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Abstract: Chronic hepatitis D (CHD) is the most severe form of viral hepatitis, with rapid progression
of liver-related diseases and high rates of development of hepatocellular carcinoma. The causative
agent, hepatitis D virus (HDV), contains a small (approximately 1.7 kb) highly self-pairing single-strand
circular RNA genome that assembles with the HDV antigen to form a ribonucleoprotein (RNP) complex.
HDV depends on hepatitis B virus (HBV) envelope proteins for envelopment and de novo hepatocyte
entry; however, its intracellular RNA replication is autonomous. In addition, HDV can amplify HBV
independently through cell division. Cellular innate immune responses, mainly interferon (IFN)
response, are crucial for controlling invading viruses, while viruses counteract these responses to
favor their propagation. In contrast to HBV, HDV activates profound IFN response through the
melanoma differentiation antigen 5 (MDA5) pathway. This cellular response efficiently suppresses
cell-division-mediated HDV spread and, to some extent, early stages of HDV de novo infection,
but only marginally impairs RNA replication in resting hepatocytes. In this review, we summarize
the current knowledge on HDV structure, replication, and persistence and subsequently focus on
the interplay between HDV and IFN response, including IFN activation, sensing, antiviral effects,
and viral countermeasures. Finally, we discuss crosstalk with HBV.

Keywords: hepatitis D virus; hepatitis B virus; persistence; de novo infection; cell-division-mediated
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1. Introduction

Chronic hepatitis D (CHD) is a global health burden manifesting as the most severe form
of viral hepatitis with the accelerated development of liver fibrosis, cirrhosis, and hepatocellular
carcinoma (HCC). CHD establishes itself through either simultaneous infection of hepatitis D virus
(HDV) and hepatitis B virus (HBV), or through HDV superinfection in chronic hepatitis B (CHB)
patients. Simultaneous infection leads to CHD in <5% of the patients [1]. In contrast, chronic infection
ensues in up to 90% of patients following superinfection [2,3]. According to a recent meta-analysis,
the estimated number of HDV-infected individuals is around 12 million worldwide [4]. However, due to
the large gaps in reliable epidemiologic data and a diverse geographic distribution, this number might
be underestimated. Accordingly, the numbers estimated by other analyses total 50 to 72 million
cases worldwide [5,6].

HDV is the smallest known human virus with single-strand circular RNA genome. Numerous HDV
isolates around the world have been sequenced and classified into eight genotypes (clades), HDV 1 to
8 [7,8]. Despite differing by up to 40% in sequence similarity, the genomes form similar unbranched
rod-like RNA structures [6]. HDV recruits the envelope proteins of HBV for particle assembly,
release, and de novo entry. Entry proceeds using the common receptor sodium taurocholate
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co-transporting polypeptide (NTCP) for both viruses [9,10]. Post-entry, the intra-nuclear HDV RNA
replication via double rolling cycle mechanism does not require HBV-encoded polymerase but host
RNA polymerases [11–13]. Long-term HBV-independent HDV survival was observed in a HDV
mono-infected humanized mouse model [14] and also in patients after liver transplantation and the
elimination of HBV [15–18]. Importantly, HDV was recently proven to be amplified through hepatocyte
proliferation [19,20]. This cell-division-mediated amplification/spread might be clinically important
for HDV persistence and could restrict the antiviral potential of drugs that address de novo infection
(e.g., the viral entry inhibitor Hepcludex or the HDV envelopment inhibitor Lonafarnib) [21–23].
However, to disseminate within the human population, HDV requires HBV envelope proteins encoded
by either co-infected HBV or HBV integrates expressing HBsAg.

Upon infection, host pattern recognition receptors (PRRs) sense viral genomes or replication
intermediates (e.g., double-strand RNA (dsRNA)) and consequently induce innate immune responses
that directly inhibit virus replication or protect the uninfected cells against subsequent infection [24].
On the other hand, viruses evolved diverse strategies to counteract these antiviral responses [25].
The interplay between viruses and the innate immune system is decisive for the outcome of infections,
e.g., persistence, or clearance. However, for many years, investigations on this subject for HDV were
hampered by the lack of efficient infection systems. The discovery of the viral receptor NTCP in 2012
and the development of advanced in vitro and in vivo infection models [9,10] opened the door to study
not only new aspects of HDV’s replication and persistence but also molecular details of its interplay
with the IFN response, which serve as the main topics of this review.

