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Abstract: Giant viruses are a group of eukaryotic double-stranded DNA viruses with large virion
and genome size that challenged the traditional view of virus. Newly isolated strains and sequenced
genomes in the last two decades have substantially advanced our knowledge of their host diversity,
gene functions, and evolutionary history. Giant viruses are now known to infect hosts from all major
supergroups in the eukaryotic tree of life, which predominantly comprises microbial organisms.
The seven well-recognized viral clades (taxonomic families) have drastically different host range.
Mimiviridae and Phycodnaviridae, both with notable intrafamilial genome variation and high abundance
in environmental samples, have members that infect the most diverse eukaryotic lineages. Laboratory
experiments and comparative genomics have shed light on the unprecedented functional potential
of giant viruses, encoding proteins for genetic information flow, energy metabolism, synthesis of
biomolecules, membrane transport, and sensing that allow for sophisticated control of intracellular
conditions and cell-environment interactions. Evolutionary genomics can illuminate how current
and past hosts shape viral gene repertoires, although it becomes more obscure with divergent
sequences and deep phylogenies. Continued works to characterize giant viruses from marine and
other environments will further contribute to our understanding of their host range, coding potential,
and virus-host coevolution.

Keywords: Nucleo-Cytoplasmic Large DNA Viruses (NCLDVs); algae; protists; cophylogeny; host
switch; auxiliary genes; virus-encoded metabolism; gene repertoire; genome evolution; lateral
gene transfers

1. Introduction

The Nucleo-Cytoplasmic Large DNA Viruses (NCLDVs) are a group of double-stranded DNA
viruses of eukaryotes that was established two decades ago [1]. Analyses of few widely distributed
core genes suggest a monophyletic origin of NCLDVs [1,2], which have been formally named
Nucleocytoviricota within the virus kingdom Bamfordvirae (realm Varidnaviria) by the ICTV [3,4].
For their extraordinary genome size (up to 2.8 Mb [5]) and virion size (up to 2.5 µm [6]) among all
viruses, NCLDVs are commonly known as giant viruses [7–11], which reflects their distinction from
traditionally defined viruses [12]. Although arbitrary thresholds can be applied to draw a line between
large and giant viruses, it is now clear that NCLDV genomes larger than a certain size (e.g., 500 [13] or
300 [14] kb) have multiple evolutionary origins and that their size distribution forms a continuum
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with considerable variation both within and across families [13,15]. Still, little is known about the
mechanisms that underpin the evolution and maintenance of giant virus genome diversity.

Recent advances in the biology of giant viruses have brought to the fore their expanded host
range and coding potential, as shown in numerous studies based on isolation and cultivation, genomic
and functional characterization, or environmental metagenomics. Giant viruses have been found
in a myriad of eukaryotes previously unknown as hosts, gradually filling the gaps of giant virus
hosts in the eukaryotic tree of life. Newly sequenced genomes often contain genes that have rarely or
never been found in viruses, while the majority of genes in giant viruses do not even have homolog
matches in sequence databases. The virus-encoded genes that are otherwise characteristic of cellular
organisms could play crucial roles in manipulating the metabolism of infected cells, converting them
into virocells [16,17]. By considering NCLDVs—giant viruses—as a whole, here we briefly summarize
and highlight recent findings that have revolutionized our view of their host range and coding potential,
with particular emphasis on the evolutionary implications for giant viral genomes.

2. Giant Viruses Infect Every Major Eukaryotic Lineage

2.1. The Founding Members of NCLDVs

Our current knowledge of the host range of NCLDVs (Figure 1 and Table S1) is dramatically
different from when NCLDVs were first recognized through comparative genomics and comprised
by only four pre-existing families [1]: three families of animal (vertebrate and arthropod)
viruses—Poxviridae (e.g., variola and vaccinia viruses), Asfarviridae (only African swine fever virus
[ASFV]), and Iridoviridae (vertebrate and insect viruses, incl. Ascoviridae [18])—and the alga-infecting
Phycodnaviridae, including chlorovirus of Chlorella (Trebouxiophyceae, Chlorophyta) and phaeovirus of
the multicellular brown alga Ectocarpus (Phaeophyceae, Stramenopila). These first known hosts
of NCLDVs were clearly biased toward human, livestock, and other multicellular organisms.
In fact, only a few unicellular hosts of giant viruses had been reported before the establishment
of NCLDV in 2001. Unlike the better studied chlorovirus [19], genome sequences of marine viruses
infecting the green microalga Micromonas (Mamiellales, Chlorophyta) [20], the bloom-forming
coccolithophore Emiliania (Isochrysidales, Haptista) [21], the heterotrophic flagellate Cafeteria
(Bicosoecida, Stramenopila; originally misidentified as Bodo) [22], and the harmful bloom-forming
alga Heterosigma (Raphidophyceae, Stramenopila) [23] became available only after 2001 [9,24–26],
which eventually supported their grouping with other NCLDVs.

