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Abstract: Hepatitis B virus (HBV) infection is still one of the most dangerous viral illnesses. HBV
infects around 257 million individuals worldwide. Hepatitis B in many individuals ultimately
develops hepatocellular carcinoma (HCC), which is the sixth most common cancer and the third
leading cause of cancer-related deaths worldwide. The innate immunity acts as the first line of
defense against HBV infection through activating antiviral genes. Along with the immune responses,
pro-inflammatory cytokines are triggered to enhance the antiviral responses, but this may result
in acute or chronic liver inflammation, especially when the clearance of virus is unsuccessful. To
a degree, the host innate immune and inflammatory responses dominate the HBV infection and
liver pathogenesis. Thus, it is crucial to figure out the signaling pathways involved in the activation
of antiviral factors and inflammatory cytokines. Here, we review the interplay between HBV and
the signal pathways that mediates innate immune responses and inflammation. In addition, we
summarize current therapeutic strategies for HBV infection via modulating innate immunity or
inflammation. Characterizing the mechanisms that underlie these HBV-host interplays might provide
new approaches for the cure of chronic HBV infection.

Keywords: hepatitis B virus; innate immunity; inflammation; signal pathway; therapeutic strategy

1. Introduction

Hepatitis is a liver inflammatory response which can be repaired itself under certain
conditions, but it can also progress to liver fibrosis, cirrhosis, and liver cancer [1]. The
major cause of hepatitis is the hepatitis viruses. Five major hepatitis viruses have been
identified—hepatitis A virus (HAV), hepatitis B virus (HBV), hepatitis C virus (HCV),
hepatitis D virus (HDV), and hepatitis E virus (HEV)—with HBV being the most infected
and dangerous, causing hepatitis B and affecting 257 million people worldwide [2]. HBV
is highly contagious, spreading through mucous membranes or incomplete skin exposed
to infected blood or other body fluids (saliva, semen, and vaginal fluid) [3]. Currently,
inoculating hepatitis B vaccine is the safest and most effective measure to prevent hepatitis
B. Statistics show that 80–95% of the population has an immune response after the whole
course of hepatitis B vaccine inoculation, and its protective effect can span more than
20 years. However, the level of immune response to hepatitis B vaccine is different among
different individuals, as 5~10% of healthy people cannot produce protective antibody
effectively even after the whole course of Hepatitis B vaccine immunization [3,4]. HBV
has a genome of around 3.2 kb consisting of a complete DNA strand and a partial DNA
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strand [5]. HBV is a member of the Hepadnaviridae family, which contains structural pro-
teins (a reverse transcriptase attached to genome DNA, a core protein, and three envelope
proteins) and non-structural proteins, and its infection depends on the entrance receptor,
sodium taurocholate co-transporting polypeptide (NTCP) [6,7]. The replication of HBV
is broadly divided into the following six stages. (1) Envelope virus adsorption: proteins
expressed by HBV, such as the pre-S1 region of HBV envelope protein L, can bind to NTCP,
thus facilitating the entry of HBV into cells [7]. (2) Nucleocapsid and relaxed circular DNA
(rcDNA) nucleocapsid: the viral envelope is removed and the nucleocapsid containing
rcDNA is released into the cytoplasm [8]. (3) Covalently closed circular (cccDNA) repair:
because cccDNA is the transcription template of viral RNA, it is the first step to convert
rc-DNA into cccDNA after virus infection [9]. (4) cccDNA transcription and translation:
with the help of RNA polymerase II, cccDNA is transcribed as a template into viral RNAs,
including prc-C mRNA/pgRNA and three subgenomic RNAs (2.4 kb, 2.1 KB, 0.7 KB) [9].
(5) pgRNA packaging and reverse transcription: packaging reverse transcriptase and
pgRNA-specific into the newly formed capsid is a critical step in hepadnavirus replica-
tion [9]. (6) Virion assembly: the nucleocapsid containing rcDNA is transported to the
endoplasmic reticulum (ER), and the virion is formed by coating the ER cavity [8].

