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Abstract: Background: Berberine (BBR) is an isoquinoline alkaloid which exhibits a variety of
biological and therapeutic properties, and has been reported by some to block replication of the
influenza virus. However, contradictory results have also been presented, and the mechanistic
explanation is lacking. Methods: A panel of cell lines (Madin–Darby canine kidney (MDCK),
adenocarcinoma human alveolar basal epithelial cells (A549), lung epithelial type I (LET1)) and
primary human airway epithelial cells (HAE) susceptible to influenza virus infection were infected
with a seasonal influenza A virus in the presence or absence of BBR. Cytotoxicity towards cell lines
was measured using XTT assay. The yield of the virus was analyzed using RT-qPCR. To study the
molecular mechanism of BBR, confocal microscopy and Western blot analyses of cellular fractions were
applied. Results and conclusions: Our results show cell-type-dependent anti-influenza properties of
BBR in vitro which suggests that the compound acts on the cell and not the virus. Importantly, BBR
hampers influenza replication in primary human airway epithelium 3D cultures that mimic the natural
replication site of the virus. Studies show that the influenza A virus upregulates the mitogen-activated
protein kinase/extracellular signal-related kinase (MAPK/ERK) pathway and hijacks this pathway
for nucleolar export of the viral ribonucleoprotein. Our results suggest that BBR interferes with this
process and hampers influenza A replication.

Keywords: influenza; berberine; MAPK pathway

1. Introduction

The influenza viruses are among the most important human pathogens, with types A and B being
the most clinically relevant for humans [1,2], and type A being the sole cause of pandemics. Influenza
is a severe, acute, and highly contagious respiratory system disease. The symptoms include high fever,
chills, general weakness, diffuse headaches, runny nose, muscle aches, sore throat, dry paroxysmal
cough, and conjunctivitis. It is estimated that yearly seasonal influenza causes 3 to 5 million severe
cases, and these are associated with about 300,000 to 650,000 deaths [3].

Influenza A viruses infect a wide variety of species [4], and currently, two strains are believed
to circulate in humans (A(H1N1) and A(H3N2)), while a number of strains reside in birds and
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mammals. Of these, sporadic transmissions to humans occur and are frequently characterized by
high pathogenicity [5]. The key factor that makes the influenza virus unique is its variability and the
genome present in virions in eight segments. Co-infection of a single cell results in shuffling of these
genomic RNA puzzles, and new, hybrid progeny emerges. Reassortants are usually less fit and are
eliminated, but in sporadic cases, a new strain appears that is able to effectively infect human cells but
is not recognized by our defense systems.

WHO recommends vaccination as the most effective way to prevent the disease, as this provides
~70%–90% of protection [6,7]. However, the vaccine does not provide complete protection, especially in
infants, the elderly, and patients with immune deficits. Antivirals are, therefore, a complementary tool
for the comprehensive management of the disease—five approved anti-influenza drugs are available.
The old generation of drugs, amantadine and rimantadine, interfere with M2 protein activity and
inhibit the release of the viral genome to the replication site during virus entry. Unfortunately, due to
the emergence of drug-resistant variants, these medicinal products have already been withdrawn [8].
The second group of drugs encompasses zanamivir and oseltamivir, which inhibit the activity of the
neuraminidase (NA) protein. These NA inhibitors (NAIs) interfere with the virus egress and, to a lesser
extent, also entry. However, the emergence of drug resistance has been already reported [8]. In October
of 2018 the FDA approved the new anti-influenza active substance, Baloxavir marboxil (Xofluza).
Baloxavir inhibits viral endonuclease, which is responsible for cleavage of cellular mRNAs near their
5′-termini, in order to generate the primers required for viral RNA synthesis (cap snatching) [9].
Nonetheless, as clearly shown for, e.g., the HIV-1 virus, only a combined therapy, simultaneously
interfering with different molecular targets, is effective and long-lasting.

Berberine (BBR) is an isoquinoline alkaloid that belongs to the structural class of protoberberines
and is produced by plants, including Berberis vulgaris and Coptis sp. [10]. BBR has a long
history as a traditional remedy in many parts of the world [11]. The activity of BBR has been
widely discussed in the scientific literature—it has been reported to exhibit therapeutic properties
including anti-inflammatory, antioxidant, anti-cancer, anticonvulsant, antidepressant, anti-Alzheimer,
anti-arrhythmic, and anti-diabetic effects in vitro and in vivo [12,13]. Moreover, the compound exhibits
broad-spectrum antimicrobial activity against bacteria and viruses. BBR has been reported to be effective
against Streptococcus agalactiae, Actinobacillus pleuropneumoniae, and Staphylococcus spp. Additionally,
BBR has been shown to block herpes simplex virus types 1 and 2 (HSV-1, 2) replication in Vero cells [14].
Recent studies have shown potent inhibition of the Zika virus (ZIKV) [15,16]. Other reports have
shown BBR-mediated suppression of respiratory syncytial virus (RSV) replication in epithelial cells,
probably via inhibition of RSV-mediated early p38 mitogen-activated protein kinase (MAPK) activation
and inhibition of virus entry into the cell [17]. Another publication showed an inhibitory effect on the
Chikungunya virus (CHIKV) through inhibition of virus-induced MAPK signaling [10,13,18].

