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Abstract: The rising incidence of dengue virus (DENV) infections in the tropical and sub-tropical
regions of the world emphasizes the need to identify effective therapeutic drugs against the disease.
Repurposing of drugs has emerged as a novel concept to combat pathogens. In this study, we
employed a transcriptomics-based bioinformatics approach for drug identification against DENV.
Gene expression omnibus datasets from patients with different grades of dengue disease severity
and healthy controls were used to identify differentially expressed genes in dengue cases, which
were then applied to the query tool of Connectivity Map to identify the inverse gene–disease–drug
relationship. A total of sixteen identified drugs were investigated for their prophylactic, virucidal,
and therapeutic effects against DENV. Focus-forming unit assay and quantitative RT-PCR were used
to evaluate the antiviral activity. Results revealed that five compounds, viz., resveratrol, doxorubicin,
lomibuvir, elvitegravir, and enalaprilat, have significant anti-DENV activity. Further, molecular
docking studies showed that these drugs can interact with a variety of protein targets of DENV,
including the glycoprotein, the NS5 RdRp, NS2B-NS3 protease, and NS5 methyltransferase The
in vitro and in silico results, therefore, reveal that these drugs have the ability to decrease DENV-2
production, suggesting that these drugs or their derivatives could be attempted as therapeutic agents
against DENV infections.

Keywords: repurposing drugs; DENV-2; dengue fever; antiviral therapy; FDA-approved drugs

1. Introduction

Dengue fever (DF) and dengue haemorrhagic fever are mosquito-borne diseases
caused by the dengue virus serotype (DENV-1, 2, 3, and 4) [1]. The incidence of DENV has
grown dramatically around the world in recent decades. The World Health Organization
(WHO) estimates 390 million dengue infections per year in 128 countries [2]. In the tropics
and subtropics, dengue is one of the most common diseases, which is a public health
concern. DENV, a positive-strand RNA virus, is a member of the family Flaviviridae and
genus flavivirus, transmitted by Aedes aegypti and Ae. albopictus mosquitoes [3]. The DENV
infection usually causes dengue fever (DF) with flu-like illness, and DF occasionally evolves
into a potentially lethal complication termed severe dengue (SD), which is characterized by
plasma leakage, fluid accumulation, respiratory distress, and severe bleeding [4].

To date, there is no treatment or approved antivirals available for DENV. The only
available methods are mosquito-control strategies which prevent the transmission of the
virus, and hence, there is an urgent need to design better medications for treating dengue
viral infection. The traditional drug discovery procedure is more expensive, can take many

Viruses 2022, 14, 2150. https://doi.org/10.3390/v14102150 https://www.mdpi.com/journal/viruses

https://doi.org/10.3390/v14102150
https://doi.org/10.3390/v14102150
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/viruses
https://www.mdpi.com
https://orcid.org/0000-0001-7557-9289
https://orcid.org/0000-0003-0380-7494
https://orcid.org/0000-0003-2688-3684
https://orcid.org/0000-0003-1401-8589
https://doi.org/10.3390/v14102150
https://www.mdpi.com/journal/viruses
https://www.mdpi.com/article/10.3390/v14102150?type=check_update&version=2


Viruses 2022, 14, 2150 2 of 18

years, and requires unending work to find a novel drug. This problem can be overcome
by drug repurposing or drug repositioning, which involves a drug discovery strategy for
the United States Food and Drug Administration (FDA)-approved drugs [5]. Among the
many approaches employed to identify drugs to treat dengue, drug repurposing has gained
popularity, which is safer and more economic. The targeted drugs have further been tested
for their effectiveness against other diseases and proven safe for treatment of the human
diseases [5]. In recent years, drug repurposing has been applied in many studies to identify
treatments [6–8]. Antidiabetic, anticholesteremic, antihistamine, antipsychotic, antibiotic,
antiparasitic, and antimalarial drugs have been repurposed to assess their effectiveness
against DENV infection [5,9]. These studies helped uncover potential drug targets for
improving DENV therapy.

In this study, we applied computational drug-repurposing methods by using publicly
available gene expression data for gene–disease–drug analysis. The differentially expressed
genes were inputted to the connectivity map (CMap) server to identify drug candidates
for DENV. The identified candidate drugs were tested in vitro for anti-DENV activity. The
drugs with antiviral activity were further investigated for their ability to interact with
DENV proteins using molecular docking analysis.

2. Materials and Methods

The schematic representation of the in silico as well as in vitro study workflow is
shown in Figure 1.
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Figure 1. In silico and in vitro methods used for selecting and studying the antiviral activity of drugs
for repurposing.