Thus, a mature HBV particle contains an about 3.2-kb partially double-stranded
rcDNA genome, which consists of a complete minus strand and a partially synthesized
plus strand [8]. The intracellular cccDNA can generate from the repairmen of viral genome
rcDNA in the nucleocapsid of newly infected virus. Besides, the cccDNA can also synthe-
sized from pre-genomic RNA (pgRNA) which is conducted by the reverse transcriptase
(the viral P protein) and completed with generation of a complementary strand [8].

The fate of HBV infection is determined by a complicated series of events that occur
between this virus and the host immune system [10]. HBV infection stimulates quick
immune responses, which usually appears as an acute self-restriction infection and brings
lifetime immunity in adults; however, in newborns and children, the infection may become
chronic with lifetime virus persistence [11]. During the early phase (also called the immune
tolerant phase) of CHB (chronic hepatitis B) infection, due to the lack of host immune
response, liver histology and alanine aminotransferase (ALT) levels are usually normal [12].
Most patients in this phase have minimal liver injury, and prognosis is favorable during
follow-up of up to 10 years [12]. Thus, if the patients can receive effective antiviral therapy
during this phage, they may avoid suffering from progression to hepatitis, cirrhosis, or
HCC. It is widely assumed that adaptive immune response plays a significant role in
HBV infection clearance [13]. On the other hand, the function of innate immunity in HBV
infection does not appear to be well known, which maybe lead to the fact that no effective
approaches have been developed to treat the early subclinical stage of HBV infection [14,15].
As experimental models for research advance greatly, it has progressively been realized
that the role of temporal and spatial immunological alterations as well as innate immune
response is important for the process of HBV infection.

2. Activation of Innate Immune and Inflammatory Response by Hepatitis B Virus

The viral components can quickly stimulate host cell pattern recognition receptor
(PRRs) when virus infects cells. As a result, the expression of type I interferon and in-
flammatory cytokines is activated. The up-regulation of pro-inflammatory cytokines and
interferon-stimulated gene (ISG) expression in infected cells a the common feature of differ-
ent virus infections [16,17]. This usually leads to an innate antiviral response that controls
infection until it is resolved by an adaptive immune response. However, some viruses,
such as influenza viruses, cause cell death due to their cytopathic effect (CPE) [16].

HBV was formerly thought to be a “stealth virus” capable of establishing chronic
infection in hepatocytes by avoiding the host innate defense system, and infection-induced
cell death and CPE were rarely observed in HBV infection/replication cell models [18]. HBV
infections are asymptomatic during the early stage partly because of limited induction of
pro-inflammatory cytokines. In a chimpanzee infection model, the level of ISG expression
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was not altered in the liver by the HBV infection [19]. Meanwhile, during acute HBV
infection, numerous cytokines, including IFN-α, tumor necrosis factor-α (TNF-α), and
IL-15 were mildly activated in blood samples of HBV patients [20]. Although accumulated
evidence has revealed that HBV is recognized by innate immunity as shown inFigure 1,
HBV could only induce pro-inflammatory cytokines to a very limited extent. However, the
fundamental issue to be resolved is the activation of HBV by PRRs.
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Figure 1. The promoting roles of Hepatitis B virus x protein (HBx) in the signal transduction of
innate immunity and inflammation in HBV infection. HBx can activate TLR and nuclear factor-
kappaB (NF-κB) signal pathways which promotes the expression of pro-inflammatory cytokines. HBx
interacts with Janus Kinase 1 (JAK1), promoting the signal transducer and activator of transcription
1/2 (STAT1/2)-mediated ISG expression and STAT3-mediated cytokine expression. HBx promotes
NLRP3 inflammasome activation to accelerate the release of IL-1β and IL-18.

2.1. Toll-like Receptor Pathway Stimulation in HBV Infection

Toll-like receptors (TLRs) are an important component of innate immunity, which
recognize pathogen-associated molecular patterns (PAMPs) such as lipopolysaccharide
(LPS), double-stranded RNA (dsRNA), and single-stranded RNA (ssRNA) to induce in-
tracellular immune response [21]. Accumulated studies have verified the activation of the
TLR signaling pathway under the stimulation of HBV and its viral proteins [22–25].