2.2. The Age of Discovery for Giant Viruses Infecting Microbial Eukaryotes

With the advancement in genome sequencing and environmental microbiology, NCLDVs have
been expanding substantially in terms of known host diversity. A major shift to discovering giant
viruses in microbial eukaryotes or protists, which comprise the vast majority of eukaryotic lineages [27],
began with the recognition of mimivirus, a bacterium-like pathogen in Acanthamoeba (Discosea,
Amoebozoa) and the first giant virus with an Mb-sized genome [8]. As the first non-photosynthetic
protist host of giant viruses, Acanthamoeba (ubiquitous free-living amoebae and opportunistic human
pathogens [28]) had since then become the model organisms for isolating giant viruses from a
variety of environmental samples, leading to the discovery of marseillevirus [29], megavirus [30],
moumouvirus [31], pandoravirus [5], pithovirus [32], mollivirus [33], cedratvirus [34], pacmanvirus [35],
tupanvirus [36], and medusavirus [37]. A distantly related amoebal lineage, Vermamoeba (Tubulinea,
Amoebozoa), has been used since 2015 as an alternative host system for viruses that cannot replicate in
Acanthamoeba, including faustovirus [38], kaumoebavirus [39], orpheovirus [40], and yasminevirus
(a klosneuvirus) [41]. Giant viruses isolated with this approach have given rise to the proposal of
four new families—Mimiviridae, Marseilleviridae, Pandoraviridae, and Pithoviridae—and expanded some
pre-existing families (Figure 1). These commonly recognized NCLDV families vary greatly in their
virion morphology, genome characteristics, and replication cycle (Figure 1 and Table 1).
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Table 1. A list of representative giant viruses and their morphological and genomic features.

Family Virus (Lineage) Shape Size (nm) Genome Size (kb) DNA tRNAs RNA Polymerase
Subunits [54] Replication Cycle Reference

Pandoraviridae
(Phycodnaviridae)

Pandoravirus salinus
(Pandoravirus) Ovoid with a pore 1200 × 500 2770 Linear 3 4 Nuclear and

cytoplasmic [5,55,56]

Phycodnaviridae Paramecium bursaria Chlorella
virus 1 (Chlorovirus) Icosahedral with a spike 170 331 Linear 11 0 Nuclear and

cytoplasmic [7,19]

Mimiviridae Acanthamoeba polyphaga
mimivirus (Mimivirus) Icosahedral (with fibers) 390 (630) 1181 Linear 6 9 Cytoplasmic [55,57]

Pithoviridae Pithovirus sibericum (Pithovirus) Ovoid with a capped pore 1500 × 800 610 Circular 0 4 Cytoplasmic [6,32,55]

Marseilleviridae Marseillevirus marseillevirus
(Marseilleviridae A) Icosahedral 250 368 Circular 0 3 Cytoplasmic, involving

the nucleus [29,58,59]

Ascoviridae
(Iridoviridae)

Spodoptera frugiperda ascovirus 1a
(Ascovirus) Bacilliform or allantoid 400 × 130 157 Circular 0 4 Nuclear and

cytoplasmic [60,61]

Iridoviridae Frog virus 3 (Alphairidovirinae) Icosahedral 175 106 Linear 0 2 Nuclear and
cytoplasmic [18,62]

Asfarviridae African swine fever virus BA71V
(Asfarvirus) Icosahedral 200 170 Linear 0 7 Nuclear and

cytoplasmic [63,64]

Poxviridae Vaccinia virus (other
Chordopoxvirinae) Brick-shaped 310 × 240 195 Linear 0 9 Cytoplasmic [65]
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Figure 1. Cophylogenetic relationships between giant viruses and eukaryotes. Virus-host connections 
are mapped onto reference trees summarizing giant virus phylogenies based on up to 10 putatively 
vertically inherited core genes [13,14,37,42,43] and phylogenetic relationships across the eukaryotic 
tree of life [27,44–50]. The seven commonly delineated giant virus clades (seven families with two 
nested families) are divided into subfamilial lineages, each of which comprises one or more viral 
strains with known hosts (Table S1), with a schematic diagram of virion morphology, if known, and 
the average genome size across strains (proportional to the circle area; Table S1) shown. Names in 
double quotes correspond to non-monophyletic groupings. * Giant viruses are also known to infect 
the SAR lineages dictyochophytes (Stramenopila) [51,52], dinoflagellates (Alveolata) [53], and 
chlorarachniophytes (Rhizaria) [52], but their phylogenetic positions in the virus reference tree are 
less certain. 