2.1. Transcriptome Data Collection and Analysis

Identification of differential gene expression between dengue patients and healthy
individuals.
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Several transcriptomic studies (microarray and RNASeq) were referred for the expres-
sion analysis of dengue virus infection in host cells. Three microarray gene expression
datasets based on whole blood samples of dengue-infected humans were downloaded from
the GEO database as follows: GSE18090 [10] from blood samples of eight healthy and ten
DHF patients, GSE51808 [11] from nine healthy and ten DHF patients, and GSE84331 [12]
from five healthy and three DHF patients. For each dataset, the gene signature profiles
were obtained by considering an adjusted p (Adj. p)-value < 0.05 in the test between healthy
and DHF patients by the z-score transformation of the three GEO matrices.

2.2. Identification of Drug Candidates Using CMap

CMap is a collection of genome-wide transcriptional expression data from human
cell lines that have been treated with chemical compounds [13]. Simple pattern match-
ing algorithms together enable the discovery of decisive functional connections between
drugs, genes, and diseases through the transitory feature of common gene expression
changes. The CMap has a library containing over 1.5 million gene expression profiles from
~5000 small-molecule compounds and ~3000 genetic reagents, tested in multiple cell types.
The query tool on the clue.io site helps in identifying perturbens that give rise to similar
(or opposing) gene signatures [14]. In drug repositioning for dengue, the differentially
expressed signature profiles between healthy individuals and DHF patients were applied to
the query tool to identify inverse drug–disease relationships. The threshold of significance
for each drug was set at p < 0.1 using the permutated results. Once queried, the results were
accessible, and the heat map result of the connections was viewed. In the heat map, the
liver cell line was selected as HEPG2 and the perturben type was selected as a compound.
Thereafter the potential therapeutic candidates were identified among the compounds
with the highest (negative) connectivity score. Connectivity scores less than −90 were
considered significant according to Connectopedia, the Clue knowledge database.

2.3. Cells and Virus

The Vero CCL-81 (ATCC® CCL 81™) cell line, originally derived from the African
green monkey kidney, was used to assess antiviral activity. These cells were cultured at
37 ◦C and under 5% CO2 in Minimal Essential Medium (MEM), (HiMedia®, Mumbai, India)
with 10% foetal bovine serum (FBS) (GibcoTM, Grand Island, NY, USA) and antimycotic
antibiotic solution (Sigma Aldrich®, St. Louis, MO, USA). The DENV-2 virus (Strain
No. 803347) was used in this study and a 0.1 Multiplicity of Infection (MOI) was used
for infection.

2.4. Stock Preparation of Compounds

The drugs procured from Sigma Aldrich, St. Louis, MO, USA, (Table 1) were included
in this study. The 20 mM stock solutions of the drugs were prepared using dimethyl
sulfoxide (DMSO, 100%) as a diluent. The stock solutions were stored at −20 ◦C for
further analysis.

Table 1. Profile of the drugs repurposed as DENV-2 inhibitors.

Sr. No. Compound Name Pharmacological Class CC50 Value (µM) Reported Activity

1. Temsirolimus Antineoplastic 12.24 1. Antineoplastic [15,16]
2. Antiviral, anti-SARS-CoV-2, and anti-HBV [17,18]

2. Doxorubicin
hydrochloride Antineoplastic 116.9 1. Antineoplastic [19]

2. Antiviral [20–24]

3. 2-Fluoroadenine-9-β-
D-arabinofuranoside Antineoplastic 42.24 1. Antineoplastic [25]

2. Immunosuppressant [26]

4. Retinoic acid
p-hydroxyanilide Antineoplastic 2.38 1. Antineoplastic [27]
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Table 1. Cont.

Sr. No. Compound Name Pharmacological Class CC50 Value (µM) Reported Activity

5. Docetaxel Antineoplastic 2.26 1. Antineoplastic [28,29]
2. Antiviral-EBV [30]

6. Evodiamine Antineoplastic 10.24
1. Antineoplastic [31,32]

2. Anti-inflammatory [33]
3. Antiviral [34–36], viral, and bacterial pneumonia [37]

7. Staurosporine from
Streptomyces sp. Antibiotic 0.08 1. Antineoplastic [38,39]

2. Antimicrobial [40]

8. Resveratrol Anti-inflammatory 40.82

1. Antilipemic and antidiabetic [41]
2. Anti-inflammatory [42,43]

3. Antineoplastic [44]
4. Alzheimer’s disease pathomechanism modulator [45]

5. Antioxidant and antimicrobial [46]
6. Antiviral [47]

7. Cardioprotective [48]

9. Metyrapone Adrenal steroid
synthesis inhibitor 19,554 1. 11β-hydroxylase enzyme inhibitor [49]

2. Antidepressant [50]

10. (+)-JQ1
Bromodomain inhibitor

(Thienotriazolodi-
azepine)