B cells could be activated by HBV through the TLR2-mediated pathway, possibly
related to antiviral responses in patients with chronic hepatitis B (CHB) [22]. Additionally,
when incubated with M2 macrophages, the HBV core protein accelerates the release of
pro-inflammatory cytokines IL-6 and TNF-α via the TLR2 pathway [23]. Hepatitis B e anti-
gen (HBeAg) significantly elevates TLR4 expression in monocytes of CHB patients, which
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might control the immunotolerance caused by regulatory T cells. HBV x protein (HBx)
encoded by the X gene is important for initiating and maintaining HBV replication and can
bind to cccDNA to activate the transcription of viral promoters [24]. TLR4 expression was
found to be accelerated by transfected HBx in immortalized proximal tubule epithelial cells,
dysregulating the production of IL-6, IL-4, and so on [24]. Specifically, the overexpression
of HBx in hepatic and hepatoma cell lines activates TLR4 downstream signaling compo-
nents such as myeloid differentiation primary response 88 (MyD88), IRAK1, and nuclear
factor-kappaB (NF-κB), contributing to the secretion of IL-6, a major pro-inflammatory
cytokine [25]. It has been discovered that the overexpression of HBx can stimulate the
promoter activity of major vault protein (MVP) to raise its expression, ending up inducing
type-I IFN production in hepatocytes [26,27]. MVP interacts with MyD88 to promote the
type-I IFN release, so it can be concluded that HBx activates TLR-mediated innate immune
response indirectly. Besides, HBx can promote the protein level of DExH-box RNA heli-
case 9 (DHX9) which interacts with MyD88 and accelerate the type-I IFN production [28].
Stimulating MyD88 can lead to transforming growth factor-β-activated kinase 1 (TAK1)
activation, and consequently causes inflammation and interferon production [21,29,30].
It is reported that HBx can activate TAK1 to induce NF-κB and promote the expression
of the CXC Chemokine IP-10 [31]. The oligomerization of tumor necrosis factor receptor-
associated factor 6 (TRAF6) is fundamental for its activation, and HBx has been proved to
promote the oligomerization of TRAF6 to initiate its activity [32]. HBx can interact with
the evolutionarily conserved signaling intermediate in Toll pathway (ECSIT), which is
the partner of TRAF6, and activate NF-kB signaling pathway, resulting in the release of
IL-10 [33].

2.2. NLR-mediated Pathway Stimulation in HBV Infection

Nucleoside binding domain and leucine-rich repeat sequence (NLR) proteins are a
family of intracellular receptor that play an important role in inflammation and innate
immune responses [34–36]. Hepatitis B core protein has been reported to induce liver
inflammation through promoting LPS-mediated NLRP3 inflammasome activation and
increasing the production of pro-inflammation cytokine IL-1β [37]. Furthermore, HBx pro-
motes hepatocyte pyroptosis in a NLRP3 inflammasome-dependent manner by accelerating
the release of IL-1β and IL-18 [38].

2.3. RLR-Mediated Pathway Stimulation in HBV Infection

Through studies on a human liver chimeric mice model, Okamoto et al. discovered
that RIG-I was identified as a sensor protein for HBV pregenomic RNA, by which HBV
activates NK cell-dependent innate immune responses [39]. Retinoic acid-inducible gene
1 (RIG-I)-like receptors (RLRs) sense the double-stranded RNA (dsRNA) produced by
viruses and lead to activation of antiviral responses [40]. Members of the RLRs family
that have been discovered so far mainly include RIG-I, melanoma differentiation-related
gene 5 (MDA5), and genetics and physiology experimental gene 2 (LGP2) [41]. Lu et al.
demonstrated that transfection of the HBV replicative plasmid into Huh7 cells could
increase the MDA5 expression, but not RIG-I. Furthermore, HBV RNAs were found to
activate MDA5 signaling [42].