Figure 1. Cophylogenetic relationships between giant viruses and eukaryotes. Virus-host connections
are mapped onto reference trees summarizing giant virus phylogenies based on up to 10 putatively
vertically inherited core genes [13,14,37,42,43] and phylogenetic relationships across the eukaryotic tree
of life [27,44–50]. The seven commonly delineated giant virus clades (seven families with two nested
families) are divided into subfamilial lineages, each of which comprises one or more viral strains with
known hosts (Table S1), with a schematic diagram of virion morphology, if known, and the average
genome size across strains (proportional to the circle area; Table S1) shown. Names in double quotes
correspond to non-monophyletic groupings. * Giant viruses are also known to infect the SAR lineages
dictyochophytes (Stramenopila) [51,52], dinoflagellates (Alveolata) [53], and chlorarachniophytes
(Rhizaria) [52], but their phylogenetic positions in the virus reference tree are less certain.
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Giant viruses have also been found in other diverse aquatic microbial eukaryotes, greatly
broadening their known host diversity. These include heterotrophic flagellates Bodo (Kinetoplastida,
Discoba; infected by a klosneuvirus) [66] and Bicosta (Choanoflagellata, Opisthokonta) [14]
and marine microalgae Haptolina (previously Chrysochromulina) (Prymnesiales, Haptista) [67],
Pyramimonas (Pyramimonadales, Chlorophyta) [67], Phaeocystis globosa (Phaeocystales, Haptista) [68],
Aureococcus (Pelagophyceae, Stramenopila) [69], Florenciella and Rhizochromulina (Dictyochophyceae,
Stramenopila) [51,52], and Chlorarachniophyceae (Cercozoa, Rhizaria) [52]. As alternatives to isolation
and cultivation, single-virion genomics [70], single-cell genomics [14], and metagenomics [14,43,71]
are especially useful when the host eukaryotes are unknown or cannot be purified and cultured.
These methods not only generate sequences of individual viruses but can also infer their putative hosts,
such as Bicosta of choanovirus [14] or cercozoans (Rhizaria) of wastewater klosneuviruses [71].

2.3. Increasingly Non-Algal Phycodnaviridae and Increasingly Non-Amoebal Mimiviridae

Genomic information from newly reported viruses has often challenged family delineations of
NCLDVs, in particular Phycodnaviridae and Mimiviridae, the two families with the most diverse host
and genome size range (Figure 1). Phycodnaviridae, which literally means algal DNA viruses, originally
encompassed only chlorovirus, and it was proposed that this family should include phaeovirus and
Micromonas virus based on some common properties [7] despite the lack genome sequences at that
time. These two viral lineages, as well as coccolithovirus, Heterosigma raphidovirus, and viruses of
Ostreococcus and Bathycoccus (in the same order Mamiellales as Micromonas), turned out to be indeed
closely related at the genomic level. By contrast, the story became more complicated for the other
alga-infecting giant viruses. Haptolina, Pyramimonas and Phaeocystis viruses were suggested to be
part of Phycodnaviridae [67,68], and so was Aureococcus virus despite some apparently contradictory
molecular evidence [69]. It was only until phylogenetic and genomic analyses with mimivirids were
conducted that it became clear that these viruses, along with the metagenomically discovered Organic
Lake Phycodnaviruses (OLPVs) [72], more recently reported virus of Tetraselmis (Chlorodendrophyceae,
Chlorophyta) [73], and choanovirus, are more closely related to mimivirids (incl. cafeteriavirus) [72,73].
It was further proposed that these viruses should form part of an extended Mimiviridae [11,13,42,74,75] or
even the subfamily Mesomimivirinae within Mimiviridae [42,43,76] (Figure 1). Mesomimivirinae is certainly
expanding as most newly reported alga-infecting viruses join this clade instead of Phycodnaviridae, such
as the viruses from Florenciella, Rhizochromulina, a chlorarachniophyte, and Prymnesium kappa [51,52,77]
(not shown in Figure 1). These, plus the viruses of heterotrophic flagellates Cafeteria, Bodo, and Bicosta,
all transform Mimiviridae into a more non-amoebal virus family.

On the other hand, amoeba-infecting viruses have “invaded” other families. In addition to
Mimiviridae and the two purely amoebal families, Marseilleviridae and Pithoviridae, viruses that infect
Acanthamoeba or Vermamoeba have often been placed within the two NCLDV founding families
Asfarviridae and Phycodnaviridae (Figure 1). Asfarviridae, with its name derived from ASFVs—notorious
viruses that kill pigs and boars, can be transmitted through tick (Chelicerata, Metazoa) vectors,
and have close relatives infecting abalones (Mollusca, Metazoa) [64,78] (Table S1)—has recently been
joined by related amoebal viruses with genomes smaller than 500 kb [13,35,38,39] and possibly also a
marine algal virus infecting Heterocapsa (Dinoflagellata, Alveolata) [53]. Phycodnaviridae has lost some
alga-infecting members, but at the same time, it has been joined by amoebal viruses characterized by
the largest known genomes—pandoravirus. Phylogenetic analyses based on core genes have strikingly
and consistently nested Pandoraviridae (here incl. mollivirus) within Phycodnaviridae and as sister to
the alga-infecting coccolithovirus with a much smaller genome [13,14] (Figure 1). Besides, the more
recently discovered medusavirus could also be related to this subclade of Phycodnaviridae based on the
phylogenies of major capsid protein [37] or 12 core genes [79] (Figure 1). With the extended host range,
giant virus families that are cladistically defined based on core gene phylogenies are obviously not
confined to their prototypic host, be it amoebal, algal, or swine.
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2.4. Undiscovered Virus–Host Relationships