The literature claims that BBR also inhibits the replication of the influenza virus. In the work by
Cecil et al., BBR inhibited the replication of two strains of the H1N1 virus in a murine macrophage cell
line (RAW 264.7) and adenocarcinoma human alveolar basal epithelial cells (A549) but did not prevent
the expression of viral proteins [19]. The authors reported that virus replication was diminished
by inducing the formation of viral protein aggregates within the host cell cytoplasm. An in vivo
experiment (mice models) confirmed these observations, as BBR reduced mice mortality from 90%
to 55% and decreased virus titers in the lungs on day 2 post-infection (p.i.) [20,21]. Moreover, BBR
also suppresses pulmonary inflammation and reduces necrosis, inflammatory cell infiltration, and
pulmonary edema [21]. Cecil et al. tested the anti-influenza properties of BBR using three in vitro
models, i.e., A549 cells, RAW 264.7 cells, and Madin–Darby canine kidney (MDCK) cells and observed
inhibition of virus replication only in the first two cell types [19]. No inhibition was noted in MDCK
cells. On the other hand, Wu et al. tested BBR only in MDCK cells and observed strong inhibition of
virus replication [20].

Despite numerous reports on BBR activity, the mechanism of its antiviral action is far from being
understood. Our results show strong anti-influenza properties of BBR in vitro and ex vivo, and we
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believe that this observed effect is relevant in the human body. Moreover, we show that BBR blocks the
influenza-induced mitogen-activated protein kinase/extracellular signal-related kinase (MAPK/ERK)
pathway, which is required for the transport of viral ribonucleoproteins to the cytoplasm.

2. Materials and Methods

2.1. Compounds

Berberine chloride hydrate (BBR) was obtained from Sigma–Aldrich, Poznan, Poland. Stock
solutions of BBR (50 mM) were prepared by dissolving BBR in dimethyl sulfoxide (DMSO)
(Sigma–Aldrich, Poznan, Poland.) The fresh stock was prepared before each experiment. U0126 stock
(Invivogen, Toulouse, France), a specific inhibitor of the extracellular signal-related kinase (ERK), was
dissolved in DMSO (25 mM), aliquoted and stored at −20 ◦C.

2.2. Virus and Cells

Madin–Darby canine kidney (MDCK) cells (ATCC CCL-34 cell line), adenocarcinoma human
alveolar basal epithelial cells (A549) (ATCC CCL-185 cell line), and lung epithelial type I (mouse)
immortalized cell line (LET1) (NR-42941, BEI Resources, Manassas, VA, USA) were maintained in
Dulbecco’s modified Eagle’s medium (DMEM, high glucose, Life Technologies, Eugene, OR, USA)
supplemented with 3% heat-inactivated fetal bovine serum (FBS, Life Technologies, USA), penicillin
(100 U/mL), and streptomycin (100 µg/mL) (3% DMEM). Cells were cultured at 37 ◦C in an atmosphere
containing 5% CO2.

Human airway (tracheobronchial) epithelial (HAE) cells were obtained from airway specimens
resected from patients undergoing surgery at the Silesian Center for Heart Diseases. The study
was approved by the Bioethical Committee of the Medical University of Silesia in Katowice, Poland
(approval no: KNW/0022/KB1/17/10 dated 16 February 2010). Written consent was obtained from all
patients. Primary cells were cultured on plastic to generate passage 1 cells and plated at a density
of 3 × 105 cells/well on permeable Transwell inserts supports. HAE cultures were generated by the
provision of an air–liquid interface for 6 to 8 weeks to form fully differentiated, polarized cultures that
resemble pseudostratified mucociliary epithelium.

Human seasonal influenza virus type A H3N2, strain A/Hong Kong/4801/2014, was obtained from
the European Virus Archive EVA project (EVAg, Marseille, France). Virus stocks were generated by
infecting MDCK cells at 90% confluency for 48 h. After that time, cultures were aliquoted and stored at
−80 ◦C. Mock samples were prepared in the same manner, using uninfected cells. Virus stocks were
quantified by titration, as previously described [22].

