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Abstract: HepB LiveTest is a machine learning decision support system developed for the early
detection of hepatitis B virus (HBV). However, there is a lack of evidence on its generalisability. In this
study, we aimed to externally assess the clinical validity and portability of HepB LiveTest in predicting
HBV infection among independent patient cohorts from Nigeria and Australia. The performance of
HepB LiveTest was evaluated by constructing receiver operating characteristic curves and estimating
the area under the curve. Delong’s method was used to estimate the 95% confidence interval (CI) of
the area under the receiver-operating characteristic curve (AUROC). Compared to the Australian
cohort, patients in the derivation cohort of HepB LiveTest and the hospital-based Nigerian cohort
were younger (mean age, 45.5 years vs. 38.8 years vs. 40.8 years, respectively; p < 0.001) and had a
higher incidence of HBV infection (1.9% vs. 69.4% vs. 57.3%). In the hospital-based Nigerian cohort,
HepB LiveTest performed optimally with an AUROC of 0.94 (95% CI, 0.91–0.97). The model provided
tailored predictions that ensured most cases of HBV infection did not go undetected. However, its
discriminatory measure dropped to 0.60 (95% CI, 0.56–0.64) in the Australian cohort. These findings
indicate that HepB LiveTest exhibits adequate cross-site transportability and clinical validity in the
hospital-based Nigerian patient cohort but shows limited performance in the Australian cohort.
Whilst HepB LiveTest holds promise for reducing HBV prevalence in underserved populations,
caution is warranted when implementing the model in older populations, particularly in regions
with low incidence of HBV infection.

Keywords: HepB LiveTest; hepatitis B virus; machine learning decision support system; clinical
validity; external validation

1. Introduction

Hepatitis B virus (HBV) is a significant public health concern, causing liver infection
and leading to substantial morbidity and mortality worldwide. With over 296 million
people living with HBV globally, 90% of infected individuals are unaware of their infection
status, missing out on essential clinical care [1,2]. In 2019, HBV-related deaths reached
a staggering 820,000 [1], emphasising the urgent need for an innovative approach to en-
hance early detection and stop transmission within populations. Addressing this global
health challenge necessitates a multifaceted strategy that integrates advances in digital
innovations and population health. By leveraging this interdisciplinary approach, health-
care professionals can be empowered to detect HBV infections earlier and provide timely
linkage to care.
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Our prior investigation into HBV infection levels in Nigeria revealed a prevalence of
9.5% [3], highlighting the substantial burden of HBV in the West African country. Even
countries with lower prevalence, such as Australia, grapple with disproportionately high
infection rates among vulnerable and marginalised communities. These include individuals
from diverse ethnic backgrounds, Indigenous people such as the Aboriginal and Torres
Strait Islander populations, people who use drugs, and incarcerated individuals [4]. Early
detection of HBV is therefore critical, as delayed diagnosis can lead to severe and life-
threatening clinical complications of liver damage and end-stage hepatocellular carcinoma.

To support the World Health Organization’s goal of eliminating viral hepatitis by
2030 [5], there has been growing interest in developing machine learning models that
integrate routine pathology data to predict HBV infections earlier [6–8], considering that
specialised HBV tests are expensive and not readily available in resource-constrained
settings. These prediction models can serve as decision support systems, enhancing patient
care and providing actionable insights to clinicians in routine clinical practice.

In a recent study, we developed HepB LiveTest, a machine learning decision support
system for early detection of HBV infection based on routine blood test data, including
hepatitis B surface antigen (HBsAg) immunoassay results [9]. The model learned from
patient data, identified patterns, and intelligently predicted a patient’s HBV infection status
with a discrimination threshold of 90%. This innovative approach holds immense poten-
tial in revolutionising the landscape of HBV diagnosis and patient care, enabling timely
interventions for improved health outcomes. Given the potential impact of the machine
learning decision support system, we sought to externally validate its generalisability and
robustness in independent patient cohorts from different settings and populations. This
is an important step towards establishing the cross-site transportability and robustness of
HepB LiveTest across diverse settings and populations, thus contributing to its seamless
integration into routine clinical workflow.