2.4. JAK/STAT Pathway Stimulation in HBV Infection

JAK/STAT consists of three components: the tyrosine kinase receptor receiving the
signal, the tyrosine kinase transmitting the signal-JAK, and the transcription factor produc-
ing the effect-STAT [43,44]. As the downstream pathway of IFN receptors, the JAK/STAT
signaling must respond rapidly to initiate ISG production [45]. HBx-mediated JAK/STAT
activation plays an important role in stimulating innate immune response during HBV in-
fection. Lee et al. reported that HBx could bind to JAK1 and activate its activity [46]. When
transfected into hepatoma cells, HBx promotes the production of IL-6 that participates in
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the activation of STAT3 [47]. Additionally, another cytokine, IL-34, was also elevated after
HBV infection, and this was due to the activation of STAT3 induced by HBx [48].

2.5. NF-κB Signal Stimulation in HBV Infection

The NF-κB signal is stimulated by different PRRs and mediates innate immune re-
sponse and inflammation [49]. When activated, NF-κB enters the nucleus, binds to the
target DNA, and initiates the transcription of inflammatory genes [50]. Su et al. reported
that the overexpression of HBx could activate NF-κB signaling by inducing phosphory-
lation of IκBa [51]. HBx interacts with p65 (a component of NF-κB complex) to activate
NF-κB and induce metastasis-associated protein 1 (MTA1) that plays a vital role in inflam-
matory responses and tumorigenesis [52]. IkappaB Kinase (IKK) is an enzyme complex
that forms part of the NF-κB signaling pathway. The IKK complex is comprised of three
subunits (IKKα, IKKβ, and IKKγ), the α- and β-subunits are catalytically active, whereas
the γ-subunit has a regulatory function [49]. Furthermore, the overexpression of HBx can
increase the activation of the NF-κB signal to induce pro-inflammatory cytokines through
interacting with IKKγ, boosting IKKα expression, and regulating IKKβ activity [53–56]. In
addition to directly acting on NF-κB components, HBx can also activate the NF-κB pathway
in indirect ways. HBx is able to promote NF-κB activation through regulating ECSIT,
VHL-binding protein (VBP1), amplification in breast cancer 1 (AIB1) or valosin-containing
protein (VCP) [33,57–59].

3. Mechanism of Immunosuppression in Hepatitis B Virus Infection

Accumulated evidence reveals that HBV has established strategies to avoid the innate
immune responses and facilitate its replication [60]. After the nucleocapsid is depolymer-
ized, the rcDNA is transported into the nucleus through the nuclear pore and is further
repaired into the cccDNA [61]. As the cccDNA is the transcription template of viral RNAs,
the rcDNA is converted to cccDNA after infection, which indicates the successful infec-
tion of virus [62]. The cccDNA circulation and viral DNA integration result in persistent
infection of HBV [63]. It appears that HBV remains essentially undetectable to the innate
sensing apparatus throughout the life cycle and is difficult to remove.

Immune evasion by inhibiting RIG-I activation via N6-methyladenosine (m6A) al-
teration conducted by m6A writer enzymes (METTL3 and METTL14) of HBV RNAs has
previously been documented [64]. During HBV infection in HepG2 cells, the phosphatase
and tensin homolog (PTEN) modified by N6-m6A could suppress the innate immune re-
sponse by reducing the phosphorylation of IRF3 and decreasing the production of IFN [65].
After the infection in PHHs, HBV could also attenuate RIG-I-mediated IFN signaling acti-
vation through a complex containing hexokinase [66]. HBV infection in human hepatocytes
inhibits cGAS expression and its function in spite of the fact that the hepatocyte cGAS
pathway is functionally active [67]. Furthermore, the lost sense of infective HBV DNA by
cGAS in primary human hepatocytes (PHH) suggests that the cGAS sensing is impaired
upon HBV infection [67,68]. Our previous studies have revealed that transfection of HBV
plasmids can inhibit IFN/JAK/STAT signaling and its downstream antiviral responses
by inducing the expression of matrix metalloproteinase 9 (MMP-9) and collagen triple
helix repeat containing 1 (CTHRC1) [69,70]. Some studies have demonstrated that NF-κB
activation could lead to the suppression of HBV replication in different cell lines [71–73].
The infection of HBV in HepG2-hNTCP cells upregulates the expression of fibronectin to
inhibit the NF-κB signaling and increase the sensitivity of HBV enhancers, facilitating viral
replication [74]. Overall, evidence is mounting that HBV actively negates the host’s innate
immune response via different known and unknown strategies that are involved in various
components of the innate immune signaling cascade as shown in Figure 2.
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Figure 2. Schematic diagram of the inhibition of HBV protein in innate immunity and inflammation.
HBx impairs IFN activation by inhibiting RIG-I and IRF3/7. HBeAg suppresses TLR-mediated innate
immune response. HBsAg targets TRAF3 and TAK1, and HBV Pol targets IRF3/7 and IKKs, both of
which lead to suppressive effects on the induction of ISGs and pro-inflammatory cytokines during
HBV infection.

