify the S
segment target sequences. The PCR products were subsequently sequenced to confirm the
orthohantavirus strain. The primers used for the first round of amplification were: PUUV-
39S-F3 (forward) and PUUV-S-R1496 (reverse) [27]. For the second round of amplification,
the primers used were PUUV-S-F704 (forward) [27] and PUUV-S-R1496 (reverse), resulting
in a product of 836 bp.

PCR products were purified using the Isolate II PCR and Gel Kit () and subjected
to sequencing using the ABI PRISM 3730 Big Dye Terminator 3.1 sequencing kit (ABI,
Waltham, MA, USA). The obtained sequences were deposited in the GenBank database
under the accession no. OR420714-OR420724.

Phylogenetic analysis of PUUV sequences was conducted using the maximum like-
lihood method based on the Tamura–Nei model in the MEGA v6.0 software [28]. The
analysis included several S-segment sequences of the GenBank PUUV strains recently
isolated from bank voles in the RT and some other regions of Russia. The sequence of the
Tula orthohantavirus S segment was used as an outgroup.

2.11. Multiplex Analysis

A total of 48 analytes were analyzed in serum samples using Bio-Plex multiplex
magnetic bead-based antibody detection kits (Bio-Rad, Hercules, CA, USA), following the
manufacturer’s instructions. In this study, we used the Bio-Plex Pro Human Cytokine
21-plex and Bio-Plex Human Cytokine 27-plex panels. Urine samples were analyzed using
the Bio-Rad Human Kidney Toxicity Panel 2 (Bio-Rad, Hercules, CA, USA), which detects
albumin, beta-2-microglobulin (β2M), cystatin C, neutrophil gelatinase-associated lipocalin
(NGAL), osteopontin, and trefoil factor 3 (TFF3). Serum or urine aliquots of 50 µL were
analyzed, and a minimum of 50 beads per analyte were acquired. Each analysis included
standards and quality controls. Median fluorescence intensities were measured using a
Luminex 100 or 200 analyzer (Luminex, Austin, TX, USA). Each sample was analyzed in
triplicate. Standard curves for each cytokine were generated using standards provided
by the manufacturer, and data analysis was performed using the MasterPlex CT control
software 1.0 and MasterPlex QT analysis software (MiraiBio, Alameda, CA, USA).
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2.12. Statistical Analysis

Statistical analysis was conducted using the R environment 2.0 [29]. A p-value < 0.05
was considered statistically significant and was determined using the Kruskal–Wallis test
with Benjamini–Hochberg adjustment for multiple comparisons.

3. Results
3.1. PUUV Genetic Variations in NE Patients

To confirm that variations in clinical signs and symptoms were not due to differences
in infecting strains of PUUV, blood samples were collected on day 1 of hospitalization and
used for RNA extraction to analyze PUUV genetic variants. Orthohantavirus RNA was
detected in 14 and 9 NE and ros-NE patients, respectively. The partial S segment sequences,
633 nt long, of the PUUV strains were isolated from five NE and six ros-NE patients. We
found that all identified PUUV strains are closely related to the strains circulating in the
bank vole populations in the RT belonging to the Russian (RUS) genetic lineage [27,30,31]
(Supplemental Figure S1). We also found that PUUV strains isolated from each group of
patients did not form a separate clade and were grouped.

3.2. Patients

All 61 patients received standard treatment upon admission to the hospital. NE
patients were diagnosed with a moderate form of the disease, which did not necessitate
thrombocyte transfusion or hemodialysis. Rosuvastatin therapy was initiated on day 1
and continued for ten days. Blood samples were collected on three occasions during
hospitalization: on days 1, 5, and 10. The clinical signs and symptoms of the NE and ros-NE
patients are summarized in Table 1.

Table 1. Clinical signs and symptoms of NE patients.