Conducting external validation separately from the model development has been
recommended to ensure methodological rigor, reduce biases, and increase the transparency
of performance evaluation and generalisability in new and diverse patient populations.
This approach enhances the credibility and practical utility of clinical prediction models in
a real-world setting [10–13]. Unfortunately, most prediction research only focuses on model
development and many clinical prediction models lack multi-site testing [14–16], leading
to discrepancies between locally reported performance and cross-site generalisability. This
often leads to a plethora of proposed models, with little evidence about the extent of their
generalisability and under what circumstances. Confusion then ensues, promising models
are often quickly forgotten [17] and, of more concern, many models may be used or advo-
cated without appropriate evaluation of their cross-site transportability. Therefore, external
validation is crucial in assessing a model’s performance beyond its development dataset,
considering that covariate–outcome relationships may vary between patient populations
and settings.

Predictor and outcome measurements may vary for various reasons, thus distort-
ing the performance of a prediction model. Variability in measurements can arise from
differences in equipment specifications, timing of data collection, subjectivity in interpreta-
tion, and nuances in biomarker quantification. These factors can introduce heterogeneity
in predictive modelling studies, based on electronic health records. Such variations in
measurement procedures may significantly impact the discriminative performance of the
prediction model and also compromise its clinical validity in different patient populations
and settings—and seemingly “better” measurements at validation may also not necessarily
lead to improved model performance [18,19]. This underscores the need for comprehensive
and robust validation of prediction models in different population settings.

The main objective of this study is to independently validate HepB LiveTest in two
external patient cohorts from Nigeria and Australia and evaluate the case-mix variability
on performance drift. This geographic validation is critical in determining whether HepB
LiveTest accurately predicts HBV infection in patients from diverse populations/settings,
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providing insights into the model’s generalisability and potential clinical utility. By evaluat-
ing the performance of HepB LiveTest in independent patient cohorts, we aim to contribute
valuable evidence to inform the adoption and appropriate use of this machine learning
decision support system for early detection of HBV infection.

2. Methods

The study protocol was approved by the Institutional Review Board of the University
of Ilorin Teaching Hospital (ERC PAN/2020/06/0022) and the Human Research Ethics
Committee of the Australian National University (2019/803) as minimal-risk research
that used retrospective patient data collected from routine clinical care and, as such, the
requirements for informed consent were waived.

The study was reported in accordance with the Transparent Reporting of a Multi-
variable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) guideline for
prediction model validation [10].

2.1. Cohort Selection/External Validation Dataset

To assess the clinical validity and cross-site transportability of HepB LiveTest model,
it was externally validated in independent Australian and Nigerian patient cohorts, with
datasets collected from the Sullivan Nicolaides Pathology (SNP Taringa, Queensland,
Australia) and the University of Ilorin Teaching Hospital (UITH, Kwara State, Nigeria),
respectively, across two different time periods.

SNP is Australia’s largest private pathology referral laboratory, regarded for its exper-
tise in routine pathology testing. It delivers comprehensive laboratory services to hospitals
in Queensland, northern New South Wales, and the Northern Territory, with the central
laboratory in Brisbane designed to foster interdisciplinary collaboration between specialist
pathologists and clinical scientists, while UITH is one of the major Federal Teaching Hospi-
tals in Nigeria, located within the North Central Geopolitical Zone of Nigeria at latitude
8◦30′ N and longitude 4◦33′ E. The hospital provides care to a large number of patients
from Kwara State and equally serves other neighbouring states, including Oyo, Niger, Kogi,
and Ekiti.

The two validation datasets from SNP and UITH included patients suspected of
HBV infection and who had undergone HBsAg immunoassay testing. Patient samples
to produce the SNP validation dataset were collected between 1 June 2011 and 31 May
2012, and samples to produce the UITH validation dataset were collected between 1 April
2018 and July 2021. All patient records were anonymised and de-identified. Patients
with a definitive HBsAg immunoassay result and routine blood test values measured
during pathology examination were considered. Patients with incomplete data profiles
were excluded.

2.2. Outcome Definition and Assessment

Patients were first evaluated using routine clinical chemistry and haematology blood
tests, and those suspected of HBV infection were referred for enzyme immunoassay testing.
A suspected HBV case is defined as a case that was compatible with standard clinical
description [20]. The primary outcome was HBV infection, assessed using HBsAg im-
munoassay, with results classified as either HBsAg-positive or HBsAg-negative outcome.
A positive HBsAg outcome was based on the detection of HBsAg, a serological marker of
infection in patient blood.