2.3. Replication Inhibition Assay

MDCK, A549, or LET1 cells were seeded in 96-well plates (TPP, Trasadingen, Switzerland) at the
density of 104 cells per well. After 24 h, cells were infected with influenza A virus at a dose of 400
50% tissue culture infectious dose (TCID50)/mL in the presence of BBR in a total volume of 100 µL in
DMEM supplemented with penicillin/streptomycin and TPCK-treated trypsin 1 µg/mL (Sigma–Aldrich,
Poznan, Poland). In the case of the HAE cultures, virus and BBR were applied to the apical surfaces
of the HAE cultures. Control samples were inoculated in the same manner with the same volume
of mock and/or DMSO. After 2 h of incubation at 37 ◦C, cells were rinsed thrice with PBS and fresh
medium supplemented with BBR was added. The infection was carried out for 48 h (cell lines) or 72 h
(HAE). Virus yield was measured using the RT-qPCR method described below.

2.4. Mechanism of Action Assays

To determine whether BBR affects a particular stage of the replication cycle of the virus, a series of
previously described mechanistic experiments [22,23] was carried out. All assays were conducted on
sub-confluent LET1 cells.
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(I) Virus inactivation assay shows the influence of tested compounds on the viral particle. Influenza
A virus stock was incubated with BBR under constant mixing for 1 h at room temperature.
Samples were diluted 100 times to ensure that the BBR concentration was below the lower limit of
the effective range. Samples were then titrated according to the Reed and Muench method [24].

(II) Cell protection assay examines the effect of the compound on the cell surface. In this assay, cells
were incubated with BBR for 2 h at 37 ◦C. After incubation, the media were removed, and cells
were washed with PBS. Then, cells were infected with the influenza A virus (TCID50 = 400) or
mock control for 2 h at 37 ◦C. Next, media were discarded, cells were washed thrice with PBS,
and fresh infection medium was added. Cells were incubated for 48 h at 37 ◦C.

(III) Virus attachment assay examines the effect of the compound on the virus–receptor interaction.
Confluent cells were pre-cooled to 4 ◦C and overlaid with ice-cold influenza A virus in
BBR-containing medium (TCID50 = 400) or mock control. Samples were incubated at 4 ◦C
for 1 h to allow for virus attachment to the host cell but not for virus internalization [25]. Then,
cells were rinsed thrice with cold PBS to remove the residual virus and fresh medium was applied.
Cells were incubated for 48 h at 37 ◦C.

(IV) Virus internalization assay for evaluation of virus entry into the susceptible cell. Pre-cooled,
confluent cells were infected with a virus (TCID50 = 400; ice-cold solution) for 2 h at 4 ◦C to
avoid virus internalization to cells. After incubation, the medium was discarded, and cells were
washed thrice with cold PBS. Then, media supplemented with BBR were applied, and samples
were incubated for 2 h at 37 ◦C to allow for virus internalization. Next, cells were washed with an
acidic buffer (pH 3.0; 0.1 M glycine, 0.1 M sodium chloride) to inactivate uninternalized virions.
Cultures were rinsed once with PBS and fresh media were applied. Cells were incubated for 48 h
at 37 ◦C.

(V) Virus replication, assembly, and egress assay evaluates virus replication and production of
infectious progeny. Cell cultures were infected with influenza A virus (TCID50 = 400) for 2 h at 37
◦C. Then, the residual virus was washed out thrice with PBS. Medium supplemented with BBR
was applied, and cells were incubated for 48 h at 37 ◦C.

2.5. Cell Viability

Cell viability was evaluated using the XTT Cell Viability Assay kit (Biological Industries,
Cromwell, CT, USA) according to the manufacturer’s instructions. Cells were incubated with
BBR for 48 h at 37 ◦C in an atmosphere containing 5% CO2. After incubation, the medium was
discarded and 100 µL of fresh medium was added to each well. Then, 50 µL of the activated
2,3-bis-(2-methoxy-4-nitro-5-sulphenyl)-(2H)-tetrazolium-5-carboxanilide (XTT) solution was added
and samples were incubated for 2 h at 37 ◦C. The absorbance (λ = 450 nm) was measured using a Spectra
MAX 250 spectrophotometer (Molecular Devices, San Jose, CA, USA). Data were presented as the ratio
of signal from the examined sample and from the control sample (solvent-treated cells) × 100%.

2.6. Confocal Microscopy and Image Analysis

For confocal microscopy analysis, 0.1 × 106 A549 cells were seeded on coverslips in 12-well plates
(TPP, Trasadingen, Switzerland). After 12 h, cells were washed with PBS and infected with influenza A
virus in the presence of BBR.