To date, giant virus infection has been reported from each of the most taxon-rich and well
established lineages (supergroups) of eukaryotes [27,80], including Opisthokonta, Archaeplastida,
SAR (incl. each of the three subgroups Stramenopila, Alveolata, and Rhizaria), Haptista, Amoebozoa,
and Discoba (part of the now non-monophyletic “Excavata” that also includes Metamonada and
Malawimonada) (Figure 1). Eukaryotes from which giant viruses were first isolated tend to be
more relevant or observable to humans, whereas more recently discovered giant viruses are mostly
from relatively understudied protist lineages of which research has been greatly accelerated by
high-throughput genome sequencing. In addition to the known virus–host relationships (Figure 1
and Table S1), several lines of evidence are pointing to the immense diversity of undiscovered
viruses and their hosts. Individual genomes assembled from metagenomic sequencing data (i.e.,
metagenome-assembled genomes [MAGs]) have led to the discoveries of OLPVs from Antarctica [72],
16 giant viruses from soil [43], hundreds of aquatic MAGs related to Mimiviridae and Phycodnaviridae [17],
and over 2000 giant virus MAGs from across the globe [81], which greatly outnumber the currently
described members in giant virus families. Genome sequences of eukaryotes have also hinted at
putative (past) associations between giant viruses and Streptophyta, Cryptista, Fungi, and many other
eukaryotic lineages where giant viruses have not been isolated [75]. However, despite similar evidence
for some land plants [82], or embryophytes (Streptophyta), the complete lack of giant virus reported
from any plant could indeed represent a small gap of giant virus host range on the tree of eukaryotes.
This could be explained by the fact that plant viruses usually take advantage of the plasmodesmata
aperture to spread systemically and encode movement proteins for intercellular transport through
plasmodesmata [83], which is unlikely for the large size of giant virus particles or genomic DNA.

3. Variation and Evolution of Host Range

At the level of individual virus, most giant viruses are known to infect only specific hosts.
However, it is often uncertain whether the known hosts are the only and natural hosts. Because of
the systematic isolation approach, many giant virus lineages are only known to infect Acanthamoeba
or Vermamoeba, resulting in the pattern of multiple viruses connected to only one host (Figure 1).
It could be that these widely occurring amoebae are indeed the natural, specific host of all those viruses,
that they are simply more permissive lab hosts in which a wide range of viruses can be propagated,
or that they are secondary hosts for those viruses with primary hosts and serve as the genomic melting
pot [29] for various giant viruses. It should be noted that, with few exceptions such as tupanvirus [36],
lab experiments have demonstrated that amoebal viruses can only replicate within Vermamoeba but not
Acanthamoeba [38–41], or vice versa [84], suggesting there is still virus-host specificity between the two
permissive hosts.

At the family level, giant virus families show wide variation in the extent of host range. Poxviridae
and Iridoviridae (incl. Ascoviridae) infect only animals (Metazoa, Opisthokonta) or more specifically
only vertebrates and arthropods. Within each of them exist subclades with narrower host range,
e.g., vertebrates (Chordopoxvirinae and Alphairidovirinae) or arthropods (Entomopoxvirinae and
Ascoviridae-Betairidovirinae). The more recently established Marseilleviridae and Pithoviridae also have
narrow host range (Amoebozoa). On the contrary, Phycodnaviridae is associated with four eukaryotic
supergroups and Mimiviridae with six in total. This host diversity cannot be attributed to their numbers
of described viruses, which are dwarfed by that of Poxviridae or Iridoviridae (Table S1). Neither can it be
explained by their intrafamilial phylogenetic divergence in terms of core genes [13,42,43], which is
obviously higher than among the isolated members of Marseilleviridae but comparable to that of
Poxviridae or Iridoviridae. The major difference between wide– and narrow–host-range viral families is
probably the extent of genomic variation (Figure 1). This is evidently greater within Phycodnaviridae or
Mimiviridae than within Poxviridae or Iridoviridae with generally small genomes, implying plasticity
and variability in genome content could be key to conquering a wider range of hosts.
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Insights into virus-host specificity have also been gained from studies on closely related
viruses. A cross-infection network between coccolithovirus and Emiliania huxleyi strains showed
a nested host-virus interaction pattern where more resistant hosts are only infected by viruses
with broader host range, suggesting strong coevolution in host-virus system [85]. At a larger
scale, phylogenetic correspondence has been observed between three genera of Mamiellales
(“Prasinophyceae”, Chlorophyta) and their prasinoviruses [44]. Some discrepancy (i.e., imperfect
cophylogeny and non-monophyly of Ostreococcus viruses) does exist between the trees of viral DNA
polymerase and algal ribosomal RNA genes [44], but this can also be seen in strictly vertically inherited
symbiont-host system [86] and can be due to incomplete lineage sorting, choice of genes, or taxon
sampling. A later phylogenetic analysis with 22 genes from fewer strains of prasinoviruses resolved
Ostreococcus viruses as monophyletic [87]. Overall, the cophylogenetic pattern indicates long-term
coevolution between Mamiellales and prasinoviruses, with either cospeciation or host-switching
events [44]. In contrast to host variation between closely related viral strains, processes of host change
or expansion involving phylogenetically distant eukaryotes still remain largely unknown.