2. HDV Structure, Replication, and Persistence

2.1. HBV/HDV Virions and HDV RNAs

The HDV virion, approximately 36 nm in diameter, consists of a ribonucleoprotein (RNP) core
complex and an HBV-encoded envelope (Figure 1a). The RNP complex contains an approximately 1.7 kb,
single-stranded, circular, negative-sense RNA genome and two isoforms of the HDAg—small (S-HDAg)
and large (L-HDAg). The envelope is composed of an endoplasmic reticulum (ER)-derived lipid bilayer
embedding the three HBV envelope proteins: small (S-), medium (M-), and large (L-) HBsAg.

HDV replication produces three species of RNA: genomic, antigenomic, and mRNA (Figure 1b).
Due to its high degree of intramolecular base pairing (approximately 74%), the HDV genome folds into
rod-like structural elements [26,27] that consist of short dsRNA stems interrupted by single-stranded
bulges, as depicted in Figure 1c. Analyses of 41 HDV isolates indicated that the longest consecutive
base-paired regions range from 9 to 15 bp [28]. At a higher-order level, the HDV genome associates
with S-HDAg and forms an RNP, which is proposed to be organized in a nucleosome-like structure
during replication [29]. Antigenome and mRNAs are synthesized using the genome as a template.
As a complement of the genome, the antigenome is predicted to fold into similar secondary structure
elements to the genome. In contrast, the HDV mRNAs, lacking the elements of the complementary
strand, likely do not form similar structures to genomic/antigenomic RNAs.

Despite sharing the same envelope, HBV and HDV differ in their virion architecture and size:
HBV is larger (around 42 nm) and contains an icosahedral nucleocapsid within the envelope (Figure 1a).
This nucleocapsid has been shown to organize the envelope by specifically interacting with the
matrix domain in the L surface protein [30]. HDV presumably lacks such an envelope organization
since its RNP complex is less structured and the interaction of HDAg with HBsAg depends only
on a hydrophobic prenylation residue within the C-terminus of L-HDAg and the cytosolic loop in
the S-domain. Consequently, the stoichiometry of envelope proteins can vary in HD virions [31].
Notably, HDV RNPs can also be enveloped as a non-infectious particle containing only the S surface
protein [32]. Due to their intrinsic self-assembly competence, HBV envelope proteins also form empty
subviral particles as spheres and filaments. These particles far exceed the number of virions and make
up most of the HBsAg, which is used as a diagnostic marker [33,34].
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reading frame (ORF) are indicated. Arrows indicate the 5′ to 3′ direction. (c) Structure of a 
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Figure 1. Hepatitis D virus (HDV) and Hepatitis B virus (HBV) virions, and HDV RNAs. (a) Schematic
representation of HDV and HBV virions. Both viruses share the same envelope containing three
HBV envelope proteins: large- (L-), medium- (M-), and small- (S-) HBsAg. HDV (right panel) has
a ribonucleoprotein (RNP) complex inside. The RNP consists of the HDV genome and two isoforms of
hepatitis D antigen (HDAg), L- and S-HDAg. A portion of L-HDAg is prenylated, which is needed
for its association with S-HBsAg [35]. On the other hand, HBV (left panel) has a nucleocapsid inside
the envelope. The nucleocapsid consists of an HBV core protein shell and relaxed circular HBV DNA
(rcDNA), with the latter associated with HBV polymerase. (b) HDV genome, antigenome and mRNAs.
The HDV genome is a single-strand, negative-sense, circular RNA. It forms an unbranched rod-like
structure due to its high degree of intramolecular base-pairing. The HDV antigenome is complementary
to the genome and is predicted to form a similar structure to the genome. Two mRNAs encoding either
S-HDAg or L-HDAg are transcribed using the genome as a template. Ribozymes, the ADAR1 editing
(Amber/W) site, mRNA transcription starting site, and HDAg open reading frame (ORF) are indicated.
Arrows indicate the 5′ to 3′ direction. (c) Structure of a representative region of the genome (red dash
line box in (b)) consisting of short stems and bulges.