3.1. The Immunoregulatory Roles of Hepatitis B Virus e Antigen (HBeAg) and Surface
Antigen (HBsAg)

Hepatitis B e antigen (HBeAg) and surface antigen (HBsAg) are secreted proteins
generated during HBV replication which are used for detecting viral infection. Many
studies have revealed that they have immunoregulatory functions that help the virus evade
the antiviral immune responses.

TLR2 expression in peripheral blood mononuclear cells (PBMCs) and hepatocytes
in HBeAg-positive CHB patients is lower than in HBeAg-negative CHB patients [75].
However, TLR2 expression cannot be altered by the HBV plasmids, which prevents HBeAg
synthesis [76]. Tali et al. reported that HBeAg binds to Toll/IL-1 receptor (TIR)-containing
proteins Mal and TRAM which are important adapters in the TLR2 signaling pathway
and inhibits NF-κB activation and IFN-β promoter activity [77]. Additionally, a study has
revealed that the HepG2 cells stably expressing HBeAg have lower mRNA levels of IFN-α
and IFN-β than control cells [78]. Wang et al. also revealed that HBeAg suppresses the
NF-κB activation via disrupting TRAF6-dependent K63-linked ubiquitination of the NF-κB
essential modulator (NEMO), thus promoting HBV replication and sustaining persistent
viral infection [79].

Plasma HBsAg levels have been reported to be linked to decreased TLR2 and TLR4
ligand-induced proinflammatory cytokine expression in CHB patients’ PBMCs [80]. Several
reports revealed that the treatment of HBsAg could suppress TLR-mediated ERK, JNK, and
NF-κB signaling pathways in monocytes and macrophages [81–83]. In murine hepatocytes,
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the activity of NF-κB, IRF3, and MAPKs could also be attenuated by the overexpression
of HBsAg [84]. Additionally, HBV infection is able to dysregulate the function of myeloid
dendritic cells through HBsAg’s action [85]. Moreover, HBsAg treatment can inhibit the
IFN-α production induced by TLR9 in plasmacytoid dendritic cells (pDCs) [86,87]. The
expression levels of TLR4, -8, and -9 have also been found to be reduced in peripheral DCs
subtypes from individuals with persistent HBV infection [88]. In the human myeloma B-cell
line RPMI 8226, HBsAg dysregulated TLR9 malfunction by inhibiting transcription factor
CREB activation [89]. Deng et al. also found that HBsAg interfered the NF-κB signaling
by binding to the TAK1 and TAB2 complex, leading to an attenuated immunological
response [90]. In addition, a reduction of activated NK cells was found in the liver of HBsAg-
expressing mice, indicating that HBV could affect immune cell activation by regulating
immunosuppressive signal pathways and cytokines [91]. HBsAg, like HBeAg, disrupts the
antiviral immune responses mediated by TLRs [76,77]. Moreover, Wu et al. has found that
HBV particles, HBsAg, and subviral particles could almost completely block TLR-mediated
innate immune responses in mouse parenchymal and nonparenchymal hepatocytes [92].