2.3. HepB LiveTest Model

HepB LiveTest is a machine learning model for early detection of HBV infection,
translated into a publicly available web app [9]. The model was developed on the basis of
20 routine pathology attributes from 916 patients from the Nigerian Institute of Medical
Research (NIMR) using cutting-edge algorithms, including an ensemble of interpretable
decision trees to obtain decision thresholds to predict patient HBV infection status in real
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time. The model proved to be highly accurate for discriminating HBsAg-positive from neg-
ative patients (accuracy = 85.4%, sensitivity = 91%, specificity = 72.6%, precision = 88.2%,
F1-score = 0.89, AUC = 0.90), with aspartate aminotransferase (AST), white blood count
(WBC), age, alanine aminotransferase (ALT), and albumin as the strongest predictive
markers of infection.

2.4. Statistics and Case-Mix Effect

Patient baseline characteristics were compared between the NIMR derivation cohort
and the UITH Nigerian and SNP Australian validation cohorts. Baseline characteristics
were presented as mean (±SD) for continuous variables, while categorical variables were
summarised by the number of subjects (with percentages). Parametric tests were applied,
since the population data have a normal distribution. The baseline characteristics between
HepB LiveTest derivation cohort and the external validation cohorts were compared using
the one-way ANOVA test (or Student t-test if two groups), and the distribution of the
categorical variables was compared using Pearson’s chi-square test.

Assessing the clinical validity and generalisability of a prediction model typically
involves one fundamental step, which is centred on quantifying the model’s discrimination.
In this context, the discrimination measure of HepB LiveTest model would indicate the
extent to which the model distinguishes between patients with and without HBV infection
in the UITH-Nigerian and SNP-Australian validation cohorts. Discrimination is usually
measured by the C statistic, also known as the concordance index or, for binary outcomes,
the area under the receiver operating characteristic (ROC) curve [21,22]. The performance
of the HepB LiveTest model on the validation cohorts was, therefore, evaluated by con-
structing an ROC curve and estimating the AUC (with a 95% CI) to assess the model
validity across the different population settings. Delong’s method was used to calculate
the 95% confidence interval (CI) of AUROC [23]. The effect of the difference in predictor
values’ distribution on predictive performance was also assessed (i.e., case-mix effect).
This was conducted by calculating the mean for each continuous variable in the validation
cohorts and comparing with the ones in the HepB LiveTest derivation cohort. All statistical
analyses were performed using R software [24]. The R source code is available online at
https://github.com/bia-ml/HepB-LiveTest-validation.

3. Results

Patient characteristics in the UITH-Nigerian and SNP-Australian validation cohorts in
comparison with the original HepB LiveTest derivation cohort.

The final SNP-Australian sample size was 9102, while the UITH-Nigerian sample size
was 258. Current evidence suggests a minimum effective sample size of 100 for external
validation [25]. Patients in HepB LiveTest derivation cohort and the UITH-Nigerian and
SNP-Australian validation cohorts differed in their baseline characteristics, including demo-
graphics and most pathology attributes (Table 1). Compared to the Australian validation
cohort, patients in the derivation and UITH-Nigerian validation cohorts were younger
(mean age, 45.5 years vs. 38.8 years vs. 40.8 years, respectively; p < 0.001). In addition, the
SNP-Australian validation cohort had a lower baseline ALT level (57.9 U/L vs. 101 U/L vs.
182.5 U/L) and lower incidence of HBsAg positivity (1.9% vs. 69.4% vs. 57.3%) than those
in the derivation and the UITH-Nigerian validation cohort, respectively. The reference
interval of the pathology markers contained in the dataset are presented in Supplementary
Table S1.

https://github.com/bia-ml/HepB-LiveTest-validation
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Table 1. Patient characteristics in the UITH-Nigerian and SNP-Australian validation cohorts in
comparison with the original HepB LiveTest derivation cohort.