After incubation at 37 ◦C, cells were washed with PBS, fixed with 4% paraformaldehyde,
permeabilized with 0.1% Triton X-100, and incubated for 2 h with 5% bovine serum albumin (BSA)
containing 0.1% Tween 20 (Sigma–Aldrich, Poland). Subsequently, cells were incubated for 2 h with
mouse anti-nucleoprotein antibody (1 µg/mL; BEI Resources, Manassas, VA, USA) diluted 1:250
in Tris-buffered saline (TBS)-Tween (0.1%) buffer. Then, cells were incubated for 1 h with Alexa
Fluor 488-labeled goat anti-mouse antibody (2.5 µg/mL; Molecular Probes, Eugene, OR, USA) diluted
1:1000 in Tris-buffered saline (TBS)-Tween (0.1%) buffer. Nuclear DNA was stained with DAPI
(4’,6-diamidino-2-phenylindole; 0.1 µg/mL; Sigma–Aldrich, Poznan, Poland). Fluorescent images were
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acquired using a Zeiss LSM 880 confocal microscope (Carl Zeiss Microscopy GmbH, Jena, Germany)
and analyzed with ImageJ Fiji software [26]. The relative amount of influenza A nucleoprotein present
in the nuclei was assessed by scoring the fluorescence signal of the viral protein overlapping with the
nuclei. The data were presented as the proportion of fluorescence intensity in the nuclei to the total cell
fluorescence intensity.

Distribution of values was tested using the Shapiro–Wilk normality test, and equality of group
variances was examined with Browne–Forsythe test. Statistical significance was calculated using
Kruskal–Wallis test with Dunn’s multiple comparisons test. p values <0.05 were considered significant
and denoted with an asterisk.

2.7. Quantitative Real-Time PCR

Viral RNA was isolated using the Viral DNA/RNA Isolation Kit (A&A Biotechnology, Gdynia,
Poland) according to the manufacturer’s instructions. Then, reverse transcription was carried out with
a high-capacity cDNA reverse transcription kit (Applied Biosystems, Waltham, MA, USA) according
to the manufacturer’s instructions using a Veriti thermal cycler (Applied Biosystems, Waltham, MA,
USA). The whole cDNA was determined by quantitative real-time PCR (qPCR). The reaction was
carried out in a CFX96 Touch Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA) (2 min at
50 ◦C, 10 min at 95 ◦C, followed by 40 cycles of 15 s at 95 ◦C and 1 min at 60 ◦C). The reaction mixture
contained 1 × RT HS-PCR mix probe (A&A Biotechnology, Gdynia, Poland), a specific probe labeled
with 6-carboxyfluorescein (FAM), a black hole quencher 1 (BHQ1) (sequence 5′- TCA GGC CCC CTC
AAA GCC GA-BHQ1-3′, 100 nM), primers specifically targeting the influenza A matrix protein (450
nM each, sense primer 5′-AGA TGA GTC TTC TAA CCG AGG TCG-3′, antisense primer 5′-TGC AAA
AAC ATC TTC AAG TCT CTG-3′), and 2.5 µL of viral cDNA in 10 µL reaction mixture. For virus
copy number quantification a standard DNA template of the known copy number was prepared and
serially diluted, and the standard curve was prepared as described previously [22]. The lower limit of
detection was < 103 copies/mL.

2.8. Isolation of Nuclear and Cytoplasmic Proteins

Nuclear and cytoplasmic fractions were isolated as described before [27]. Briefly, A549 cells were
washed once with PBS and resuspended in hypotonic buffer A: 20 mM Tris HCl [pH 7.5], 10 mM NaCl,
3 mM MgCl2, 10% glycerol, and a protease inhibitors cocktail (Roche, Warsaw, Poland) for 1 min.
Then, NP-40 was added to reach 0.1% v/v concentration and samples were incubated for 5 min. After
centrifugation (600× g at 4 ◦C), the cytoplasmic fraction was collected. Then, nuclei were resuspended
in nuclear extraction buffer B: 20 mM Tris-HCl pH 7.5, 400 mM NaCl, 3 mM MgCl2, 20% glycerol.
After 30 min on ice, nuclei were subjected to three cycles of snap-freeze/thaw, and insoluble proteins
were removed from the nuclear extract by high-speed centrifugation at 4 ◦C. Obtained fractions were
mixed with sample buffer (0.5 M Tris, pH 6.8, 10% SDS, 50 mg/mL dithiothreitol (DTT)), boiled for
5 min, and separated on 10% polyacrylamide gels alongside dual-color PageRuler prestained protein
size markers (Thermo Scientific, Warsaw, Poland). The separated proteins were then transferred
onto a Westran S polyvinylidene difluoride (PVDF) membrane (Whatman Maidstone, UK) by wet
blotting (Bio-Rad, Hercules, CA, USA) for 1.5 h at 100 V in transfer buffer containing 25 mM Tris, 192
mM glycine, and 20% methanol at 4 ◦C. The membranes were then blocked by overnight incubation
(at 4 ◦C) in Tris-buffered saline (TBS)-Tween (0.1%) buffer (TTBS) supplemented with 5% skimmed
milk (BioShop, Burlington, ON, Canada). Membranes were incubated for 2 h with mouse anti-NP
primary antibodies (BEI Resources, Manassas, VA, USA) diluted 1:250. For evaluation of fractions
purity, rabbit anti-histone 3 and GAPDH-diluted 1:1000 antibodies (Thermo Scientific, Warsaw, Poland)
were used. Then, suitable secondary antibodies labeled with horseradish peroxidase (Santa Cruz
Biotechnology, Dallas, TX, USA) were used (1:10,000). All antibodies were diluted in TBS-Tween (0.1%)
supplemented with 1.5% skimmed milk. The signal was developed using an Immobilon Western
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Chemiluminescent HRP (Horseradish Peroxidase) Substrate (Merck Millipore, Warsaw, Poland) and
visualized by ChemiDoc™MP Imaging System (Bio-Rad, Hercules, CA, USA).