3.2. The regulatory Role of HBV Core Antigen (HBcAg) in Innate Immunity and Inflammation

HBV core antigen (HBcAg), encoded by spliced pgRNA, was found to block the IFN-
promoter and inhibit IFN-production in murine fibroblasts by binding to the IFN-promoter
as a transcriptional suppressor [93]. Furthermore, HBcAg can inhibit IFN-induced MxA
protein that is a key antiviral protein kinase [94]. As a result, HBcAg is hypothesized to
facilitate HBV replication by decreasing IFN and MxA protein. Ding et al. have recently
reported that the transfection of HBcAg is able to promote the LPS-mediated NLRP3 inflam-
masome activation and induce the release of IL-1β in HepG2 cells [37]. HBcAg was also
found to have suppressive effect on the expression of interferon-induced transmembrane
protein 1 (IFITM1) in HepG2 cells, contributing to HBV replication [95]. It is reported that a
spliced form of pgRNA encodes a new protein called HBSP, which may also downregulate
MxA production [96].

3.3. The Negative Regulatory Activities of HBx in Innate Immune Response

Many studies have found that HBx impairs the innate immune response through
modulating the PRR signal pathways, which aids HBV replication and promotes HCC
progression. Retinoic acid-inducible gene I (RIG-I) can recognize HBV pgRNA and conse-
quently activate MAVS/MDA5/TBK1/IRF3 signaling to initiate IFN transcription, starting
cell innate immune response against HBV [97–99]. HBx promotes MAVS ubiquitination
and proteasome-mediated degradation via the Lys136 site targeted by the ubiquitin E3
ligase RNF125 [100]. HBx prevents the activation of the RIG-I, melanoma differentiation-
associated gene 5 (MDA5) and IFN-β promoters to facilitate HBV replication [53,100].
Moreover, HBx could interact with MAVS to affect its signal transduction [100]. HBx can
activate Parkin, which suppresses the MAVS signaling by binding to the unanchored linear
polyubiquitin chain accumulated on the MAVS [101]. RNA-editing enzymes adenosine
deaminase acting on RNA 1(ADAR1) is a crucial factor in the modulation of endoge-
nous RNA-mediated innate immune response [102]. HBx up-regulates ADAR1 expression
to impede the transcription of MDA5 and RIG-I genes, which suppresses HBV RNA
recognition in hepatocytes [103]. HBx can impair RIG-I/MDA5-mediated innate immune
response by hijacking Sp110, which is a nuclear body protein critical for RIG-I and MDA5
expression [104]. Additionally, HBx could impair IFN production by interacting with
TNF receptor-associated factor 3 (TRAF3), TIR-domain containing adaptor-inducing IFN-β
(TRIF), TBK1, and IRF3 [53]. HBx has been found to downregulate the expression of IFN-α
receptor 1 (IFNAR1) by suppressing the activity of TYK2, and thus impairing extracellular
type-1 IFN-induced signaling in Chang cells [105].

In addition to the suppressive mechanisms of IFN-mediated responses, overexpression
of HBx could inhibit the transcriptional level of tripartite motif containing 22 (TRIM22),
known as an antiretroviral protein in vivo and in vitro [106]. Additionally, HBx may also
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impair immune response by inhibiting the NLR family, such as AIM2. A study has revealed
that HBx not only inhibits the mRNA expression level of AIM2 by stabilizing the enhancer
of zeste homolog 2 (EZH2), but also promotes AIM2 protein degradation in a proteasome-
dependent manner in HBV-infected hepatocellular carcinoma (HCC) cells [107].

3.4. Inhibition of Innate Immunity by HBV Polymerase (Pol)

Several studies have revealed that HBV Pol interferes with IFN-mediated immune
response. Overexpression of HBV polymerase (Pol) suppresses the activation of IRF and
NF-κB, both of which lead to the induction of IFN-β in different cell lines [108]. HBV Pol
inhibits the stimulator of interferon genes (STING) mediated IRF-3 activation in Huh7
cells [109]. By deleting the HBV Pol, HBV Pol has been proven to promote the pathogenesis
and immune evasion in viral infection. A study by Wang et al. revealed that overexpression
of HBV Pol could make HBV infection resistant to IFN treatment [110]. In hepatocytes,
HBV Pol contributes to the suppression of IFN-β via downregulating TBK1/IKKε axis
signaling [111].