Patient Characteristics
HepB LiveTest

Derivation Cohort
(n = 916)

UITH-Nigerian Validation
Cohort (n = 258)

SNP-Australian
Validation Cohort

(n = 9102)
p-Value

Demographics
Age, years 38.8 ± 12.5 40.8 ± 13.5 45.5 ± 18.3 <0.001 a

Sex, male, (n, %) 540 (58.9%) 154 (59.6%) 4811 (52.8%) <0.001 b

Pathology markers
ALT, U/L 101.0 ± 225.2 182.5 ± 344.1 57.9 ± 199.3 <0.001 a

AST, U/L 79.4 ± 173.7 128.4 ± 251.2 —
ALKP, U/L 84.5 ± 40.1 85.7 ± 45.4 92.4 ± 83.1 0.008 a

Crea, µmol/L 84.3 ± 48.5 81.8 ± 28.7 86.9 ± 56.2 0.148 a

TBil, µmol/L 16.3 ± 35.2 18.8 ± 41.5 14.7 ± 28.3 0.029 a

GGT, U/L 27.8 ± 17.5 29.2 ± 19.7 84.1 ± 213.3 <0.001 a

ALB, g/L 37.2 ± 8.1 40.0 ± 6.5 43.2 ± 5.4 <0.001 a

Hb, g/L 139.5 ± 19.0 137.8 ± 19.2 140.3 ± 18.0 0.046 a

Hct, L/L 0.41 ± 0.05 0.4 ± 0.05 0.41 ± 0.05 0.006 a

WBC, 109/L 6.4 ± 3.0 6.9 ± 3.2 7.9 ± 6.5 <0.001 a

PLT, 109/L 252.6 ± 92.0 251.6 ± 102.9 261.9 ± 89.9 0.003 a

MCHC, g/L 340.7 ± 8.1 340.4 ± 8.2 342.2 ± 7.2 <0.001 a

MCH, pg/RBC 30.3 ± 2.6 30.3 ± 2.6 30.6 ± 2.2 <0.001 a

MCV, fL 88.9 ± 7.0 88.9 ± 7.0 89.4 ± 5.9 0.028 a

RBC, 1012/L 4.6 ± 0.6 4.5 ± 0.6 4.6 ± 0.6 0.030 a

RDW, % 14.1 ± 2.0 14.3 ± 2.0 13.8 ± 1.6 <0.001 a

Neut, % 4.96 ± 4.7 4.91 ± 2.7 4.9 ± 2.9 1.000 a

Lymph, % 2.1 ± 1.0 2.1 ± 0.9 2.0 ± 1.6 0.112 a

Presence of HBsAg,
n (%) 636 (69.4%) 148 (57.3%) 173 (1.9%) <0.001 b

Note. Data were presented as mean ± SD for continuous variables and as number (%) for categorical variables.
ALT—alanine aminotransferase; AST—aspartate aminotransferase; ALKP—alkaline phosphate; Crea—creatinine;
TBil—total bilirubin; GGT—gamma glutamyl transferase; ALB—albumin; Hb—haemoglobin; Hct—haematocrit;
WBC—white blood cell; PLT—platelet; MCHC—mean corpuscular haemoglobin concentration; MCH—mean
corpuscular haemoglobin; MCV—mean corpuscular volume; RBC—red blood cell; RDW—red cell distribution
width; Neut—neutrophils; Lymph—lymphocytes. a One-way ANOVA; b Chi-square.

3.1. Performance of HepB LiveTest on External Patient Cohorts

The performance of HepB LiveTest is summarised into a single measure of AUC
(Figure 1), as observed for each external validation cohort. Figure 1 shows that HepB
LiveTest performed optimally in the UITH-Nigerian patients with an AUROC of 0.94 (95%
CI, 0.91–0.97) but showed limited clinical validity in the SNP-Australian patients (0.60; 95%
CI, 0.56–0.64). An AUC value near 1 means that the model has excellent discrimination,
while a value close to 0.5 indicates the model discriminates no better than chance. Hence,
the further the ROC curve is above the line, the better.

For the UITH-Nigerian patients, HepB LiveTest correctly identified at least 9 out of
every 10 HBV patients. To put this result in context, that is an estimated 91% in sensitivity
performance. However, when HepB LiveTest was tested on the SNP-Australian validation
cohort, its performance dropped to 66%. The performance measures in Table 2 corroborate
the findings that HepB LiveTest has adequate cross-site transportability to the UITH-based
patient cohort, providing tailored predictions that ensured most cases did not go unnoticed,
compared to its performance in the Australian population.

Table 2. Other performance measures for HepB LiveTest prediction model in UITH-Nigerian and
SNP-Australian validation cohorts.