4. Functional Potential of Virus-Encoded Proteins

Most predicted genes in giant viruses have unknown functions, and many of them have no
homolog match in sequence databases at all [55]. In addition to near-universal core genes fundamental
in virus replication cycle (e.g., DNA polymerase, primase-helicase, major capsid protein, genome
packaging ATPase, transcription factor VLTF3 [13,88]), the minority of genes with functional predictions
and cellular homologs often show unprecedented occurrence in the viral world (Table 2). The expanded
genome size of giant viruses paves the way for harboring a large variable portion of the genome
encoding auxiliary metabolic genes [16] (virus-encoded metabolism) and genes with other functions.
They can allow for finer modulation of metabolism, gene expression, and behaviors in diverse
hosts, converting them into virocells [16,17] during infection and playing a key role in the virus-host
interaction and genome evolution (Table 2).
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Table 2. A glimpse of the functional diversity of protein-encoding genes in giant viruses.

COG Category Function Distribution Putative LGT Source Reference

Cellular Processes and Signaling

[M] Cell wall/membrane/envelope biogenesis

Hyaluronan synthesis Chlorovirus - [89]
Fucose synthesis Chlorovirus - [90]

L-rhamnose synthesis Chlorovirus; Mimivirus Trebouxiophyceae; eukaryotes [91]
3-deoxy-D-manno-octulosonate synthesis Cafeteriavirus Phagocytosed bacteria in the Cafeteria host [9]

4-Amino-4,6-dideoxy-D-glucose (Viosamine) synthesis Mimivirus - [92]

[O] Posttranslational modification, protein
turnover, chaperones

Protein glycosylase Chlorovirus; Mimivirus - [93,94]
Prolyl 4-hydroxylase Chlorovirus - [95]
Sulfhydryl oxidase Asfarvirus; Mimivirus - [96,97]

Isomerization of peptide bonds (Cyclophilin) Mimivirus - [98]

Information Storage and Processing

[J] Translation, ribosomal structure, and biogenesis Aminoacyl tRNA synthetase Mimiviridae except Mesomimivirinae; Pandoravirus; Orpheovirus - [13]

Translation factors Mimiviridae; Chlorovirus; Pandoraviridae; Marseilleviridae; Asfarviridae;
Alphairidovirinae; Pithoviridae; Alphaentomopoxvirus - [13]

[K] Transcription

DNA-dependent RNA polymerase (DDRP) subunits Most NCLDVs except many phycodnavirids - [37,54]
Transcription elongation factors (TFIIS) Most NCLDVs - [54]
General transcription factors (TBP-like) Some phycodnavirids and Mesomimivirinae - [54]

General transcription factors (TFIIB-like) Asfarviridae; Mimiviridae; Marseilleviridae; Pithovirus; Prasinovirus - [54]

[L] Replication, recombination, and repair DNA Glycosylase Marseilleviridae; most mimivirids; Poxviridae - [99]
NAD/ATP dependent DNA ligase Most NCLDV families - [100]

Metabolism

[C] Energy production and conversion Tricarboxylic acid (TCA) cycle Mimiviridae MAGs; Prymnesium virus; Pandoravirus - [17,77,101]
Cellular fermentation Tetraselmis virus Tetraselmis or related chlorophytes [73]

[C] Energy production and conversion; [T] Signal
transduction mechanisms Rhodopsin Phaeocystis virus; Choanovirus; metagenomic contigs - [10,14,79,102]

[E] Amino acid transport and metabolism Polyamine synthesis Chlorovirus - [103]
Amino acid synthesis Prasinovirus Chlorophyta or bacteria [25]

[F] Nucleotide transport and metabolism Nucleoside-diphosphate kinase Mimivirus - [104]

[G] Carbohydrate transport and metabolism
UDP-N-acetylglucosamine synthesis Chlorovirus; Mimiviridae Bacteria; - [105,106]

UDP-2-acetamido-2,6-dideoxy-hexose synthesis Megavirus - [107]
Cell wall (polysaccharide) degradation Chlorovirus; Mimivirus Non-Chloroplastida sources; - [108–113]

[I] Lipid transport and metabolism Sphingolipid synthesis Coccolithovirus Isochrysidales [24,114,115]

[P] Inorganic ion transport and metabolism

Potassium ion channel Chlorovirus; Phaeovirus; Prasinovirus; many Mesomimivirinae viruses - [51,116–119]
Aquaporin Chlorovirus - [120]

Sodium/phosphate symporter Coccolithovirus; Prasinovirus Isochrysidales; Mamiellales [121,122]
Potassium ion transporter Chlorovirus Trebouxiophyceae [121,123]
Ammonium transporter Ostreococcus virus; Haptolina virus Ostreococcus; - [87,121]

Calcium-transporting ATPase Chlorovirus - [124]
Cu/Zn superoxide dismutase Betaentomopoxvirus; Chlorovirus; Megavirus - [125–127]
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4.1. Information Storage and Flow