2.2. HDV Replication Cycle

The replication cycle of HDV is depicted in Figure 2 (right half). To initiate infection, HDV virions
associate with heparan sulfate proteoglycans (HSPGs), e.g., glypican-5, on the surfaces of the
hepatocytes [36–39]. Attachment to HSPGs is required but insufficient to mediate productive infection.
However, attachment promotes subsequent and highly specific interaction with the receptor NTCP at
the basolateral membranes of the hepatocytes [9,10]. The myristoylated N-terminal 75 amino acids
of the PreS1 domain of the L surface protein are responsible for this interaction [40]. Besides NTCP,
the epidermal growth factor receptor (EGFR) has been recently described as a co-factor for HBV/HDV
entry by regulating endocytosis and sorting incoming viral particles [41,42]. The internalization and
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membrane fusion steps of HDV entry are proposed to be similar to those of HBV (see below). However,
direct comparative studies of both viruses during these stages are rare.
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Figure 2. HDV and HBV life cycles. Right half: HDV life cycle. HDV virions first attach to heparan
sulfate proteoglycans (HSPGs) [36–39] and then to the viral receptor sodium tautocholate co-transporting
peptide (NTCP) [9,10]. After membrane fusion, the ribonucleoprotein (RNP) is released into the
cytoplasm and further transported to the nucleus where RNA replication occurs [43,44]. The genome
serves as the template for the first rolling circle amplification. The resulting antigenome multimers
are cleaved in cis by the intrinsic ribozyme and ligated into circular antigenome monomers [35,45].
After a second rolling cycle using the antigenome as the template, HDV genome multimers are
synthesized and self-cleaved to produce circular HDV genome monomers. The HDV antigenome might
be edited by cellular adenosine deaminases acting on RNA 1 (ADAR1), yielding an extended HDAg
ORF that produces L-HDAg [46]. These genomes, with or without ADAR1 editing, are used as the
template for mRNA transcription. The mRNAs are translated into S-HDAg and L-HDAg. A portion
of the L-HDAg molecules are prenylated for envelope acquirement [35]. S-HDAg and L-HDAg are
transported into the nucleus to regulate virus replication or bind to the genome to form RNP, which is
exported to the cytoplasm. Through the interaction between L-HDAg and S-HBsAg, RNP acquires an
envelope and is released through the endoplasmic reticulum (ER)–Golgi secretory pathway. Left half:
HBV life cycle. After binding to HSPG and NTCP, HBV is internalized through endocytosis [47].
The fusion of the HBV envelope with the endosome membrane releases the nucleocapsid, which is
further transported to the nuclear pore complex (NPC) where rcDNA is imported into the nucleus.
The rcDNA is processed into covalently closed circular DNA (cccDNA). This cccDNA serves as the
template for HBV mRNAs and pregenomic RNA (pgRNA), with the latter captured in the HBV capsid
and reverse-transcribed to the DNA of the progeny virus via HBV polymerase. The progeny HBV is
considered to be secreted through a multivesicular body (MVB) [48]. Notably, HBV DNA might be
integrated into cellular chromosomes [49,50]. These integrates can produce HBV envelope proteins
that support HDV packaging [50–53].
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After the release of the HDV RNP into the cytoplasm of hepatocytes, the subsequent steps of
HDV replication are HBV-independent. The HDV RNP is transported to the nucleus where RNA
replication initiates [43,44]. The incoming genome serves as the template for the first round of rolling
circle amplification (RCA), generating linear multimeric antigenomic RNAs that are self-cleaved by the
intrinsic antigenomic ribozyme and ligated to form antigenomic circular monomers [35,45]. Similarly,
genomes are produced by the second round of RCA using the newly generated antigenomes as the
template and further processing through the genomic ribozyme. Unlike other negative-strand RNA
viruses, HDV does not encode an RNA-dependent RNA polymerase (RdRP). Instead, it redirects cellular
DNA-dependent RNA polymerases (Pols) for RNA replication. Strong evidence has demonstrated
that RNA Pol-II is responsible for HDV genome and mRNA synthesis [54–56]. However, the Pol(s)
responsible for HDV antigenome synthesis are debatable [12,55,56]. Importantly, S-HDAg is essential
in these processes [57,58]. The incoming S-HDAg as part of the RNP is sufficient to initiate replication.
It is unclear how HDV hijacks normally DNA-dependent Pol to an RNA template. The mainly
double-stranded nature of the HDV genome/antigenome and S-HDAg are considered crucial for this
template switch [59–61].

Over the course of replication, a fraction of the newly synthesized antigenomic RNA becomes
edited by the host adenosine deaminase acting on RNA 1 (ADAR1) at the amber stop codon of the
S-HDAg open reading frame (ORF), changing the UAG to UIG [46,62]. The inosine (I) is then recognized
as guanosine (G) in the subsequent replication round, leading to the introduction of a tryptophan codon
(UGG). Consequently, the ORF is extended by 19 or 20 amino acids (genotype-dependent), leading to
its translation into L-HDAg. In contrast to S-HDAg, L-HDAg inhibits HDV RNA replication [63,64]
and promotes progeny virion assembly [65,66]. For this process, a fraction of L-HDAg becomes
prenylated via the cellular farnesyl transferase at the Cys residue in the C terminal CXXQ motif
within the extension [35]. The de novo synthesized genomic HDV-RNA forms an RNP complex by
incorporating prenylated and non-prenylated L-HDAg in addition to S-HDAg [45,67,68]. The RNP
then becomes enveloped through budding into an ER-derived lipid bilayer carrying the three HBV
envelope proteins encoded by either covalently closed circular DNA (cccDNA) or integrated HBV
DNA (see below) [51,52]. The prenylation of L-HDAg is essential for envelopment through interaction
with the cytoplasmic domain of S-HBsAg [35,69]. For a detailed description of the HDV life cycle,
see the following reviews [67,70,71].