HepB LiveTest Performance Sensitivity (%) Specificity (%) ACC (95 CI%)

UITH-Nigerian validation cohort 91.2 83.6 87.9 (83.3–91.6)
SNP-Australian validation cohort 66.4 50.9 51.2 (50.2–52.2)
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Figure 1. HepB LiveTest performance on UITH-Nigerian and SNP-Australian validation cohorts. The
diagonal line represents the baseline that can be obtained from a random classifier and correspond to
an AUC of 0.5.

3.2. Inspection of Dataset Shift on Case-Mix Effect

Dataset shift in terms of the difference in the mean of predictors was observed in
individual features from HepB LiveTest derivation cohort to the validation cohorts. Notable
feature mean differences were found between the HepB LiveTest derivation cohort and
the SNP-Australian validation cohort, and this could influence performance owing to
case-mix effect. The largest differences were in GGT with 202.5% increase and ALT with
−42% decrease. Many of the features between HepB LiveTest derivation cohort and the
UITH-Nigerian validation cohort had similar distributions in mean, as shown in Table 3.

Table 3. Changes in mean value per clinical attribute between HepB LiveTest derivation cohort and
the validation cohorts.

Clinical Attribute
Change in Mean Value %

NIMR-Derivation Cohort and
UITH-Nigerian Validation Cohort

NIMR-Derivation Cohort and
SNP-Australian Validation Cohort

Age, years 5.2 17.2
ALT, U/L 80.7 −42.7
AST, U/L 61.7 —
ALKP, U/L 1.4 9.3
Crea, µmol/L −3.0 3.08
TBil, µmol/L 15.3 −9.8
GGT, U/L 5.0 202.5
ALB, g/L 7.5 16.1
Hb, g/L −1.2 0.6
Hct, L/L −2.4 0.0
WBC, 109/L 7.8 23.4
PLT, 109/L −0.4 3.7
MCHC, g/L −0.1 0.4
MCH, pg/RBC 0.0 1.0
MCV, fL 0.0 0.6
RBC, 1012/L −2.2 0.0
RDW, % 1.4 −2.1
Neut, % −1.0 −1.2
Lymph, % 0.0 −4.8

ALT—alanine aminotransferase; AST—aspartate aminotransferase; ALKP—alkaline phosphate; Crea—creatinine;
TBil—total bilirubin; GGT—gamma glutamyl transferase; ALB—albumin; Hb—haemoglobin; Hct—haematocrit;
WBC—white blood cell; PLT- platelet; MCHC—mean corpuscular haemoglobin concentration; MCH—mean
corpuscular haemoglobin; MCV—mean corpuscular volume; RBC—red blood cell; RDW—red cell distribution
width; Neut—neutrophils; Lymph—lymphocytes.
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4. Discussion

We present the external validation results of HepB LiveTest, a machine learning
decision support system designed for early detection of HBV using routine pathology
markers. Our findings demonstrate that HepB LiveTest performs optimally in the UITH-
Nigerian patient cohort but exhibits limited clinical validity in the SNP-Australian patient
cohort. This suggests the need for caution when adopting the model on older populations
in settings with low incidence of HBV infection and those with similar predictor value
distribution observed in the Australian cohort.

The variability in prediction model performance across different settings and popula-
tions is widely recognised [17,26,27]. Therefore, conducting multiple external validation
studies is crucial to fully understand the generalisability of prediction model. Various
factors, including differences in outcome incidence and variations in the distribution of
predictor values (i.e., case mix), can influence the heterogeneity in model performance
across different settings and populations [18,19,28–32].

In our study, the substantial deviation in HBV incidence between the original HepB
LiveTest derivation cohort and the UITH-Nigerian validation cohort (69.4% vs. 57.3%) from
the low incidence observed in the Australian patient cohort (1.9%) may, in part, explain the
observed performance drift. Therefore, recalibration of the model, considering changes in
infection rates/outcome incidence, may be necessary when applying the model in settings
with low levels of HBV infection.

The presence of heterogeneity in measurement procedures can also significantly impact
the performance of prediction models [18,19,33,34]. Several factors that may contribute
to this variability include variations in clinical practice patterns between clinicians and
geographical locations [35,36], use of different laboratory equipment, degrees of subjectivity
in measurements influenced by clinicians’ experience and backgrounds, and analytical
and race-specific variability in reference intervals of blood test markers [37–41]. Whilst the
degree of difference between measurements during model development and validation
can affect the model’s discriminative performance, seemingly “better” measurements at
validation, such as predictors measured under stricter protocols than in the development
cohort, may also not lead to improved model performance; instead, it could even result in
deteriorated performance [18,19].

