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Analyses of the K417N, E484K, N501Y mutant 
We also explored the impact of the combined variants observed in recent strains from South Africa and 
Brazil by modelling K417N,E484K,N501Y S-protein: Ectoparasite ACE using our modelling platform. We 
used 6M0J as the template. 

Table S1. Normalised DOPE scores of SARS-CoV-2 K417N,E484K,N501Y S-protein: ectoparasite ACE complexes 

Organism nDOPE score 

A0A162PAD4, water flea order -1.08 

A0A4D5RPS5, deer tick -1.19 

A0A0K8R3C7, common tick -1.17 

E0VAB8, body louse -0.94 

E9GU43, water flea -1.10 

Q10714, fruit fly -1.13 

 
Energetic analyses 
 
Again, for each complex, ΔΔG were predicted by mutating the animal ACE2 interface residue to the 
appropriate residue in the human ACE2. As in our previous analysis, any animals with predicted ΔΔG <= 
3.72 are considered to be at risk. 

Table S2. Predicted ΔΔG values of SARS-CoV-2 N501Y S-protein: ectoparasite ACE complexes for  direct contact 
(DC) residues and also for direct contact plus extended (DCEX) residues. 

Organism Predicted ΔΔG (DC) Predicted ΔΔG (DCEX) 

A0A162PAD4, water flea order 5.35 7.08 

A0A4D5RPS5, deer tick 1.45 2.06 

A0A0K8R3C7, common tick -0.11 -0.16 

E0VAB8, body louse -2.54 -1.44 

E9GU43, water flea -2.51 -1.59 

Q10714, fruit fly 5.15 4.36 

 
 
 
 
 



 

Structural analyses 

 

Figure S1. Comparison of LigPlot predicted bonding interactions for B.1.351 clade with human, water flea, body louse 
and deer tick. Corresponding residues in each species with key human interface hotspots (Hotspot 1, Hotspot 2) and 
the hydrophobic pocket are indicated if they are predicted to be involved in interface interactions. Novel ectoparasite 
H-bond residues also shown (orange boxes). 

 

 

Figure S2. Structures of this triple mutant show enhanced H-binding in water flea and body louse. H-bonds identified 
from structural models suggest stabilisation of water flea and body louse interface Left In Water flea three H-bonds 
(Asn487 - Glu37; Gln493 - Glu48; Gly502 - Asn368) occur spread across whole interface (including near the hydrophobic 
pocket region); Mid In body louse three H-bonds predicted (Asn417 - Arg36; Gly446 - Arg48; Gly502 - Asn355); Right 
In deer tick only a single ‘hotspot’ is predicted to involve H-bonds (Thr500 - Asp374; Thr500 - Arg376). 

In water flea H-bond Gln493 - Glu48, the Glu48 is equivalent to Glu35 in human ACE2, a critical interface 
hotspot. In body louse, one H-bond (Asn417 - Arg36) is mediated directly by the K417N mutation. 



 

Pan-taxonomic metazoan comparison 
We examined whether the significant similarity of ectoparasite ACE to human ACE2 (~40% sequence 
identity or higher) and the stable complex formed with SARS-CoV-2 Spike protein, suggested selection 
pressure on the virus to evolve binding affinity to both animal hosts and their symbiotic insect hosts. To 
do this we analysed sequence relationships across the tree of life. There were a total of 114  invertebrate 
species found in the Ensembl Metazoa database. We only include pantaxonomic compara species. This 
gave 24 species. However, we found ACE sequences for only 17 species. 