NE ros-NE p Value

Sex (m/f) 36/3 21/1 1 *

Age (years) 36.23 ± 11.08 36.95 ± 12.63 0.93 §

Fever 1 (days) 6.44 ± 2.73 5.64 ± 2.15 0.27 §

Fever 2 (days) 0.82 ± 1.70 0.00 ± 0.00 0.01 §

Lower back pain (days) 6.54 ± 4.25 4.09 ± 2.16 0.02 §

Vomiting (yes/no) 12/27 7/15 1 *

Diarrhea (yes/no) 15/24 3/19 0.047 *

Headache (days) 6.21 ± 2.91 3.91 ± 1.02 0.001 §

Insomnia (days) 2.58 ± 3.09 1.82 ± 1.76 0.6 §

§—Kruskall–Wallis test. *—Exact Fisher test.

3.3. Analysis of Clinical Laboratory Data in NE Patients and Controls

In NE patients without rosuvastatin, there were increased serum levels of urea on
days 1 and 5, while a prolonged increase in creatinine, alanine aminotransferase (ALT), and
aspartate aminotransferase (AST) levels was observed on days 1, 5, and 10 compared to
controls (Table 2). Low serum levels of HDL-C were detected on days 1, 5, and 10 compared
to the controls (Table 3).
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Table 2. Clinical laboratory test results for all patients.

Days NE Control
NE vs.

Control
(p Value)

ros-NE ros-Control

ros-NE
vs. ros-
Control

(p Value)

NE vs.
ros-NE

(p Value)

Urea
(mM/L)

1 10.77 ± 8.95

4.42 ± 1.07

<0.001 8.07 ± 3.70

4.17 ± 0.65

0.005 0.77

5 11.46 ± 9.65 <0.001 8.27 ± 4.35 0.002 0.93

10 5.27 ± 1.65 0.10 5.72 ± 2.62 0.07 0.91

Creatinine
(mg/dL)

1 210.77 ± 206.13

85.22 ± 11.84

<0.001 156.09 ± 75.21

86.14 ± 10.19

0.002 0.29

5 204.18 ± 178.03 <0.001 156.64 ± 96.35 0.002 0.95

10 105.95 ± 34.06 <0.001 100.36 ± 21.32 0.17 0.30

ALT
(units/L)

1 51.35 ± 32.27

20.04 ± 4.32

<0.001 71.03 ± 34.65

16.71 ± 4.42

<0.001 0.21

5 58.26 ± 41.74 <0.001 68.79 ± 36.93 <0.001 0.36

10 71.78 ± 81.72 <0.001 80.00 ± 58.50 <0.001 0.60

AST
(units/L)

1 65.88 ± 58.06

22.35 ± 3.47

<0.001 72.66 ± 38.62

20.29 ± 4.50

<0.001 0.25

5 53.51 ± 28.53 <0.001 61.30 ± 26.64 <0.001 0.28

10 46.09 ± 28.93 <0.001 46.50 ± 25.73 <0.001 0.72

Leukocytes
(cells/µL
×109)

1 9.91 ± 3.45 10.96 ± 3.35 0.24

5 10.21 ± 3.58 11.21 ± 3.34 0.16

10 9.16 ± 2.25 9.55 ± 2.27 0.56

Platelets
(cells/µL)

1 91.05 ± 54.74 91.05 ± 61.51 0.82

5 171.00 ± 101.25 170.14 ± 76.59 0.74

10 261.25 ± 95.92 272.09 ± 54.93 0.97

Hemoglobin
(g/dL)

1 144.92 ± 29.55 154.09 ± 21.17 0.37

5 135.56 ± 15.73 141.59 ± 14.26 0.16

10 139.21 ± 10.67 143.86 ± 14.67 0.23

ESR
(mm/h)

1 14.39 ± 9.83 14.59 ± 4.82 0.38

5 19.41 ± 14.38 14.00 ± 5.68 0.43

10 19.18 ± 11.74 12.77 ± 5.48 0.11

Urine protein
(mg/dL)

1 0.70 ± 0.90 0.83 ± 2.07 0.85

5 0.07 ± 0.17 0.01 ± 0.06 0.09

Urine
gravity

1 1014.92 ± 7.48 1015.14 ± 8.45 0.98

5 1009.59 ± 5.88 1008.23 ± 4.70 0.44

10 1014.92 ± 4.94 1016.05 ± 5.28 0.50

Urine
volume

(ml/day)