0.82

1. Bromodomain inhibitor [51]
2. Reduces IFN-γ expression [52]

3. Antineoplastic [53,54]
4. Cardioprotective [55,56]
5. Anti-inflammatory [57]

11. Givinostat
hydrochloride hydrate Hydroxamate inhibitor 1.61

1. Anti-inflammatory [58]
2. Cardioprotective [59]

3. Antineoplastic/antiangiogenic [60]

12. Thapsigargin Calcium channel blocker 1.38
1. Antineoplastic [61]

2. Endoplasmic reticulum Ca 2+ inhibitor [62]
3. Antiviral [63,64]

13. Enalaprilat Angiotensin-converting
enzyme (ACE) inhibitor 80.83 1. Treatment of hypertension and hypertensive heart

failure [65]

14. 5α-Androstan-3β-ol Steroid 23.13 No reported activity

15. Elvitegravir Antiviral 12.7 1. Antiretroviral [66,67]

16. Lomibuvir Antiviral 38.54 1. Anti-HCV activity [68,69]
2. SARS-CoV-2 [70]

2.5. Cytotoxicity Screening of Compounds

The cytotoxicity screening of the drugs was performed using a 3-(4,5-dimethythiazol-
2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay as described in a previous study [71].
The Vero CCL-81 cells cultured in a 96-microtitre-well plate with a density of 2 × 104 cells
per well were used with 80% confluency. The compound concentrations were prepared
using MEM without antibiotics and with 2% foetal bovine serum (FBS) as the diluent, and
a twofold dilution technique (200 to 0.78 µM) was adopted.

The cells were then incubated with these drugs in different microtiter plates for five
days (120 h) at 37 ◦C with 5% CO2, and further incubated with MTT solution (5 mg/mL) for
three hours at 37 ◦C. A microplate reader (BioTek Synergy, Santa Clara, CA, USA) was used
to measure the solubilized formazan crystals at 570 nm with a reference filter of 690 nm.
Further, we computed the percentage viability of the cells at different concentrations of the
drug in comparison with cell control, and CC50 values of the drugs were calculated using
non-linear regression analysis using GraphPad Prism software version 7.

2.6. Antiviral Assay

For screening, the maximum non-toxic concentration of the drugs was selected for
the assessment of antiviral activity before infection (pre-treatment), during infection (co-
treatment), and after infection (post-treatment). For all three treatments, 5 × 104 cells/well
were used with 0.1 multiplicity of infection (MOI) of DENV-2. After infection, the cells
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were washed twice to remove unbound virus particles and the plates were incubated for
five days as per the treatment condition.

Pre-treatment condition involved incubation of the drug onto the cells for 24 h prior
to infection. For post-treatment, the cells were infected with the virus for one hour and
treated with the drug for five days. In the case of co-treatment, the virus and drug mixture
were incubated for one hour and later this mixture was added to the cells and incubated
for one hour, followed by the washing step and incubation of five days.

The viral genomic RNA and infectious virus particle titre of cell culture supernatants
taken from separate wells treated with different concentrations were analysed using real-
time RT-PCR and focus-forming unit (FFU) assay.

Drugs which showed anti-DENV activity were again tested for their anti-DENV
activity at different concentrations ≤ maximum non-toxic dose to find out the minimal
dose that exerts antiviral activity. The same treatment condition under which the drug
showed activity was used for these dose-dependent studies. A virus control (VC) in which
cells were infected but not treated was also maintained. The experiments were performed
in triplicate at three independent time points.

2.7. Focus Forming Unit Assay and Real-Time RT-PCR

For the quantification of virus particles, FFU assay was used. The assay was performed
in a 96-well plate as described earlier [72,73]. Approximately 2 × 104 cells/well were seeded
in a 96-well plate and incubated for 24 h. Tenfold serial dilutions of the culture supernatants
were added to the cells and the plates were incubated for one hour. After incubation, MEM
with 2% FBS and 1.8% carboxymethyl cellulose was added and incubated at 37 ◦C for
five days in a CO2 incubator. After incubation, cells were washed with phosphate-buffered
saline (PBS) containing Tween 20 detergent and fixed with chilled acetone and methanol
(1:1 ratio). A blocking buffer (1% bovine serum albumin dissolved in PBS) was added and
incubated for 40 min at 37 ◦C. Later, the washing step was again performed, and the cells
were incubated with primary antibody (anti-prM-dengue antibody with a dilution of 1:200)
for 40 min, followed by the addition of secondary antibody (anti-mouse IgG HRP conjugate
with a dilution of 1:1000) and incubated for 40 min. After every addition, a washing step
was performed. The last step involved the addition of substrate (True Blue Peroxidase
Substrate by KPL) in dark, followed by incubation at room temperature for 15 min. The
substrate was removed after the blue tinge formation and dried before counting the number
of foci. The virus titre was determined by counting the number of foci.