2.9. Statistics

The results are expressed as means ± standard deviations (SD). The half-maximal inhibitory
concentration (IC50) and 50% toxic concentration (TC50) values were calculated using the Graph Pad
Prism 8.0 function (GraphPad Software, San Diego, CA, USA). The selectivity index (SI) was defined as
the TC50/IC50 ratio. To determine the significance of the results obtained, Student’s t-test was used and
p values < 0.05 were considered significant. Western blot analyses were conducted using Image Lab
6.0 (Bio-Rad, Hercules, CA, USA).

3. Results

3.1. The Antiviral Effect of BBR Is Cell-Type Dependent

To investigate the antiviral activity of BBR in vitro, a series of cell lines permissive to the influenza
A virus were infected in the presence of BBR (10–160 µM). First, the most common in vitro model
was used, i.e., the cell line derived from Madin–Darby canine kidney cells (MDCK). We performed
a standard virus replication assay by infecting the MDCK cells in the presence or absence of BBR.
Concomitantly, cell viability was monitored using the XTT assay. A significant inhibitory effect of BBR
in the MDCK cells was observed in our experimental setting in samples treated with BBR at 80 and
160 µM, while IC50 was equal to 52 µM. We did not observe any significant decrease in cell viability
(TC50 = 1035 µM, SI = 20) (Figure 1A, Table 1). These results indicate inhibitory properties similar to
those obtained by Wu et al. (IC50 = 0.025 µg/mL ≈ 67 µM). We conclude that BBR hampers replication
of the influenza A virus in MDCK cells, but to a much lesser extent than in other in vitro models [19,28].

Table 1. Inhibition of influenza A virus in different cellular models. Experimental values of half-maximal
inhibitory concentration (IC50), half-maximal toxic concentration (TC50) and selectivity index (SI) of
berberine (BBR) versus influenza A virus replication in different cell lines. A549: adenocarcinoma
human alveolar basal epithelial cells; MDCK: Madin–Darby canine kidney cells; LET1: lung epithelial
type I cell line; HAE: human airway epithelial cells. For HAE cultures no TC50 and SI values were
measured (indicated as “-“).

IC50 TC50 SI

A549 17 µM (0.006 µg/mL) 107 µM (0.036 µg/mL) 6
MDCK 52 µM (0.017 µg/mL) 1035 µM (0.350 µg/mL) 20
LET1 4 µM (0.001 µg/mL) 521 µM (0.176 µg/mL) 123
HAE 16 µM (0.005 µg/mL) - -

Next, the human pulmonary tumor cell line A549 was assayed, as inhibition of the influenza
virus by BBR in this cell line has been consistently reported [19,21]. Many reports show a high toxicity
of BBR to cancer cells, including the A549 cell line [29,30], therefore BBR has been proposed as an
antineoplastic drug candidate. Considering that BBR cytotoxicity was not assayed in these cells, we
decided to verify the antiviral BBR activity in A549 cells. Our results indicate a significant decrease
in influenza A replication in the presence of BBR, but the compound was cytotoxic at the active
concentrations (IC50 = 17 µM, TC50 = 107 µM, SI = 6) (Figure 1B, Table 1).

Finally, we decided to test the immortalized murine lung epithelial type I cell line (LET1). This
cell line is non-cancerous and maintains most of the natural signaling pathways [31]. First, we verified
the cytotoxicity of BBR on these cells and it was acceptable (TC50 = 521 µM). Next, we tested the effect
of BBR on the replication of the influenza A virus in LET1 cells. RT-qPCR analysis revealed a vast
decrease in viral replication at non-toxic concentrations (IC50 = 4 µM, SI = 123) (Figure 1C, Table 1).