Except for the initial association with HSPGs and NTCP, the HBV life cycle completely differs from
that of HDV (Figure 2 left half). HBV is considered to be uptaken in a clathrin- and dynamin-dependent
manner with membrane fusion occurring after endocytosis [47]. However, other pathways, like caveolin-1
mediated endocytosis, were also shown to be important for HBV entry, which might be cell-type-specific
(reviewed in [72,73]). Next, the HBV nucleocapsid is transported to the nuclear pore complex (NPC),
where release of the relaxed circular DNA (rcDNA) into the nucleus leads to rcDNA repair and
the formation of cccDNA. This process depends on a set of cellular enzymes like DNA polymerase
δ and DNA ligase I [74]. The cccDNA serves as the template for HBV mRNAs and pregenomic
RNA (pgRNA), with the latter being incorporated into the HBV capsid and reverse transcribed to
the (-)-strand and subsequently (+)-strand DNA of the progeny virus via HBV-encoded polymerase.
Notably, HBV replication also produces double-strand linear DNA (dslDNA), which can be integrated
into cellular chromosomes [49,50]. Although these integrates are unable to produce infectious
HBV because they consist of incomplete HBV DNA, they produce HBV mRNAs encoding HBsAg.
This cccDNA-independent production of HBsAg is sufficient to support HDV assembly and secretion
in an infected cell [50–53]. Notably, such integrated HBV DNA may also serve as an important source
of HBsAg in chronically infected patients [75] and provide considerable replication space for HDV in
the livers of infected patients.
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2.3. HDV Spread and Persistence

HDV persistence relies on continuous replication and viral spread to achieve long-term
maintenance of its viral RNA. HDV uses HBV envelope proteins for assembly and de novo infection,
a process that is crucial for HDV spread and persistence (Figure 3). This extracellular route of HDV
spread can be efficiently blocked by the entry inhibitor Hepcludex/bulevirtide (formerly Myrcludex
B) but also indirectly by HDV secretion inhibitors like Lonafarnib. Hepcludex is a myristoylated
oligopeptide (47-aa) derived from the preS1-domain of the HBV L-HBsAg. It efficiently blocks NTCP,
the receptor of HDV/HBV, thereby inhibiting the de novo initiation of replication in vitro [76,77]
and in mice transplanted with primary human hepatocytes (PHH) [22,23,78,79]. Due to its safety
and efficacy in two phase II clinical trials (Myr-202 and Myr-203), Hepcludex was conditionally
approved, with marketing authorization (CMA) provided by European Medicines Agency (EMA) in
July 2020. Lonafarnib is an investigational drug that inhibits L-HDAg prenylation and, consequently,
HBV envelope acquisition [80,81].
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Figure 3. HDV spreading pathways and the targets of the interferon (IFN) response. Left: de novo
infection-mediated extracellular spreading pathway. HBV/HDV co-infection produces progeny HDV
that infect neighboring intact hepatocytes. The IFN response inhibits early stages of HDV de novo infection
but does not significantly impair HDV RNA replication in the nucleus. Right: cell-division-mediated
HDV spread. HDV survives cell division and efficiently establishes replication in both daughter cells.
The IFN response causes efficient degradation of HDV RNA during cell division and/or prevents the
re-establishment of replication in daughter cells.