Quantitative real-time RT-PCR (qRT-PCR) for estimating the copy number of DENV-2
was performed as described earlier [72,73]. A QIAmp Viral RNA mini kit (Qiagen, Hilden,
Germany) was used for the extraction of viral RNA. One-step qRT-PCR using a commercial
kit (SuperScript III One-Step RT-PCR System with Platinum Taq DNA Polymerase; Ther-
moFisher Scientific, Waltham, MA, USA) (Invitrogen SuperScript III Platinum One-step
qRT-PCR Kit, Waltham, MA, USA) was used for the detection and quantification of RNA.
Oligonucleotide sequences were used as described earlier [72,73]. The amplification condi-
tions included incubation at 50 ◦C for 30 min, followed by 95 ◦C for 10 min, and 40 cycles
of 95 ◦C for 15 s and 60 ◦C for one minute. The copy numbers were calculated based on a
standard graph generated using Ct values of tenfold dilutions of in vitro-transcribed viral
RNA with known copy numbers. The assays were repeated for the compounds which
showed inhibitory activity compared to the virus control.

2.8. Statistical Analysis

The virus output was expressed as log10 mean viral RNA copies/mL or log10 mean
FFU/mL. One-way ANOVA with correction for multiple comparisons was used to compare
the test conditions to the VC. A p-value less than 0.05 was considered significant. All
analysis was performed using GraphPad Prism software version 7 (GraphPad software,
San Diego, CA, USA).
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2.9. Molecular Docking Studies with DENV Protein Targets

The Schrödinger Drug Discovery Suite was used for protein preparation and dock-
ing calculations (2020-3). The two-dimensional structures of all the compounds were
retrieved from PubChem [74]. All DENV-2 three-dimensional (3D) crystallographic target
protein structures including envelope glycoprotein (1OKE.pdb), DENV-2 non-structural
proteins including NS2B-NS3 protease (4M9K.pdb), NS5 methyltransferase (MTase) do-
main (1R6A.pdb), and NS5 RdRp (RNA dependent RNA Polymerase) domain structure
(5ZQK.pdb) were retrieved from the Protein Data Bank (PDB) [75] (https://www.rcsb.org/
(accessed on 15 June 2022). The protein structure was prepared (pre-processed, opti-
mized, and minimized) using the protein preparation wizard in Maestro v. 12.5 [76]. The
compound structures were prepared by the LigPrep module of Maestro v. 12.5 [76,77].
Grid-based molecular docking was used to help the compounds bind in multiple potential
conformations. The hydronation and tautomeric modes of the amino acids were adjusted
to match a pH of 7.2. The receptor grid-generating module of Maestro v.12.5 was used
to generate the grid. A scaling factor of 1.0, and 0.25 Å, partial charge cut-off for van der
Waals radius were applied.

The detergent binding pocket (β-D-glucoside β-OG) of the envelope protein was used
as the active site [78] as this pocket is identified as a potential site for small-molecule fusion
inhibitors against the envelope protein. Further, the allosteric site pocket for NS2B-NS3
protease [79], conserved motifs, and priming loop for NS5 RdRp domain [80], as well as the
site map-generated pocket that was used for NS5 methyltransferase domain, were selected
for the molecular docking protocol. The drug binding site was predicted through the site
map module of Maestro v.12.5 (Schrödinger, New York, NY, USA).

The docking was carried out using SP/XP (Standard/extra precision) mode [76,77].
The study of DENV-2 protein binding interactions and ligand flexibility was carried out
using Glide molecular docking. The binding energies were measured in kcal/mol. The
BIOVIA Discovery Studio 2020 client software suite was used to analyse interactions and
visualise molecules of docked complexes of all the DENV target crystal structures. The
compounds with the highest binding scores and strong interaction profiles were supposed
to be the most active compounds against the target receptor protein. The crystal structure
was later refined and optimized for further docking procedures.

3. Results
3.1. Transcriptomic Analysis

Using the GSE18090 dataset, we identified 31 signature genes (4 upregulated
and 27 downregulated) with significant differences in expression between the DHF
patients and the 8 healthy controls. Additionally, we identified 3858 (148 upregulated and
3710 downregulated) and 1941 (541 upregulated and 1400 downregulated) differentially
expressed genes in the GSE51808 and GSE84331 datasets, respectively. The genes were
filtered out based on the cut-off criteria of adj. p-value < 0.015 and log fold change >2. After
combining the signature genes from all three GEO datasets, 1585 signature genes were
obtained (Table S1).