Viruses 2020, 12, 344 7 of 16Viruses 2020, 12, x FOR PEER REVIEW  7 of 16 

 

 

Figure 1. BBR‐mediated inhibition of influenza A virus is cell‐type dependent. RT‐qPCR analysis (black, 

left Y‐axis) of cell culture supernatants infected with influenza A virus (IAV); tissue culture infectious dose 

(TCID50) = 400/mL) with or without BBR. Control samples were treated in the same manner with the same 

volume of DMSO. XTT assay results (right Y‐axis) are indicated in gray (A–C). The results are presented 

as  average  values with  standard  deviations  (error  bars). All  experiments were  performed  at  least  in 

triplicate. 

Figure 1. BBR-mediated inhibition of influenza A virus is cell-type dependent. RT-qPCR analysis
(black, left Y-axis) of cell culture supernatants infected with influenza A virus (IAV); tissue culture
infectious dose (TCID50) = 400/mL) with or without BBR. Control samples were treated in the same
manner with the same volume of DMSO. XTT assay results (right Y-axis) are indicated in gray (A–C).
The results are presented as average values with standard deviations (error bars). All experiments
were performed at least in triplicate.
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To summarize, we have tested three different in vitro models, and we have obtained three different
results. To sort out the actual activity of BBR, we decided to evaluate BBR in a more natural system,
mimicking the human airway epithelium (HAE). Briefly, HAE was reconstituted on the interface of
air and media using primary human cells. This model has previously been well-characterized and
successfully used by us in other studies [22,32,33]. To the best of our knowledge, it is the most natural
cellular model for testing of potential inhibitory compounds against a variety of respiratory viruses.
3D HAE cultures form well-differentiated, polarized cultures that resemble in vivo pseudostratified
mucociliary epithelium lining the conductive airways of the human respiratory tract. We did not
observe cytotoxicity at tested concentrations (i.e., up to 160 µM, 0.054 µg/mL), suggesting that BBR
is not toxic towards non-cancerous cells, consistent with previously published data. However, BBR
inhibited influenza A virus replication in HAE cultures only at higher concentrations compared to
LET1 cells (IC50 = 16 µM). This may be explained by the fact that BBR was not continuously present on
the cultures, but only during daily washes of the apical surface (Figure 2).
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Figure 2. BBR-mediated inhibition of influenza A virus in fully differentiated HAE cultures. RT-qPCR
analysis (black, left Y-axis) of cell culture or tissue culture supernatants infected with influenza A virus
(IAV); TCID50 = 400/mL) with or without BBR at various time points. Control samples were treated in
the same manner with the same volume of DMSO. The results are presented as average values with
standard deviations (error bars). All experiments were performed at least in triplicate.

Taken together, BBR is expected to inhibit the influenza A virus during the natural infection, but
care should be taken during the selection of the in vitro model.

3.2. BBR Inhibits the Influenza A Virus Replication at Late Stages of the Infection

As we confirmed the anti-influenza activity of BBR, our next step was to determine whether
BBR affects a particular stage of the virus replication cycle. To investigate this, we made a series of
mechanistic experiments as described in our earlier works [22,23]. Our assays I–IV did not show a
significant decrease in the influenza A virus RNA copy number measured with RT-qPCR, suggesting
that BBR did not interfere with the virus itself, virus entry, trafficking, and genome replication
(Figure 3). However, we observed a decrease in assay V, which suggests that BBR affects virus assembly,
maturation, or egress (Figure 4).
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Figure 3. BBR does not inhibit the early steps of influenza A virus infection. Modulation of virus yield
as determined by titration (A) or RT-qPCR (B) after the virus inactivation assay (I), where the virus
was pre-incubated with BBR or DMSO, diluted and titrated on MDCK cells. Modulation of virus yield
as determined by RT-qPCR after the receptor attachment assay (C) or virus internalization assay (D).
In assays B–D, LET1 cells were infected with influenza A virus (IAV); TCID50 = 400/mL) and BBR
was added at different stages of the virus replication cycle. Control samples were treated in the same
manner with the same volume of DMSO. The results are presented as average values of three replicates
with standard deviations (error bars).
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Figure 4. BBR inhibits influenza A replication at the late stages of infection. LET1 cells were infected
with influenza A virus (IAV); TCID50 = 1000/mL). After 2 h p.i., 10 µM U0126 in DMSO or BBR
were added. Control samples were treated in the same manner with the same volume of DMSO. All
experiments were performed in triplicate. The results are presented as average values with standard
deviations (error bars). An asterisk (p < 0.05) indicates values that are significantly different from
the control.
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3.3. BBR Inhibits the Influenza A Virus Replication through Downregulation of the MAPK/ERK Pathway

Data presented above and recently published works on other viruses suggest that BBR acts on
cellular pathways that are essential for efficient virus replication.