In our study, we recognise that the performance drift observed in the Australian
cohort compared to the Nigerian cohort may have been influenced by differences in the
distribution of predictor values (i.e., case mix). The significant differences in certain feature
distributions, such as GGT (202.5% increase) and ALT (−42% decrease), between the HepB
LiveTest derivation cohort and Australian validation cohort may have contributed to the
observed limited clinical validity. Whilst the elevated baseline serum GGT level in the
Australian population might be a reflection of alcohol misuse, the normal baseline ALT
level was expected for a population with low levels of HBV infection. Additionally, the
lack of AST data in the Australian validation cohort, which is an important predictive
marker of HBV infection required by HepB LiveTest, may have influenced the model’s
performance. These findings highlight the potential impact of case-mix variability on the
performance of HepB LiveTest. More broadly, the findings also suggest that multicentre
external validation studies offer the potential to capture heterogeneity across different
populations and settings, thus providing evidence on the appropriate level of model
generalisability within specific contexts.

The incorporation of routine laboratory blood test markers in HepB LiveTest that
are readily available in many outpatient and inpatient clinical settings, along with its
user-friendly interface, makes it potentially deployable for early detection of HBV in Nige-
rian patients, without resorting to expensive second-tier immunoassay testing. However,
during the clinical deployment phase, the model would need to be closely monitored
for necessary updates, particularly when patient demographics and local practice pat-
terns/norms inevitably shift. Continuous monitoring and updates will ensure that the
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model remains adaptable and effective in capturing evolving epidemiological trends and
clinical practice patterns.

The strength of this work lies in the universal availability of the required predictive
pathology markers in the majority of healthcare settings and the validation using data from
external patient cohorts in two different population settings. Three studies have created
a machine learning model to predict HBV infection [6–8]. The three studies employed a
similar approach to HepB LiveTest, using a combination of simple demographic information
and routine blood tests. However, models in all three studies were not translated into
automated point-of-care decision-making tools for further evaluation of clinical impact and
were also not externally validated.

Nonetheless, this study has limitations. It is challenging to fully understand how
ethnic variability and HBV genotypic variation between Nigerian and Australian popula-
tions collectively and independently impact the performance drift of HepB LiveTest. For
example, HBV genotype C is the most frequent genotype in the Australian population,
while genotype E exclusively predominates Nigeria [42]. Genotype differences between
populations may influence the cross-site transportability of machine learning prediction
models due to biological effects [43], modified by the environment and population/genetic
admixture. Further evaluations into specific ethnic and genotypic drivers will be necessary
to determine what biases exist and how they can best be addressed when applying the pre-
trained machine learning model to a new population setting. In addition, the performance
of HepB LiveTest on HBV patients co-infected with HCV or HIV remains unknown, as
the model was only trained on HBV mono-infected patients based on the available data.
These aspects warrant comprehensive investigation to enhance the robustness and clinical
validity of HepB LiveTest across diverse populations and patient profiles.

In conclusion, HepB LiveTest demonstrates adequate geographic validation and gener-
alisability beyond the development cohort, with optimal performance in the hospital-based
Nigerian patient cohort. Future works will be required to assess the interface integration
and implementation of HepB LiveTest within the clinical workflow. It may also be neces-
sary to evaluate the adoption of HepB LiveTest in real-world clinical settings, preferably
through randomised clinical trials, to inform evidence for improved patient outcomes
and process optimisation. As the first, to the best of our knowledge, externally validated
machine learning decision support system for early detection of HBV, HepB LiveTest pro-
vides a platform to drive a reduction in HBV prevalence through timely linkage to care
and optimise the quality of life for millions of HBV patients, particularly in underserved
populations such as Nigeria. Fostering collaboration between population health scientists,
clinicians and software developers will facilitate seamless integration and optimisation
of HepB LiveTest into routine healthcare workflows, streamlining the clinical diagnostic
process and ultimately enhancing patient outcomes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v15081735/s1, Table S1: Laboratory reference intervals for the
routine pathology markers.
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