3.2. CMap Analysis

The list of the top 300 upregulated/downregulated signature genes from the three
datasets that were compatible with the HG-U133A platform of CMap, was used to query the
clue.io CMap system. The valid list of differentially expressed genes from the three datasets
was queried on CMap for the drug candidates and hits with significant inverse gene
signatures (connectivity score < −90) were shortlisted. There were a total of 200 significant
drugs (Table S2) obtained with statistical significance (p < 0.1). This includes different
groups such as CDK inhibitors, JAK inhibitors, interferons, angiogenesis inhibitors, and
HDAC inhibitors (Figure 2).

https://www.rcsb.org/
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3.3. Viral Targeting Drugs Identified for Repurposing against DENV

Among the list of drug compounds identified by CMap analysis, some are direct viral
targeting such as flavivirus RNA polymerase inhibitor, protease inhibitor, etc., while others
are host targeting such as histone deacetylase (HDAC) inhibitor. In this study, 16 of these
drug compounds were tested for their antiviral efficacy against DENV-2 and evaluated.
The profile of these compounds is listed in Table 1.

3.4. Cytotoxicity Evaluation of Compounds

The cell viability of all the drugs (n = 16) was tested using an MTT assay in Vero
CCL-81 cells. The CC50 values of all the drugs are provided in Table 1. Seven drugs were
highly toxic. The concentration of the drug which allowed approximately 80% cell viability
was further used for studying the antiviral activity. In Figure S1, the impact of different
drugs at various concentrations on cell viability is shown with CC50 values.

3.5. Primary Antiviral Screening of Compounds against DENV-2

The drugs were tested for their antiviral activity under three circumstances (Figure 3a–c),
i.e., pre-treatment (prophylactic), co-treatment (virucidal), and post-treatment (therapeutic).
Focus-forming unit (FFU) assay was used to quantify the virus particles. Out of 16 com-
pounds, five compounds (doxorubicin, resveratrol, lomibuvir, elvitegravir, and enalaprilat),
showed antiviral activity (≥1.0 log10 reduction compared with virus control) against
DENV-2 under different treatment settings. Three drugs, i.e., resveratrol and lomibuvir,
had both prophylactic and therapeutic antiviral activity against DENV-2. Elvitegravir had
only prophylactic antiviral activity against DENV-2. Doxorubicin had both virucidal and
therapeutic antiviral activity against DENV-2. Enalaprilat had only therapeutic antiviral
activity against DENV-2 (Table 2). As a result, these drugs were selected for further explo-
ration in a dose-dependent manner, as well as in in silico experiments to determine their
target specificity.

3.6. Dose-Dependent Antiviral Effect of Repurposed Drugs against DENV

Dose-dependent antiviral effect of effective drugs, i.e., doxorubicin, resveratrol, lomibu-
vir, elvitegravir, and enalaprilat, on DENV-2 was examined under different treatment
settings and concentrations. The effective drugs were categorised under three treatment
settings: prophylactic, therapeutic, and virucidal.
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compared with a control group (VC) (infected cells without treatment). **** p < 0.0001, * p < 0.05.

Table 2. Summary of effective inhibition under different treatment conditions.

Sr. No. Compound
Name

Chemical
Structure CC50 (µM) Maximum

Concentration (µM)
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3.6.1. Drugs Exerting Prophylactic Effects

Resveratrol: The pre-treatment of cells with 12.5 µM resveratrol showed >1 log10
reduction (p < 0.0001) in the virus titre compared to VC (5.445 to 4.257 mean log10 FFU/mL)
(Figure 4). Resveratrol treatment did not result in a significant reduction in the log10 titre of
viral RNA copy number (Figure S2).
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Figure 4. Antiviral effects of resveratrol, lomibuvir, and elvitegravir against DENV under pre-
treatment condition. Vero CCL-81 cells were treated with different concentrations of respective drugs
for 24 hrs and infected with DENV-2 and incubated for 120 h. The cultured filtrates were used for
the FFU assay: (a)—resveratrol, (b)—lomibuvir, and (c)—elvitegravir. Experiments were performed
in triplicate at three independent time points. Results were plotted based on mean log10 of focus-
forming unit/mL ± standard error. All the treatment groups were compared with a virus control
(VC) group (infected cells which did not receive drugs). **** p < 0.0001, *** p < 0.0005, ** p < 0.01.

Lomibuvir: Under pre-treatment conditions, lomibuvir exerted one log reduction
in virus titre (5.445 to 4.221 mean log10 FFU/mL) at 6.25 µM concentration (Figure 4).
Quantitative real-time RT-PCR results revealed that the drug did not affect viral RNA titre
under pre-treatment condition (Figure S2).

Elvitegravir: This drug at 6.25 µM concentration of the drug showed a reduction from
5.445 (VC) to 4.129 mean log10 FFU/mL (Figure 4) but there was no reduction in the case of
viral RNA titre (Figure S2).