Giant viruses exert control over different levels of genetic information in a cell. In addition
to their own DNA polymerase and ligase for genome replication, some giant viruses encode DNA
glycosylase involved in base excision repair pathways that could potentially remove damages to their
large genomes [77,99]. Most NCLDVs also encode DNA-dependent RNA polymerase (DDRP) subunits
(Table 1) with architectural modifications that confer them higher speed and processivity than the cellular
homologs [54]. Interestingly, in Phycodnaviridae (as defined in Figure 1), these genes are only found in
coccolithovirus [24], pandoravirus [5], and mollivirus [33], which have the largest genomes within the
family (Figure 1). Except medusavirus [37], all those phycodnavirids without DDRP genes infect algae
(Figure 1), which is in sharp contrast to the alga-infecting mimivirids (in subfamily Mesomimivirinae;
Figure 1) that have the most complete complement of DDRP subunits among giant viruses [54].
Giant viruses also have various transcription factors involved in basic transcriptional regulation
(initiation, elongation, and termination) and expressional control of viral kinetic classes [9,54,128,129].
Some unknown genes could further rewire the entire cellular transcriptomes, such as differential
shut-down of nucleus- and organelle-encoded transcripts [129]. Presence of genes for translational
control is a major hallmark of giant viruses. Except ribosomal proteins or RNA, a wide range
of translation system components can be encoded, including tRNAs (Table 1), aminoacyl tRNA
synthetases, and translation factors [13,71] (Table 2). There can be extensive variation in the repertoire
of these translational machinery genes even among closely related viruses, for example, klosneuviruses
(Mimiviridae) where Bodo virus has completely lost all its tRNAs while some others have nearly all the
translation machinery genes found in giant viruses [13,66,71]. Whereas informational genes generally
comprise the essential and core components in genomes of cellular organisms, the extreme variation
among viruses with similar hosts or close phylogenetic relationships further demonstrates the plasticity
and variability of giant virus genomes.

4.2. Energy Metabolism

The requirements for energy during genome replication, gene expression, and virus assembly
make the control of energy metabolism a natural target of giant viruses. Such control can be
transcriptional regulation of nucleus- and mitochondrion-encoded genes related to energy metabolism,
as in coccolithovirus [129]. Recently reported genome sequences of environmental MAGs [17] or
isolated viruses even encode their own genes related to glycolysis, tricarboxylic acid cycle, succinate
dehydrogenase, β-oxidation, and photosynthesis [17,77,81,101]. Genes encoding enzymes in cellular
fermentation, such as pyruvate formate-lyase, have been found in Tetraselmis virus infecting green
algae [73], which have anaerobic energy metabolism in low-oxygen condition [130].

4.3. Synthesis of Biomolecules

Giant viruses encode various proteins participating in the synthesis of different virion components,
with notable examples in carbohydrate, lipid, and nucleotide metabolism. Chloroviruses have plenty of
carbohydrate metabolic genes for synthesis of hyaluronan, nucleotide sugars, glycans, and glycoproteins
(e.g., capsid proteins glycosylated with distinct glycan structures) [89–91,131]. Coccolithovirus encodes
unique host-derived genes for making virus-specific glycosphingolipids that not only constitute the
virion membranes but induce host programmed cell death [16,24,114,115,132]. To meet the demand of
nucleotides for synthesis of genomic DNA and RNA transcripts, nucleoside-diphosphate kinase and
reductase are encoded by multiple giant viruses for nucleotide synthesis and conversion [24,66,104],
which can be coupled with induction of host pentose phosphate pathway to enlarge the pool of
available nucleotides [132,133].
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4.4. Membrane Transport and Sensing

Giant viruses not only take control of information flow, energy metabolism, and biosynthesis
but can also alter interactions between the cell and the environment through membrane proteins.
A variety of such proteins, including rhodopsins, channels, and transporters, are encoded in the
genomes of Mesomimivirinae and alga-infecting phycodnavirids. Type-1 rhodopsin genes are found in
OLPVs, Phaeocystis virus, and Choanovirus, where they pump protons as a light-dependent energy
transfer system [10,14]. Choanovirus additionally possess biosynthesis genes for the rhodopsin
chromophore, retinal, which are absent in Phaeocystis virus but present in its host Phaeocystis [14].
A newly discovered type of rhodopsins—heliorhodpsins—is encoded in coccolithovirus genomes [134],
which could play a role in light sensing during virus-host interactions. Light-gated anion-conducting
channelrhodopsins have recently been found to be encoded in metagenomic contigs of Mesomimivirinae
and Phycodnaviridae, probably transferred from Pyramimonadales green algae, and could be used to
change the host’s swimming behavior in response to light [79]. Potassium channels are commonly
encoded by algal viruses in Phycodnaviridae and Mesomimivirinae and in the chlorovirus-Chlorella
system they cause membrane depolarization, decrease turgor pressure, and promote viral DNA
ejection [51,116–119]. The potential function in other algal viruses could be to make the intracellular
environment more favorable to virus-encoded proteins [51], which might also be achieved by the
calcium transporting ATPase encoded in chlorovirus [124]. Furthermore, nutrient transporters,
including ammonium [87] and sodium/phosphate [121,122] transporters, are commonly encoded in
the genomes of algal giant viruses. Some of the aforementioned membrane proteins are brought into
the virus-host system by viruses, while some are encoded in both the viral and host genomes. In the
latter case, it is often found that the viral and host homologs have different activities or substrate
affinities. For example, the ammonium transporter unique to one Ostreococcus virus shows higher
uptake rate than the host counterpart at lower substrate concentrations and can potentially alter the
nutrient uptake of the cell [87].