1 883.46 ± 706.31 938.18 ± 577.58 0.57

5 2152.44 ± 1150.92 1976.82 ± 1437.28 0.26

10 2188.21 ± 892.52 2210.91 ± 1023.77 0.74

Potassium
(mEq/L)

1 4.06 ± 0.53 4.32 ± 0.53 0.08

5 4.16 ± 0.53 4.39 ± 0.58 0.15

10 4.20 ± 0.36 4.28 ± 0.54 0.61

antibody
(PC)

IgM
IgG

11.6 ± 5.2
13.1 ± 7.4

13.8 ± 3.6
19.2 ± 8.0

0.04
0.005

ESR—erythrocytes sedimentation rate; Antibody—anti-orthohantavirus antibodies analyzed using the Hantagnost
diagnostic ELISA kit (Institute of Poliomyelitis and Viral Encephalitis, Moscow, Russia); PC—positivity coefficient.
Anti-orthohantavirus antibodies were analyzed in serum collected on the 5th day of hospitalization.
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Table 3. Serum lipids in NE and ros-NE patients.

Days NE Control
NE vs.

Control
(p Value)

ros-NE ros-Control

ros-NE
vs. ros-
Control

(p Value)

NE vs.
ros-NE

(p Value)

Control
vs. ros-
Control

(p Value)

HDL-C
(mM/L)

5 0.92 ± 0.18 2.56 ± 0.82 >0.001 0.84 ± 0.25 1.82 ± 0.65 0.001 0.40 0.47

10 1.04 ± 0.21 2.50 ± 1.30 >0.001 1.01 ± 0.37 1.41 ± 0.64 0.11 0.34 0.12

LDL-C
(mM/L)

5 2.40 ± 0.81 3.13 ± 1.05 0.14 1.64 ± 0.76 2.86 ± 1.03 0.004 0.003 0.67

10 2.59 ± 0.88 3.26 ± 1.02 0.27 1.87 ± 1.03 2.77 ± 1.80 0.27 0.01 0.25

Triglyceride
(mM/L)

5 2.64 ± 1.70 0.82 ± 0.16 >0.001 2.46 ± 0.93 0.80 ± 0.22 >0.001 0.74 0.99

10 2.87 ± 1.60 1.15 ± 0.38 >0.001 2.55 ± 0.89 1.27 ± 0.53 0.004 0.97 0.77

3.4. Analysis of Rosuvastatin Treatment on Clinical Signs and Symptoms in NE Patients

Rosuvastatin reduced the duration of the second wave of fever, lumbar pain, and
headache compared to that in NE without rosuvastatin treatment (Table 1). Additionally,
ros-NE patients had higher serum levels of anti-orthohantavirus IgM and IgG antibodies
compared to NE patients (Table 2).

3.5. The Effect of Rosuvastatin on Serum Lipid Levels

The impact of rosuvastatin on serum lipid levels in ros-NE patients and the correspond-
ing controls was also assessed. In the controls, rosuvastatin treatment had no significant
effect on serum levels of HDL-C, LDL-C or triglycerides (Table 3).

Serum levels of triglycerides were higher in the NE patients than in controls. This
increase was not inhibited by rosuvastatin treatment and serum triglyceride levels remained
significantly higher than corresponding controls at all time points (Table 3). NE patients had
significantly lower serum HDL-C than the controls; however, rosuvastatin treatment did
not affect these levels. Furthermore, serum LDL-C was reduced in NE patients compared
to controls although not statistically significantly. These LDL-C levels were further reduced
by rosuvastatin treatment in NE patients and remained lower than in control patients with
or without rosuvastatin treatment (Table 3).