3.6.2. Drugs Exerting Therapeutic Effects

Doxorubicin: A substantial reduction in virus foci (5.424 to 3.971 mean log10 FFU/mL
value) was detected in cells which received post infection treatment with a 25 µM concen-
tration of drug (p < 0.0001) (Figure 5). The drug did not result in a significant reduction in
the log10 titre of viral RNA copy number under post-treatment condition (Figure S2).
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Figure 5. Antiviral effects of doxorubicin, resveratrol, and enalaprilat against DENV under post-
treatment conditions. Vero CCL-81 cells were administered the drug at different concentrations
immediately after infection and incubated for 120 h after infection. The cultured filtrates were
used for the FFU assay: (a)—doxorubicin, (b)—resveratrol, and (c)—enalaprilat. Experiments were
performed in triplicate at three independent time points. Results were plotted based on mean log10
of focus-forming unit/mL ± standard error. All the treatment groups were compared with a virus
control (VC) group (infected cells which did not receive drugs). **** p < 0.0001, *** p < 0.0005.

Resveratrol: Resveratrol at 12.5 µM and 6.25 µM concentrations showed ≥1 log10
reduction (5.424 to 4.198 mean log10 FFU/mL) (p < 0.0001) of the virus titre compared to
VC (Figure 5). There was no significant reduction observed in the log10 titre of viral RNA
copy number (Figure S2).

Enalaprilat: This drug showed more than one log reduction in the case of post-
treatment (5.424 to 4.184 mean log10 FFU/mL) at 1.56µM concentration (Figure 5). However,
the post-treatment condition did not show a corresponding reduction in viral RNA titre.
(Figure S2).

3.6.3. Drugs Exerting Virucidal Effects

Doxorubicin: A detailed study was performed with different concentrations (25 µM,
12.5 µM, 6.25 µM, and 3.125 µM) of doxorubicin and the co-treatment of cells with 25 µM
concentration showed ~100% reduction (~5 log10) (p < 0.0001); at 12.5 µM (p < 0.0001)
and 6.25 µM, the virus titre showed a difference of ~2 log10FFU titre (p < 0.0001) when
compared with VC (Figure 6). A significant 4 log10 titre (p < 0.0001) decrease in RNA copy
number of DENV-2 was observed for co-treatment at 25 µM, whereas a ~3 log10 reduction
was observed at 12.5 µM (p < 0.0001) and 6.25 µM (p < 0.0001) concentrations (Figure S2).

3.7. Effect of Different Drugs on the Percent Cell Viability of the Infected Cells

To rule out that the anti-DENV activity exerted by different drugs was not due to cell
death, the cells were cultured in 96-well plates, infected, and treated with a maximum
non-toxic dose of the drugs which exerted anti-DENV activity under different treatment
conditions. In one set of experiments, cells were incubated for three days after incubation
while in another set cells were incubated for five days. After incubation, an MTT assay was
performed and the percent cell viability in each well was calculated using viability in cell
control (uninfected and untreated cells) as reference. The results revealed that irrespective
of days and the treatment condition, the percent cell viability was greater for infected cells
which received treatment compared with infected cells which did not receive treatment
(virus control) (Figure 7a–c). The only exception was enalaprilat for which the percent cell
viability was not different compared to VC (Figure 7b). This proved that the increase in
percent cell viability was due to drug treatment which inhibited the virus replication and
subsequent cytopathic effect.
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Figure 6. Antiviral effects of doxorubicin under co-treatment condition. The virus was treated with
doxorubicin at different concentrations and the virus drug mixture was used for infection. Infected
Vero CCL-81 cells were incubated for 120 h after infection. The culture filtrates were used for the
FFU assay. Experiments were performed in triplicate at three independent time points. Results were
plotted as mean log10 of focus-forming unit/mL ± standard error. All the treatment groups were
compared with a virus control (VC) group (infected cells which did not receive drugs). **** p < 0.0001.
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treatment conditions. (a)—pre-treatment, (b)—post-treatment, and (c)—co-treatment. **** p < 0.0001,
*** p ≤ 0.0005, ** p < 0.01, * p < 0.05.

3.8. In Silico Interaction Studies of the Select Drugs with DENV Protein Targets

To explore the potential mode of action of the drugs resveratrol, doxorubicin, lomibu-
vir, elvitegravir, and enalaprilat, computational molecular docking studies were performed
with DENV targets using Schrödinger’s Glide. Following the docking procedure, the
best pose was chosen based on conformation and docking energy. The scoring function
algorithm implemented in Schrodinger was used to compute the binding affinity in terms
of the docking score.