5. Evolution of Genome Content

5.1. Expansive Evolution

Similar to cellular genomes, giant virus genomes undergo both expansive and reductive genome
evolution. The increased genome size in giant viruses can be attributed to gene duplications, de novo
gene origination, and lateral gene transfers (LGTs, or horizontal gene transfers [HGTs]) from cellular
organisms or other viruses [13,55,56,135–137]. Among these sources, LGTs generally bring in more
innovative functions to viral genomes. Their identification can provide insights into virus-host
interactions, connections between viruses and their current or past hosts, and how hosts play a role in
shaping viral genomes.

Laterally acquired genes in giant viruses largely fall into two categories: recently acquired
genes from current hosts or related organisms [73,79,87,115] and anciently acquired, divergent viral
homologs from an unknown source that sometimes form a clade with only viral and metagenomic
sequences (e.g., type-1 rhodopsins [10,14]). It is notable that for some recent LGTs, viral genes
demonstrate somewhat higher sequence divergence than their closest eukaryotic homologs in
phylogenetic trees [73,79,87]. This might be due to generally higher evolutionary rates in giant
viruses, though analyses of closely related marseilleviruses suggest they do not evolve faster than
cells [138]. Alternatively, the transferred viral genes could be relieved from purifying selection, since
host cells already have the same genes. This could allow viral homologs to acquire distinct functional
properties that alter cellular behaviors upon infection [87]. Another interesting observation is the
multiple independent acquisitions of the same gene across viral lineages with similar hosts, such
as algae. Examples include potassium channels that have been repeatedly gained by viruses of
marine and freshwater, unicellular and multicellular algae [51], and sodium/phosphate transporters
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with at least three independent events in coccolithovirus, Ostreococcus virus, and Bathycoccus virus,
respectively [121].

5.2. Reductive Evolution

Giant viruses with larger genome size can potentially better manipulate specific hosts in a variety
of pathways and cellular processes, but there are clearly factors that limit their genome size or cause
reductive genome evolution as in other parasitic entities. Random gene losses intrinsically lead to
genomic reduction during viral evolution [139]. There is almost no limit to the genes that can be lost,
even genes central to information processing. Largely speaking, the repertoires of translation-related
genes are the most variable [66], followed by transcription-related genes and then by genes for DNA
replication [13,55,139]. A 16% reduction in genome size was observed in mimivirus subcultured
150 times in axenic Acanthamoeba cultures, which was accompanied by marked changes in virion
morphology [140]. This illustrates how hosts and environment can cause fast genome size changes in
giant viruses. Substantial genome size variation between closely related strains [56] and sister viral
lineages (Figure 1) also point to highly dynamic expansive and reductive evolution at work.

Viral genomes and gene contents can also be shaped by certain host factors such as host genome
size. It was shown that the burst size of phytoplankton dsDNA viruses correlates with host-to-virus
genome size ratio [141]. Host genome size as a limiting factor can partially explain why, for example,
prasinoviruses of Mamiellales, which have the smallest cell and genome size in Chlorophyta, have
some of the smallest genomes in Phycodnaviridae or among all alga-infecting giant viruses [142].
Compared with its sister group chlorovirus (Figure 1), the prasinovirus genomes could have undergone
reduction in size during evolution.

5.3. Generalist Viruses and Genome Evolution

The host range of a virus is determined by its genome, including the encoded genes and their
regulation. On the other hand, a host can shape the genomes of its viruses, selecting for those better
adapted to the host. This apparently chicken-or-egg relationship poses the question on how viruses can
jump between distantly related eukaryotic host lineages like those of Phycodnaviridae and Mimiviridae.
Here, we approach this question by proposing that there exist specialist viruses infecting only a specific
host lineage and generalist viruses which can replicate in multiple eukaryotic host lineages across
supergroups. After a generalist virus acquires genes that aid in the infection of a specific host, it can
become a more specialized virus or remain as a generalist with more successful infection of the specific
host. With higher replication success, more specialized viruses gradually become the dominant virus
of the specific host, which could be why most viral lineages with isolated members are only known to
infect a specific eukaryote lineage. True generalist viruses that can infect eukaryotes from different
supergroups are unknown to date, either because they are less abundant and more difficult to isolate or
because we have not explored the entire host range of the isolated giant viruses. There could be a pool
of generalist viruses in the environment that would have been detected in metagenomic sequencing,
where MAGs are the most abundant from Mimiviridae and Phycodnaviridae [17,81]—the two families
with the most divergent eukaryotic hosts (Figure 1 and Section 3). In line with this generalist hypothesis
for host range variation, the multiple independent acquisitions of similar membrane transport genes
in the two families (Section 5.1) could correspond to transitions from generalist to specialist viruses
infecting different algal or protist lineages.