3.6. Effect of Rosuvastatin on Urine Kidney Toxicity Markers in NE Patients

The impact of rosuvastatin on kidney function was assessed using the Human Kid-
ney Toxicity Panel 2 Immunoassay (Bio-Rad, Hercules, CA, USA). There were limited
effects of rosuvastatin on the levels of kidney toxicity markers in the controls (Figure 1;
Supplemental Table S1). In NE patients without treatment, lower levels of albumin and
β2M were observed, while cystatin, NGAL, and osteopontin were increased compared to
the corresponding controls (Figure 1; Supplemental Table S1). In ros-NE patients, lower
levels of albumin and β2M and higher levels of NGAL were found compared to the cor-
responding controls (Supplemental Table S1). Interestingly, lower levels of albumin and
osteopontin were found in ros-NE compared to NE patients.
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3.7. Effect of Rosuvastatin on Serum Cytokines in NE Patients

Inflammatory cytokine levels are often found elevated in the NE patients’
serum [14,16,28], suggesting their potential role in the pathogenesis of the disease. There-
fore, our study aimed to investigate the impact of rosuvastatin on serum cytokine levels
(Figure 2).

We observed increased levels of 28 cytokines (IL-1α, IL-1β, IL-4, IL-5, IL-7, IL-8,
IL12p70, IL-13, IL-15, IL-17, IL-18, CCL3, CCL4, CCL5, CCL27, CXCL1, CXCL9, CXCL10,
CXCL12, G-CSF, HGF, IFN-α2, LIF, M-CSF, PDGF-BB, SCF, SCGF-β, TNF-β, and TRAIL) in
the serum of NE patients compared to the controls without statin treatment (Figure 2, red
line and asterisks). Only two cytokines, IL-3 and IL-10, were lower in NE patients than in
the controls.

Levels of only 19 cytokines (IL-2, IL-2Ra, IL-5, IL-6, IL-7, IL-13, IL-16, IL-18, CCL3,
CCL4, CCL27, CXCL9, CXCL10, GM-CSF, IFN-γ, LIF, M-CSF, SCF, and TNF-β) were higher
in ros-NE patients compared to the rosuvastatin-treated controls (Figure 2, blue lines
and asterisks). The levels of proinflammatory cytokines IL-1α, IL-1β, and IL-8 found
elevated in NE patients, were not affected in ros-NE patients compared to corresponding
controls. Also, two cytokines (β-NGF and SCGF-β) were lower in ros-NE patients than in
the rosuvastatin-treated controls (Figure 2, blue line and asterisks).

Next, we compared serum cytokine levels in NE and ros-NE patients (Figure 2). We
observed lower levels of 16 cytokines (IL-1α, IL-1β, IL-4, IL-8, IL12p70, IL-15, IL-17, CCL2,
CCL5, CXCL1, G-CSF, HGF, M-CSF, PDGF-BB, SCGF-β, and VEGF) in ros-NE compared to
NE patients. Additionally, we identified a subset of 16 cytokines (IL-2, IL-2Ra, IL-3, IL-6,
IL-7, IL-9, IL12p40, IL-10, IL-16, GM-CSF, IFN-γ, LIF, MIF, SCF, TNF-α and TRAIL) that
were higher in ros-NE compared to NE patients (Figure 2).
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Figure 2. Effect of rosuvastatin on serum cytokine levels in NE patients. Serum cytokine levels
were analyzed using the Bio-Plex Pro Human Cytokine 21-plex and Bio-Plex Human Cytokine
27-plex panels. Levels of interleukins (A) or cytokines, chemokines, and growth factors (B) in NE
patients relative to controls (red) and in ros-treated NE patients relative to ros-treated controls
(blue). Levels of interleukins (C) and cytokines, chemokines, and growth factors (D) were also
measured in ros-treated NE patients relative to untreated NE patients (green). Data are presented as
a log2−fold change. Asterisks denote statistical significance determined by Kruskal–Wallis test with
Benjamini–Hochberg adjustment for multiple comparisons.