Among the different DENV targets, the docking interaction of doxorubicin was found
to be the best with DENV E protein (Figure 8e) which exhibited that doxorubicin docked
with a strong binding affinity of −5.8 kcal/mol. The doxorubicin interaction involves
two conventional hydrogen bonds, four pi-alkyl, and a single pi-sulphur interaction. The
residues THR 236, PRO 217, ALA 263, and MET 260 were involved in the above interactions.
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Figure 8. Molecular docking interaction of five repurposed drugs with DENV structural and non-
structural proteins. Ribbon diagram with the solvent surface rendered view (probe radius 1.4 Å) and 2-
dimensional interaction diagram showing interaction with DENV: (a) NS5 methyltransferase domain,
(b) NS2B-NS3 protease domain, (c) NS5 RdRp domain, (d) NS5 RdRp domain, and (e) Envelope
glycoprotein complex. (i)—3D interaction diagram, (ii)—2D interaction diagram.

The docking interaction analysis of resveratrol was found to be optimal with the
DENV NS5 MTase domain (Figure 8a). The binding affinity was found to be −5.7 kcal/mol
and residues ARG78, LYS99, and ASP 140 made three hydrogen bonds, indicating that
resveratrol can make a stable complex with the DENV MTase domain.

The DENV NS2B-NS3 protease is one of the most prominent targets for anti-DENV
inhibitors. Aside from the main catalytic location (HIS51, ASP75, and SER135), a spe-
cific allosteric binding site is also present, which has been previously suggested for non-
competitive inhibitors. The enalaprilat docking results (Figure 8b) showed that it inter-
acted with allosteric site residues of DENV NS2B-NS3 protease with a binding affinity
of −3.02 kcal/mol. A total of seven interactions were formed: four hydrogen bonds
formed with allosteric site residues VAL1155, ASN1119, ARG1157, and LYS1117 and
three hydrophobic interactions formed with VAL1155, ILE1123 and VAL1154. These in-
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teractions reveal that enalaprilat could have inhibiting activity at the allosteric site of
NS2B-NS3 protease.

Examining the docking contact of elvitegravir with the NS5 RdRp domain (Figure 8c)
highlighted a binding affinity of −5.27 kcal/mol. The potential binding site of elvitegravir
was close to the catalytic site showing interactions with the residues of all the three con-
served motifs (Q598-N614, G662-D664, and C709-R729) as well as residues of the priming
loop (H786-M809). The molecular interactions displayed two hydrogen bonds formed by
ARG729 and the hydroxyl group of elvitegravir. Also, three other hydrogen bonds were
formed with THR794, THR 793, and LYS460. A single pi-cation interaction was noted with
ARG729. There were multiple numbers of hydrophobic interactions, including alkyl and
pi-alkyl bonds with ILE797, TRP795, and SER710.

The docking interaction study of lomibuvir with the DENV RdRp domain (Figure 8d)
revealed a strong binding affinity of −4.9 kcal/mol. The molecular non-bonded interaction
analysis displays that there were three hydrogen bonds with LYS195, GLN337, and ASP 397,
two alkyl bonds with ILE531, VAL338, one salt bridge with LYS195, and one electrostatic
bond with LYS 195.

4. Discussion

Dengue fever has been a serious public health problem in tropical and sub-tropical
areas around the world and the only preventive measure available for the dengue virus is
the control of mosquitoes. The development of effective and safe dengue virus vaccines
is still a challenging topic because of antibody-dependent enhancement (ADE) [81]. ADE
accounts for the severity of secondary infections that develop in the form of dengue
haemorrhagic fever (DHF) and dengue shock syndrome [82]. Among the four serotypes
of DENV, DENV-2 significantly causes more severity in patients than the other three
serotypes [83]. Since there is no cure for DENV, repurposing known compounds could be a
life-saving consequence for the majority of the world’s population. Several studies report
anti-DENV activity using repurposed compounds [5,84–87].

In this study, we incorporated different classes of drugs including antineoplastic,
anti-inflammatory, antibiotics, adrenal steroid synthesis inhibitors, antiviral, steroids, neu-
romuscular blockers, calcium channel blockers, enzyme inhibitors, hydroxamate inhibitors,
and bromodomain inhibitors as shortlisted from a transcriptomics-based approach.