5.4. Origin of Giant Viruses and Their Families

An even more challenging question is what kind of hosts were infected by ancient NCLDVs,
including the ancestors of NCLDVs and of each NCLDV family. Answers to this question would
depend on our understanding of the genomic compositions of these ancient viruses. Although it can
be still disputable [139], NCLDVs are generally believed to have evolved from a common ancestor.
Phylogenomic and comparative genomic analyses suggest that the NCLDV common ancestor had a
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small viral genome [13] rather than that of a cellular organism [143], but what this common ancestor
was like and its relationship to cellular eukaryotes are much more debated. Based on the phylogeny
of two DDRP subunits, an NCLDV-early hypothesis was proposed where both NCLDVs and the
individual NCLDV families originated before the last eukaryotic common ancestor (LECA), which is
close to 2 billion years ago [144], and had infected a lineage of “proto-eukaryotes” that led to LECA [88].
Given the archaeal [145] and bacterial [146] ancestry of eukaryotic genomes, such “proto-eukaryotes”
would be more like prokaryotes than at least LECA and its descendants. However, no NCLDV-like
infection in prokaryotic cells has been reported so far. As single-gene trees can be misleading in
inferring the ancient past of eukaryotes [147], it is also disputable whether we could take the virus-cell
DDRP tree at face value [148] and assume they have evolved in viral lineages without being lost,
regained, or replaced, which are especially problematic when inferring deep viral phylogenies [139].
Besides, if the NCLDV families Iridoviridae, Marseilleviridae, and Pithoviridae had originated before
LECA [88], it is difficult to imagine that today they have such confined host range across the eukaryotic
tree of life (Figure 1).

On the contrary, an NCLDV-late view would suggest a eukaryotic host for the NCLDV common
ancestor. The deep divergence of shared genes is not necessarily the actual divergence among the
giant viruses themselves, because they, as compartments of genes, can acquire divergent genes from
different domains of cellular life. There is no doubt that widely-occurring core genes strongly shape
the biology of giant viruses and are phylogenetically related. Nevertheless, this does not mean that
they all have been passed on, together and vertically, through the deep bifurcations as depicted
in their concatenated gene tree. Under the NCLDV-late hypothesis, the association between giant
viruses and eukaryotes could have taken place later than the LECA origin and then spread across
major eukaryotic lineages, as what could happen within just a single NCLDV family (Mimiviridae
and Phycodnaviridae). In contrast to the obscure deep inter-familial relationships, NCLDVs form more
coherent groups at the family level, which is true in terms of the number of shared genes and the viral
biology [13,55] and probably especially so for families with similar genome size and lower sequence
divergence. For families of viruses with similar hosts (Marseilleviridae, Poxviridae, and Iridoviridae),
their ancient hosts were most likely from the same host lineage, but it would be more difficult to
infer the ancestral host of Phycodnaviridae and of Mimiviridae. Even more challenging is to understand
and predict genome variation across giant viruses. Rampant occurrence of LGTs is known to cause
extensive gene content variation in prokaryotes, even among strains with highly similar core gene
sequences [149–151], such that the 3% most vertically inherited genes are not predictive of the rest
of the genome [152]. With limited evidence for long-term verticality plus substantial genome size
differences, little can be inferred about giant virus gene contents from a phylogenetic tree based on a
concatenated alignment of 10 genes that are not devoid of conflicting signals. More comprehensive
whole-genome analyses are needed to determine the factors affecting gene content evolution both
within and across giant virus families.

6. Future Perspective

Giant viruses demonstrate at least three unconventional features. Their bacterial-sized virions and
genomes defy the idea that viruses are small infectious entities. Identification of new giant viruses from
global ecosystems revealed the enormous diversity of their hosts across the now better resolved tree of
eukaryotes. The functional potential of their genomes revolutionized our knowledge of how viruses can
manipulate the host to complete their replication cycle. In a way, giant viruses function like powerful,
innovative, yet often lethal, plug-ins in the program of eukaryotic life. This group of ubiquitous and
ecologically important viruses will continue to be a source of exciting findings. In addition to crucial
endeavors to isolate new strains, infection assays, metagenomics, single-particle genomics, functional
characterization, and virus-host genomic analyses are expected to shed light on their biology, natural
host range, virus-host interactions, and genome evolution within and across families.
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47. Fučíková, K.; Leliaert, F.; Cooper, E.D.; Škaloud, P.; D’Hondt, S.; De Clerck, O.; Gurgel, C.F.D.; Lewis, L.A.;
Lewis, P.O.; Lopez-Bautista, J.M.; et al. New phylogenetic hypotheses for the core Chlorophyta based on
chloroplast sequence data. Front. Ecol. Evol. 2014, 2, 63.

48. Burki, F.; Roger, A.J.; Brown, M.W.; Simpson, A.G.B. The new tree of eukaryotes. Trends Ecol. Evol. 2020, 35,
43–55. [CrossRef]

49. Misof, B.; Liu, S.; Meusemann, K.; Peters, R.S.; Donath, A.; Mayer, C.; Frandsen, P.B.; Ware, J.; Flouri, T.;
Beutel, R.G.; et al. Phylogenomics resolves the timing and pattern of insect evolution. Science 2014, 346,
763–767. [CrossRef]

50. Kang, S.; Tice, A.K.; Spiegel, F.W.; Silberman, J.D.; Pánek, T.; Čepička, I.; Kostka, M.; Kosakyan, A.;
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