In summary, several proteins encoded by HBV exert suppressive functions on cell
innate immunity, helping construct and sustain HBV infection. However, the majority
of the biological associations discovered above still need to be confirmed in proper and
realistic infection in vivo models. The conclusions of many studies summarized above
seem contradictory. For example, the effects of HBV on RLR and IFN signal transduction
exhibit both stimulation and inhibition. Actually, chronic HBV infection has a complicated
course with three phases identified: 1) an immune-tolerant phase with a high HBV DNA
level associated with minimal liver disease; 2) an immune-active phase with a high HBV
DNA level with active liver inflammation; and 3) an inactive phase with a low HBV DNA
level and minimal inflammation and fibrosis on liver biopsy [112]. HBV may influence
these signal pathways of innate immunity by different means in each phase of infection.

4. Drugs and Therapeutic Strategies Targeting Innate Immunity or Inflammation for
HBV Infection

As the mechanism that HBV employed to suppress innate immunity has been uncov-
ered, immunotherapeutic strategies for HBV infection are being developed. Approaches
employing PRR agonists and based on IFN to stimulate innate immunity have been ad-
vocated as a therapy treatment for HBV infection. Simultaneously, it has been proposed
that approaches that efficiently limit HBV replication and viral protein synthesis can be
combined with immunoregulatory therapies in order to avoid the suppressive actions of
HBV proteins on immune responses.

4.1. Antiviral Strategies via Targeting PRRs

It has been demonstrated that the injection of TLR3, -4, -5, -7, and -9 ligands could
reduce intrahepatic HBV replication in HBV transgenic animal models in a non-cytopathic
and IFN-dependent manner within 24 h [113]. Meanwhile, Wu et al. found that the ag-
onists of TLR3, -4 were effective to suppress HBV replication in nonparenchymal liver
cells by promoting innate immune responses independent of MyD88 [114]. These support
the prospect of stimulating the TLR-dependent signaling to treat chronic HBV infection.
Thus, TLR ligands were investigated in in vivo and in vitro assays for inhibiting HBV
replication [115–117]. Actually, the activation of TLR2 and TLR4-mediated innate immune
response can inhibit HBV and WHV replication in hepatoma cells and woodchuck hep-
atocytes, respectively [116]. A study by Lanford et al. revealed that the activation of
TLR7 could lead to the suppression of HBV in chimpanzees [118]. TLR7 agonist, GS-9620,
has been confirmed to have therapeutic efficacy in woodchuck and chimpanzee models.
Quick oral treatment of GS-9620 can inhibit HBV DNA copies in serum and liver for
an extended period of time, accompanied by increment of IFN-α and proinflammatory
cytokines production and activation of natural killer (NK) cells [118]. Niu et al. found
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that GS-9620 can induce numerous antiviral factors in human PBMCs, bringing about
permanent IFN-dependent HBV suppression in PHH and HepaRG cells [119].

The 5′ triphosphorylated RNA-induced activation of RIG-I and IFN-inducible dsRNA-
activated protein kinase (PKR) has been proven to suppress HBV replication in in vivo and
in vitro models [120,121]. The activator of RIG-I, SB9200, can upregulate IFN-α/β and ISGs
activation in the blood and liver of WHV-infected woodchucks, leading to the decrease of
WHV DNA and WHsAg in serum [122].

In addition to the PRR agonists, overexpression of PRR-related adaptors or RIG-
I adaptors such as MyD88, MAVS, and TRIF can significantly control HBV replication
in human hepatoma cells [123,124]. Our previous studies have found that several host
proteins including Golgi protein 73 (GP73), MMP9, and homeobox protein A10 (HOXA10)
are involved in the regulation of HBV replication, which may provide potential strategies
for suppressing HBV replication or reducing infectious inflammation [69,71,125]. Therefore,
effective approaches to control viral infection and alleviate infectious inflammation remain
to be developed.