Among the five drugs (resveratrol, doxorubicin, lomibuvir, elvitegravir, and enalapri-
lat) which showed antiviral activity, doxorubicin, resveratrol, and enalaprilat were the only
drugs which showed maximum inhibition of DENV-2 in vitro under the post-treatment
condition. Resveratrol is a naturally occurring polyphenol, which is known to exhibit
anti-inflammatory, antineoplastic, anti-diabetic, antilipemic, antioxidant, antimicrobial, as
well as antiviral activity [41–44,46,47,85]. The other activities include a cardioprotective
mechanism and a modulator of Alzheimer’s disease [45,48]. The docking analysis revealed
that resveratrol interacted with the DENV NS5 MTase domain and formed a stable complex
with it and might account for the antiviral activity of the drug. An earlier study reported
that resveratrol inhibited DENV-2 in Huh-7 cells but at a higher concentration in the range
of 50–100 µM [88]. Resveratrol has been shown to inhibit DENV-2 infection in HEK293T/17
cells at concentrations from 25 to 50 µM [88]. In the present study, we have demonstrated
the anti-DENV activity at lower concentrations (in the range of 6.25–12.5 µM). Resveratrol
also inhibits the translocation of high mobility group box 1 protein from the nucleus to
the cytoplasm and also increased the expression of interferon-stimulated genes in DENV-
infected Huh-7 cells [88]. Thus, resveratrol might confer an antiviral state and may act as a
prophylactic as well as a therapeutic agent.

Doxorubicin, an anthracycline antibiotic, isolated from Streptomyces peucetius var. caesius,
exhibits antineoplastic activity by intercalating between DNA base pairs [19]. Many studies
have reported that doxorubicin can inhibit a variety of viruses including herpes simplex
virus, HIV, enterovirus, hepatitis C virus (HCV), and SARS-CoV-2 [20–23]. An in vitro
study by Kaptein et al. reported that doxorubicin and its derivatives inhibit the flavivirus
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replication cycle [24]. In the present study, doxorubicin exerted both virucidal as well as a
therapeutic effect against DENV-2. In silico studies revealed that doxorubicin may interact
with the E protein and binds specifically to the hydrophobic pocket in which residues of
the fusion peptide are also accommodated [73]. It is conceivable that doxorubicin may
interact with the DENV envelope protein preventing its binding to the host cell receptor.
The main limitation posed by doxorubicin concerns the reports of its cardiotoxicity induced
by long-term doxorubicin exposure [89]. The structure of doxorubicin might provide clues
to the synthesis of derivatives and molecules which can bind to DENV E protein with high
affinity but with no cardiotoxic effects.

Enalaprilat, an angiotensin-converting enzyme (ACE) inhibitor, is an active metabolite
of enalapril prodrug and is used for the treatment of hypertension, heart failure, and
chronic renal diseases. Enalaprilat is known to inhibit the conversion of angiotensin I
to angiotensin II by acting antagonistically against the angiotensin-converting enzyme
(ACE) [90]. Enalaprilat exerted therapeutic antiviral activity against DENV-2. Enalaprilat
interacted with DENV NS2B-NS3 protease at the proposed allosteric binding site for non-
competitive inhibition, though with a low binding affinity. It is possible that enalaprilat can
affect the DENV protease activity and contribute to the inhibition of DENV. Angiotensin
II inhibitors, by acting either on the angiotensin II receptor or ACE, have been shown to
inhibit DENV and Zika virus [91,92]. Enalaprilat might modulate the host response and
contribute to virus inhibition.

Lomibuvir is a non-nucleoside polymerase inhibitor, belonging to the thiophene car-
boxylic acid group. It is used in the treatment of chronic HCV infection, and the mechanism
involves binding to the thumb pocket 2 of the HCV NS5B polymerase [68,69]. Elvitegravir
was the first HIV-1 inhibitor approved by the Food and Drug Administration (FDA) in
2012. It acts as an integrase strand transfer inhibitor for HIV-1 [66,67]. In silico studies
revealed that both drugs interacted with the DENV NS5 RdRp domain. However, the in
silico results are not supported by in vitro results since both lomibuvir and elvitegravir
showed prophylactic activity against DENV infection but no therapeutic activity. It is
possible that both these drugs can bind to host receptors and prevent binding of DENV
or might induce an antiviral state contributing to inhibition of DENV infection. Further
studies are needed to confirm the same.

Overall, in this study, we have identified five potential drugs that can be repurposed
as DENV therapeutics. In vivo validation studies would further help in consolidating the
findings and facilitate clinical trials.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v14102150/s1, Figure S1: Cytotoxic effects of compounds on Vero
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Pre-treated, (d–f): Post-treated, and (g) Co-treated. (a) Resveratrol, (b) Lomibuvir, (c) Elvitegravir,
(d) Doxorubicin, (e) Resveratrol, (f) Enalaprilat, and (g) Doxorubicin. Experiments were performed
in triplicate during two independent time points. Results were plotted based on mean log10 viral
RNA copies/mL ± standard error. All the treatment groups were compared with a control group
(which did not receive drugs). *** p < 0.001. Table S1: Signature genes identified using GEO datasets,
Table S2: Drug candidates identified using the CMap tool
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