To confirm whether BBR inhibits the influenza A virus through downregulation of the MAPK/ERK
pathway, confocal imaging of infected A549 cells treated with two different concentrations of BBR and
with an active concentration of specific MAPK/ERK inhibitor U0126 (10 µM) was conducted. After 12 h,
we observed characteristic accumulation of a viral RNP complex inside nuclei, in both cells treated
with BBR and U0126 (Figure 5A). This effect was confirmed by image analysis. Significant differences
in NP signal accumulation were observed for both the U0126 and BBR cells compared to the untreated
control (Figure 5B). More than 90% of NP colocalized with nuclear staining in cells treated with U0126
or BBR compared to about 70% in control cells. This effect was clearly visible between 12 and 20 h
p.i. After this time, large amounts of RNP were also visible in the cytoplasm (data not shown). This
outcome may be due to the removal of BBR from the cell or its degradation. Western blot analyses
indicate moderate inhibition of ERK1 activation by BBR at 20 µM concentration (45% inhibition)
compared to the U0126 cell (76% inhibition) (Figure 6.). We observed, however, a slight increase in the
amount of phospho-ERK in control-infected cells, as previously reported [34]. To confirm confocal
imaging results, we performed a similar experiment and isolated cytoplasmic and nuclear fractions for
Western blot analysis. The analysis showed higher quantities (~3 fold increase) of viral NP in nuclear
fractions of cells treated with U0126 or 20 µM BBR (0.007 µg/mL) compared to untreated infection,
confirming our confocal imaging observations (Figure 7B). Lower BBR concentration, however, did not
cause significant accumulation of influenza A virus NP (data not shown). In the case of cytoplasmatic
fraction, we observed a moderate yet clear decrease of NP (about 40% inhibition) signal in treated
cells which may suggest that BBR does not interfere with the assembly and release of virions. Taking
these results together, obtained data suggest an inhibition on the influenza A virus by BBR through the
downregulation of the MAPK/ERK1 pathway.
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Figure 5. BBR blocks the transport of influenza A ribonucleoprotein to the cytoplasm. A549 cells were
infected with influenza A virus (IAV); TCID50 = 2000/mL) in the presence of 10 µM U0126 in DMSO
(U0126), 20 µM BBR (BBR 20 µM), or 40 µM BBR (BBR 40 µM). Cells were fixed 12 h after the infection,
and confocal images were collected (A). Cell nuclei are denoted in blue, influenza A NP protein is
denoted in green. Scale bar = 50 µm. Confocal microscopy analysis of the nuclear localization of
influenza A virus nucleoprotein (B). The statistical significance of the phenomena was assessed by
image analysis, where retention of influenza A virus nucleoprotein in nuclei was scored as described
in the Materials and Methods section. The data are presented as mean value ± SD from at least four
hundred cells collected from at least three independent experiments. An asterisk (p < 0.05) indicates
values that are significantly different from the control.
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Figure 6. BBR inhibits virus-induced mitogen-activated protein kinase/extracellular signal-related
kinase (MAPK/ERK) pathway. A549 cells were infected with influenza A virus (IAV); TCID50 = 2000/mL)
or with mock with the addition of DMSO solvent, U0126 (10 µM), or BBR (20 µM). Cells were lysed
12 h after infection and resolved by 12% SDS-PAGE. Phosphorylated ERK-1 protein was visualized
by Western blot with an anti-phosphorylated ERK-1 antibody. β-actin was visualized as a reference
control. Percentage values show the relative expression ratio of phospho-ERK1 after normalization to
β-actin signal in each lane.
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Figure 7. BBR treatment leads to the accumulation of influenza A virus NP in nuclei. The figure
shows Western blot analyses of cytoplasmic (A) and nuclear (B) fractions of A549 cells infected with
influenza A virus (TCID50 = 2000/mL) with the addition of DMSO solvent, U0126, or BBR at given
concentrations. After 12 h, cytoplasmic and nuclear fractions of the cells were obtained and resolved
by 12% SDS-PAGE. Influenza A nucleoprotein (IAV NP) was visualized by Western blot with anti-NP.
GAPDH (glyceraldehyde 3-phosphate dehydrogenase) and histone 3 proteins were blotted as fraction
purity markers. Percentage values show relative expression ratio of influenza A virus NP after
normalization to GAPDH (A) or histone 3 (B) signal in each lane.
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4. Discussion

Influenza A virus infections are among major public health threats. Despite many efforts, the
list of approved drugs is short, and the emergence of resistance is rapid [8]. Consequently, there is a
continual need for new, broad-spectrum, anti-influenza drugs, and many different sources for such
drugs are considered. Natural products constitute a rich library of compounds, which may be used to
identify new structures and new molecular targets. However, knowledge of the mechanism of action
is essential. Berberine (BBR) exhibits a number of biological activities and, among others, has been
described as a potent inhibitor of the influenza virus [12]. In this work, we undertook a comprehensive
study of the antiviral properties of BBR in vitro and ex vivo. We also delineated the mechanism of
action of the compound.