4.2. IFN-Based Inhibition of HBV Infection

Analysis of serial liver biopsies demonstrated that HBV does not cause substantial
changes in the expression of type I IFNs during the early weeks of HBV infection and
dissemination, and these findings were confirmed in CHB patients [19,126]. IFNs, as critical
elements of the innate immune system, have been shown to limit viral replication by influ-
encing numerous phases during HBV infection [127]. However, HBV was demonstrated to
inhibit the nuclear accumulation of STAT-1 after human IFN-α treatment in a mouse model,
partly explaining the lower expression of interferon-stimulated genes (ISGs) in human
hepatocytes infected by HBV [128]. Long-acting polyethylene glycol (Peg)-IFN-α, on the
other hand, was able to overcome the decrease of HBV-infected hepatocyte reactivity and
produce prolonged increase of human ISGs [129]. Without the participation of the immune
cell response, a higher antiviral action of Peg-IFN-α on human hepatocytes might cause a
considerable drop in circulating HBsAg and HBeAg levels in chimeric mice. A Study by
Belloni et al. also discovered that IFN-αmay induce epigenetic suppression of the cccDNA
minichromosome, decreasing HBV replication in humanized mice [130]. The most common
side effect of IFN-α is the initial influenza-like illness characterized by slight fever and list-
lessness. Other common side effects include fatigue, anorexia, mild hair loss, mood swings,
and so on [12]. IFN-α with antiviral activities and immunoregulatory properties is still the
most effective medicine for the treatment of CHB patients in spite of low response rate and
adverse effects. The administration of nucleotide analogs (NUCs), if combined with IFN-α,
has been proven to be more effective especially in HBsAg clearance [131]. To optimize the
antiviral effectiveness of IFNs and decrease the side effects, a deeper understanding of
the antiviral mechanisms of IFN-α is required. IFN-αmediates cell-to-cell HBV resistance
transmission. Li et al. revealed that IFN-α can cause viral resisting ability to be transferred
from liver sinusoidal endothelial cells (LSECs) to hepatocytes through exosomes [132].
Moreover, multiple IFN effectors have been revealed to be able to suppress viral replication
directly. MxA, which is an interferon-inducible protein, suppresses nuclear transport of
HBV mRNA so as to attenuate the viral replication [133]. Zinc finger antiviral protein (ZAP)
can inhibit HBV replication by reducing HBV RNA levels [134]. Recently, Mao et al. found
that RNA Helicase DDX17, which is the cofactor of ZAP, functions as another intrinsic host
antiviral factor against HBV replication via disrupting pgRNA encapsulation [135].

Beside type-I IFNs, type III IFN, IFN-λ1, 2, and 3 have been shown to have immunoreg-
ulatory effects on both innate and adaptive immune responses. IFN-λ has comparable ISGs
induction activities and antiviral properties similar to IFN-α. Furthermore, IFN-λs have
the potential for less side effects because they communicate through IL-10Rβ and IL-28Ra
which are confined to certain cells, as opposed to the broadly dispersed type-I IFN recep-
tors [136,137]. We have reported that IL-27 and IFN-λ1 are coordinated to suppress HBV
replication, which may provide an effective strategy for curing chronic HBV infection [138].
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5. Conclusions

The cell innate immunity is the host’s first line of defense against HBV infection. After
infection, HBV employs evasion mechanisms to escape from the innate immune responses.
Viral proteins such as HBX, HBV Pol, HBsAg, HBcAg, and HBeAg can inhibit TLRs, the
JAK/STAT pathway, TBK1/IKK, and cytokines through multiple means. Experimental
data have underlined the relevance of innate immunity in the regulation of HBV infection.
Both in vitro and in vivo experimental models have deepened our understanding of innate
immunity and inflammation in HBV infection, providing essential basis for HBV treatment.
Of all the molecules mentioned above, IFN-α is the most promising therapeutic target, as
IFN-α not only has a direct antiviral effect, but also enhances the response of NK cells.
However, the mechanism by which HBV escapes from innate immune identification is
still partly unknown. The relationship between HBV and host immunity may be better
elucidated in future by employing novel experimental models or techniques which will
help develop effective therapeutic strategy for HBV infection.
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