4. Discussion

We found that rosuvastatin had a beneficial effect on the severity of specific clinical
symptoms in NE cases. A single dose of rosuvastatin administered for ten days reduced the
duration of the second wave of fever, lumbar pain, and headache. These findings suggest
that including rosuvastatin as a supplementary treatment could improve NE symptoms. We
believe that the effect of rosuvastatin was linked to its anti-inflammatory effects which have
been demonstrated in vitro [32] and in vivo [33,34]. It has been suggested that the inhibitory
effect of statins on inflammation is due to the reduced production of proinflammatory
cytokines [32,35]. In this study, rosuvastatin reduced the serum levels of only a few
proinflammatory cytokines, namely IL-1α, IL-1β, and IL-8.

IL-1α and IL-1β belong to the IL-1 cytokine family, which is frequently associated
with pathological inflammation [36]. The role of IL-1α in the pathogenesis of inflammation
is supported by multiple studies [37–39]. It has been suggested that IL-1α, released by
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damaged or stressed cells, establishes an “inflammatory loop” by recruiting inflammatory
hematopoietic cells to the site of infection [40]. These hematopoietic cells maintain the
inflammatory environment by enhancing the release of inflammatory cytokines.

We observed a decreased serum level of IL-1β in ros-NE patients. IL-1β is a product
of activated inflammasomes [41]. Its role in the pathogenesis of inflammation is established
as a critical component of the “cytokine storm”, which can lead to tissue injury [42,43].
Reports have demonstrated the therapeutic potential of blocking IL-1β in patients with
acute infections and autoimmune diseases [44–46]. Furthermore, our findings indicated that
rosuvastatin reduced the serum level of IL-17, a proinflammatory cytokine [47]. It appears
that IL-1β may prime pathogenic γδT17 and Th17 cells [48] and synergize with IL-17 to
recruit neutrophils to the site of inflammation [49]. IL-8 is stimulated by IL-1β [50] and
was lower in NE patients treated with rosuvastatin. IL-8 is a potent activator of neutrophils
and a key mediator of autocrine and paracrine inflammation [51,52].The decreased level
of IL-1β observed likely contributes to the lower levels of IL-8 measured in NE patients
treated with rosuvastatin. These data support the hypothesis that the therapeutic efficacy of
rosuvastatin in NE patients may be attributed to a reduced inflammatory response resulting
from decreased release of proinflammatory cytokines.

Additionally, we observed that rosuvastatin decreased LDL-C serum levels on days
5 and 10 in NE patients. LDL-C molecules act as major cholesterol carriers in the blood,
delivering it to tissues with high sterol demands [33]. These sites could include infected
endothelial cells, as orthohantavirus infection increases the demand for cholesterol in cell
membranes [13]. A study by Kleinfelter et al., demonstrated that orthohantavirus infection
requires high cholesterol concentrations in cellular membranes for fusion between the
viral and cell membranes [13]. The authors suggest the therapeutic potential of lowering
serum cholesterol levels in patients with orthohantavirus infection. Similar suggestions
were made by Petersen et al. [12]. The role of cholesterol in the entry of PUUV and DOBV
orthohantaviruses causing NE has been shown by Leonovich and Dzagurova [53]. The
authors demonstrated reduced infectivity of these orthohantaviruses in vitro after treatment
with statins. It was suggested that the reduced infectivity resulted from lower cholesterol
levels in the culture medium of cells treated with statins. Our results demonstrate that the
level of LDL-C, the primary carrier of cholesterol in the serum, was reduced in patients
treated with rosuvastatin. This reduction in LDL-Cs could lead to a decreased cholesterol
supply to the orthohantavirus replication site.

Another contribution to the therapeutic efficacy of lowering LDL-C is their role in
the pathogenesis of inflammation. LDL-C can contribute to inflammasome activation by
depositing cholesterol into the endothelium [54]. This cholesterol deposition can form
crystals capable of activating the inflammasome and releasing IL-1β [55]. The deposition of
cholesterol is enhanced when endothelial cells are damaged and produce a large quantity
of extracellular matrix proteins with a high affinity for LDL-C [55]. These high-LDL-C-
affinity proteins create a positive feedback loop that promotes cholesterol deposition. As a
result, a disturbed cholesterol accumulation in the endothelial wall could contribute to the
hypertension observed in convalescent NE patients [56,57].