Some reports on the anti-influenza properties of BBR are conflicting. For MDCK cells, Cecil et al.
showed that BBR did not affect virus replication, while Wu et al. reported substantial inhibition in this
culture model [19,20]. In our study, we observed noticeable influenza A virus inhibitory properties at
high concentrations, similar to those obtained by Wu et al. [20]. The main difference between the studies
was the concentration range used, as the effective concentration in the MDCK cells is unusually high.

The results obtained with a second commonly used model based on A549 cells are also slightly
confusing. While the activity of BBR has been reported in these cells [21], other reports show a strong
cytotoxic activity of BBR towards cancerous cells, including A549 cells [10,30]. Indeed, while the
effective concentration was rather low, the cytotoxic concentration was also low, and it was impossible
to determine whether the observed effect is not an artifact.

To sort out whether the antiviral effect of BBR has the potential to be used for treatment, we tested
two further models employing non-cancerous cells originating from respiratory cells. First, mouse
immortalized lung epithelial type 1 (LET1) line was used. Second, fully differentiated 3D primary
human airway epithelium (HAE) cultures were employed. In both cases, we observed significant
anti-influenza properties of BBR at non-toxic concentrations. These results confirm the anti-influenza
properties of BBR, the low toxicity of the compound for the primary cells, and show the potency of the
compound to inhibit the infection in the tissue.

In the subsequent step, we aimed to understand the molecular mechanism of action of the BBR on
the influenza A virus. Functional assays demonstrated the effect of BBR on virus replication, and not
the receptor binding or virus entry. The cell-type-dependent differences in the compound antiviral
activity suggested that the compound likely acts on the host cell, and not the virus itself. For this
reason, we made an effort to link the known activities of BBR with pathways that are important for the
replication of the influenza A virus. Two recently published reports show BBR-mediated inhibition of
the Chikungunya virus (CHIKV) and the enterovirus 71, which was caused by interference with the
virus-induced mitogen-activated protein kinase (MAPK) signaling pathways, including extracellular
signal-related kinase (ERK) [35,36]. It is also known that the active form of ERK1 (p-ERK1) is required
for the nuclear export of the influenza A virus RNP complex during the infection [37] and that this
pathway is modulated during the infection. First, the ERK pathway is upregulated shortly after the
infection, to rapidly decrease after the first hour [38]. Next, the pathway is upregulated again at the
late stage of the infection, when RNP must be exported from the nucleus to assemble into progeny
virions [37]. ERK inhibition with a specific inhibitor U0126 impairs RNP transport and results in
retention of RNPs inside the nucleus, and consequent inhibition of viral replication [37]. We verified if
BBR exhibited activity similar to that of U0126. Confocal microscopy revealed a similar RNP retention
within the cell nuclei in both BBR-treated and MAPK/ERK inhibitor U0126-treated A549 cells (Figure 5).
Accumulation of the nucleoprotein was also observed when nuclear fractions of cells treated with BBR
and U0126 were analyzed (Figure 6). The literature does not link the specific MAPK/ERK inhibition
and the activity of BBR in A549 cells [39,40], which suggests that the antiviral effect is specific.

In our studies, we used BBR diluted in DMSO. While this solvent is convenient for use in cell
culture, regulatory agencies recommend it only for topical use [41,42]. Considering the route of
administration of anti-influenza drugs (oral, inhalation, or intravenous) [43], other solvents should be
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considered, which may include conjugates or nanocages. Such new formulations may also increase the
bioavailability of BBR [44].

Summarizing, our results demonstrate inhibition of the influenza A virus by BBR at non-toxic
concentrations. The antiviral effect differs between cell lines, but we confirmed its relevance using the
most advanced model of the human respiratory epithelium. A subsequent study revealed that the
inhibition of the influenza A virus replication results from BBR-specific inhibition of the MAPK/ERK1
pathway, required for the effective production of progeny virions. It is worth noting that due to
its mechanism of action, the emergence of resistant mutants is less likely than for commonly used
inhibitors targeting viral proteins.
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