Table S3. Invertebrate metazoan ACE sequences studied 

Sequence Species 

A0A067RH69 Zootermopsis nevadensis (Dampwood termite) 

A0A087TSS0 Stegodyphus mimosarum (African social velvet spider) 

A0A087ZN26 Apis mellifera (Honeybee) 

A0A0L8HWW2 Octopus bimaculoides (California two-spotted octopus) 

A0A1P6BV99 Brugia malayi (Filarial nematode worm) 

A7SKY7 Nematostella vectensis (Starlet sea anemone) 

B3RUA8 Trichoplax adhaerens (Trichoplax reptans) 

D2A565 Tribolium castaneum (Red flour beetle) 

E0VAB8 Pediculus humanus subsp. corporis (Body louse) 

E9GU43 Daphnia pulex (Water flea) 

Q10714 Drosophila melanogaster (Fruit fly) 

Q7Q9W7 Anopheles gambiae (African malaria mosquito) 

T1FT41 Helobdella robusta (Californian leech) 

T1ISP9 Strigamia maritima (European centipede) 

T1KX65 Tetranychus urticae (Two-spotted spider mite) 

V4AKT8 Lottia gigantea (Giant owl limpet) 

W4YHX1 Strongylocentrotus purpuratus (Purple sea urchin) 

 
 
We compared these ACE sequences with human ACE2 sequences. The average sequence identity is 36% 
i.e. similar to that observed for the ectoparasites.  



 

 

Figure S3. BLAST sequence identities of invertebrate metazoan ACEs and human ACE2. 

 
For each sequence, we extracted the DCEX residues. Then, we used EMBOSS Needle to calculate their 
sequence similarity with human ACE2 DCEX residues. We removed 6 models that were missing > 10 DCEX 
residues. This gave 11 ACE sequences. 
 

 

Figure S4. DCEX residue similarities of invertebrate metazoan ACE and human ACE2. 

 



 

 

Figure S5. Phylogenetic tree of invertebrate metazoan ACE DCEX residues. The phylogenetic tree was inferred using 
the Neighbour Joining method and BLOSUM62 substitution matrix. 

 
We calculated the number of mutated DCEX residues (direct contact residues and residues within 8Å of 
direct contact residues likely to influence binding) and Sum Grantham score (chemical shift). 

Table S4. Mutated DC and DCEX residues and the sum Grantham Grantham score of invertebrate metazoan ACEs 

Organism # mutated DC 
residues 

# mutated DCEX 
residues 

Sum Grantham 
Score 

African social velvet spider 15 35 2797 

Honeybee 15 39 3083 

California two-spotted octopus 9 30 2102 

,Filarial nematode worm 16 45 2966 

Trichoplax reptans 10 33 2464 

Body louse 14 33 2561 

Water flea 15 34 2895 

Fruit fly 15 35 2580 

African malaria mosquito 14 36 3080 

Californian leech 15 36 2693 

Giant owl limpet 12 28 2034 

 



 

Original Wuhan-Hu-1 strain 
We then modelled Wuhan-Hu-1 S-protein: invertebrate ACE using our modelling platform. We used 6m0j 
as the template. All the models gave acceptable nDOPE scores suggesting the models were of good quality 
and could be used for calculating changes in the stability of the complex (Table S5). 

Table S5. Normalised DOPE scores of SARS-CoV-2 Wuhan-Hu-1 S-protein: invertebrate metazoan ACE complexes 

Sequence nDOPE score 

African social velvet spider -1.24 

Honeybee -0.89 

California two-spotted octopus -0.86 

Filarial nematode worm -0.85 

Trichoplax reptans -1.27 

Body louse -1.03 

Water flea -1.11 

Fruit fly -1.10 

African malaria mosquito -0.96 

Californian leech -1.36 

Giant owl limpet -1.39 

 
For each complex, ΔΔG were predicted by mutating the invertebrate ACE interface residue to the 
appropriate residue in the human ACE2. In our previous analysis, any animals with predicted ΔΔG <= 3.72 
are considered to be at risk. 

Figure S6. Predicted ΔΔG values of SARS-CoV-2  Wuhan-Hu-1 S-protein: invertebrate metazoan ACE complexes  for 
direct contact plus extended (DCEX) residues. 
 



 

N501Y mutant 
We then modelled N501Y S-protein: invertebrate ACE using our modelling platform. We used 6m0j as the 
template. 