Regarding kidney injury in NE, we analyzed urine levels of albumin, β2M, cystatin C,
NGAL, osteopontin, and TFF3 as markers of kidney toxicity. Our findings demonstrated
signs of kidney injury in NE, supporting our previous report [58]. Interestingly, rosuvastatin
substantially reduced the extent of deviation in two of these kidney toxicity markers in
NE compared to controls. The markers affected in rosuvastatin-treated NE compared to
untreated NE patients were albumin and osteopontin, while changes in β2M, cystatin,
NGAL, and TFF3 levels were limited. Markers of tubular injury, such as cystatin and
NGAL, were elevated in NE patients compared with uninfected controls, which supports
the hypothesis of tubular injury/necrosis as an explanation for AKI in NE [59,60]. We found
that rosuvastatin reduced the urine level of cystatin, although this was not statistically
significant.
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Two kidney toxicity markers were reduced in ros-NE patients compared to NE pa-
tients: albumin and osteopontin. Urine albumin levels are commonly used as a diagnostic
and prognostic marker of kidney injury [61]. A study by Yu et al. has demonstrated that
urinary albumin was a better indicator of kidney tubular injury compared to TFF3 [62]. It
should be noted that, in NE, histological patterns of kidney tissue damage are explained as
tubulointersticial nephritis with tubular proteinuria [63,64]. Osteopontin is another marker
of AKI [65]. This was observed in tubular epithelial cells, suggesting that the expression of
this protein could be changed during tubular damage [66,67]. Indeed, increased expression
of osteopontin was demonstrated in the kidney epithelial cells of small mammal models
of hypoxia-induced kidney damage [68], polycystic kidney disease [69], and angiotensin
II-induced tubulointerstitial nephritis [70]. It has been suggested that osteopontin can con-
tribute to the pathogenesis of kidney injury by attracting Th1 cells and by supporting Th1
and Th17 differentiation [71–73]. However, a protective role of osteopontin has also been
demonstrated as it was shown to reduce apoptosis and promote regeneration and repair of
tubular cells [74]. Reduced osteopontin in ros-NE urine may indicate lesser recruitment
of pathologic leukocytes to the kidney tissue compared to that in NE. Additionally, lower
osteopontin could indicate a limited requirement for epithelial repair, suggesting restricted
tubular damage. This assumption is supported by the lower observed levels of urinary
albumin in ros-NE patients compared to NE patients. Therefore, reduced urine albumin
and osteopontin in ros-NE patients compared to NE patients suggest the limited tubular
injury could be attributed to statin treatment.

It is worth noting that rosuvastatin had limited interference with the development of
the humoral immune response in NE patients. This statement is supported by the finding
that the serum levels of anti-orthohantavirus IgM and IgG were higher in NE patients with
statin treatment than those without. Our data indicate that rosuvastatin may reduce the
severity of NE clinical symptoms without affecting the immune response.

In conclusion, we demonstrate that rosuvastatin reduces LDL-Cs in NE patients
compared to the corresponding controls (Table 3). Additionally, rosuvastatin improves
kidney tubular function, as evidenced by the reduction in kidney toxicity markers in
statin-treated patients compared to untreated patients (Figure 1, Supplemental Table S1).
Also, there was significant reduction in some clinical symptoms such as fever, back pain,
diarrhea and headache (Table 1). These effects of statins are likely attributed to their anti-
inflammatory properties as serum level of pro-inflammatory cytokines IL-1α, IL-1β, and
IL8 were lower in ros-NE compared to NE (Figure 2). These data provide some evidence for
the therapeutic potential of rosuvastatin in NE. However, it is important to acknowledge
that this study had a small group of patients, and further validation through large cohort
studies and potential dosage alterations would be beneficial to confirm the therapeutic
efficacy of statins in NE.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/v16020306/s1, Figure S1: Phylogenetic Tree; Table S1: Analysis
of kidney toxicity markers (ng/mL) in NE.
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