Table S6. Normalised DOPE scores of SARS-CoV-2 N501Y S-protein: invertebrate metazoan ACE complexes 

Sequence nDOPE score 

African social velvet spider -1.34 

Honeybee -0.89 

California two-spotted octopus -0.92 

Filarial nematode worm -0.86 

Trichoplax reptans -1.29 

Body louse -0.93 

Water flea -1.18 

Fruit fly -1.09 

African malaria mosquito -0.93 

Californian leech -1.26 

Giant owl limpet -1.43 

 
For each complex, ΔΔG were predicted by mutating the invertebrate ACE interface residue to the 
appropriate residue in the human ACE2. In our previous analysis, any animals with predicted ΔΔG <= 3.72 
are considered to be at risk. 

 
Figure S7. Predicted ΔΔG values of SARS-CoV-2 N501Y S-protein: invertebrate metazoan ACE complexes  for direct 
contact plus extended (DCEX) residues. 

 



 

It can be seen from Figure S7 that other invertebrates also have low ΔΔG values, including several species 
(octopus, African spider, honeybee) that are not ectoparasites, suggesting that the stability of the SARS-
Cov-2 Spike:ACE complex is not a result of selection pressure on the virus to evolve binding affinity to 
both animal hosts and their symbiotic insect hosts. 

Supplementary Methods 1: Residue Conservation scores 

To detect highly conserved residues likely to be involved in ACE2 binding to SARS-CoV-2, we scanned the 
receptor binding domain of implicated in the domain function against CATH domain functional families 
(FunFams)[1,2]. CATH FunFams group together homologous domain sequences likely to have highly 
similar structures and functions. They have been used in previous analyses to analyse the likely infection 
of animals by SARS-CoV-2 [3]. 

ACE2 sequences were scanned a hidden Markov model (HMM) library for CATH-Gene3D version 4.3 
FunFams [1] and the best matches resolved by cath-resolve-hits [4] using a bit score cut-off of 25 and a 
minimum query coverage of 80%. Each hit was subsequently re-aligned to the matching FunFam using 
Clustal[5] in Jalview v1.8.3 [6]. 

We used the ScoreCons program[7] to measure conservation scores for residues in the ACE2 domain. We 
checked that the multiple alignment of the FunFam had sufficiently high information content to allow 
accurate identification of conserved residues. Information content is calculated as the diversity of 
positions(DOPs) score [7–9].  Highly conserved residues are identified for DOPs ≥ 70 and ScoreCons ≥ 0.7. 

Supplementary Methods 2: Structure analysis 

We used information from a previous study of CoV2 S:ACE2 complex to identify residues involved in the 
S-protein:ACE2 interface. This information had been compiled from several sources including PDBe [10], 
PDBsum [11]. We also examined structural evidence (e.g. from crystallography, cryo-EM and homology 
modelling) in the literature [12–17]]. Manual inspection of key regions of the human complex (PDB ID 
6M0J), reported by earlier studies [13,18,19], was also performed using UCSF Chimera v1.15 [20]. 

We predicted H-bonds, salt bridges and rendered the structural images using Chimera. Side chain rotamers 
had been optimised using the slow refinement option in MODELLER 9.24 [21] to build the models. 
However, for key hot spot regions we predicted H-bonds by relaxing the allowable H-bond angle 
constraint. Other studies had also highlighted important sites by alanine scanning mutagenesis,  deep 
mutagenesis experiments [13,15,17,22,23], and sites under positive selection [24,25]. These were also 
examined. 

As with our other previous studies of binding of SARS-CoV-2 to animal ACE2 proteins [3], we also 
considered allosteric residues within the ACE2 DCEX set, detected using established methods: AlloSitePro 
[26], ENM [27] and PARS [28]. The performance of AllositePro has been endorsed by recent studies [26]. 
DC and DCEX sites under positive selection were detected using codon-based methods, including mixed 
effect model of evolution [29], available at the Datamonkey Adaptive Evolution web-server [30]. These 



 

methods estimate dN/dS ratio for every codon in an alignment. We analysed evidence of positive selection 
using a codon alignment of all ACE2 orthogue sequences. Potential recombinant sequences were identified 
using RDP [31] version 5 and were excluded prior to selection pressure analyses. 
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