Although blocking extracellular HDV spread significantly suppresses HDV, as well as propagation in
cell culture models, animals, and patients, accumulating evidence indicates another mode of maintenance
independent of de novo cell entry: (i) HDAg-positive hepatocytes were detected after liver transplantation
for >1 year in the absence of HBV DNA and serum-HBsAg [17,18], and (ii) HDV mono-infection persisted
in humanized mice for at least six weeks in the absence of HBV and could be rescued by HBV
superinfection [14]. An alternative HDV spreading pathway, cell-division-mediated spread (Figure 3),
was reported recently in cell lines [19,20] and PHH transplanted mice [19]. In contrast to de novo
infection, this pathway is HBV-independent and refractory to Hepcludex [19,82] and Lonafarnib [63].
HBV-independent HDV persistence is also supported by the discovery of HDV-like agents from
rodents [83], snakes [84], birds [85], fish, amphibians, and even invertebrates [86]. None of these agents
were found to be associated with an animal hepadnavirus. Moreover, bioinformatic analyses do not
predict the encoding of prenylated L-HDAg-like antigens by these agents. Another study showed that
HDV RNP could be packaged into the envelope proteins of vesiculo-, flavi-, and hepaciviruses in vitro,
allowing the egress of HDV RNPs from cells and subsequent entry into cell lines expressing the respective
receptors [87]. It is controversial whether HDV is able to use the envelopes of non-hepadnaviruses
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for dissemination in patients [88–90]. HBV envelope-independent spread may play a yet-unknown
role in HDV persistence in CHD patients and challenge the effect of drugs interfering with HD virion
production or de novo virus entry. Finally, the possibility of the long-term maintenance or reactivation
of silenced HDV RNA at the single cell level cannot be ruled out. The latter mechanism remains an
unproven hypothesis but is supported by occasional observations of non- or low-replicating RNA in cell
culture systems [10,91].

3. IFN Signaling during RNA Virus Infection

As the first line of defense, the innate immune system plays an essential role in the suppression
of invading viruses through the activation of direct antiviral responses (e.g., the IFN response) [92]
and mediating the induction of adaptive immune responses [93]. Its level of speed and strength can
determine the outcome of an infection, i.e., clearance or persistence, with the latter often associated
with chronic inflammation [94]. An overview of the IFN activation and signaling pathway is depicted
in Figure 4. Cellular innate immune responses are initiated by recognition of pathogen-associated
molecular patterns (PAMPs), e.g., viral genomes and replication intermediates like double-stranded
RNA (dsRNA). The PAMPs are recognized by specific PRRs like toll-like receptors (TLRs) and retinoic
acid inducible gene I (RIG-I)-like receptors (RLRs) [95,96]. This recognition triggers a cascade of
signaling events that lead to the production and secretion of type I (IFN-α/β) [97,98] and type III
interferons (IFN-λ) [99,100]. These IFNs amplify the signal in a paracrine and autocrine manner by
binding to their cognate IFN-receptors (IFNAR1/IFNAR2 for type I IFN and IFNLR1/IL10R2 for type
III IFN) on the membranes of infected and non-infected neighboring cells [101], which activates Janus
kinases 1/2 (JAK1/2), tyrosine kinase 2 (TYK2), signal transducer and activator of transcription 1/2
(STAT1/2), and IFN regulatory factor 9 (IRF9) and consequently induces hundreds of IFN-stimulated
genes (ISGs) to exert direct or indirect antiviral activities [102–104]. For more details about innate
immune responses during virus replication, see the following reviews [104,105].

RLRs, including RIG-I, melanoma differentiation antigen 5 (MDA5), and laboratory of physiology
and genetics 2 (LGP2), are important PRRs that sense viral RNA during infection. RIG-I and MDA5
share a high sequence similarity and the same protein domain architecture, consisting of the N-terminal
tandem caspase activation and recruitment domain (CARD), the central DExD/H box motif helicase
domain, and the zinc-binding C-terminal domain (CTD) [107,108]. However, they have distinct specificities
towards ligands. RIG-I predominantly recognizes short 5-tri- or diphosphorylated dsRNA [109–111].
Sendai viruses [112,113], Influenza A virus [114,115], Dengue virus, and Zika virus [116], among others,
produce RIG-I ligands during replication. MDA5 senses long double-stranded RNA and higher-ordered
RNA structures [117,118]. Replication intermediates of, e.g., encephalomyocarditis virus [97,118]
and hepatitis C virus (HCV) [119] are sensed by MDA5. LGP2 is the least investigated of the
three RLRs. Studies demonstrated that LGP2 binds to double-stranded ends of the RNA [120–122].
Nevertheless, there might be other types of LGP2 ligands that remain unknown. LGP2 cannot
initiate RLR signaling because of the lack of a CARD domain [108]. Several lines of evidence
suggest that LGP2 augments MDA5-dependent signaling, likely by promoting the formation of
MDA5-RNA complexes [123,124]. However, LGP2 inhibits RIG-I-dependent signaling, possibly via
direct competition for ligand binding [125,126]. In the absence of ligands, the signaling of RIG-I is
blocked by conformational changes and shielding of its CARD [127]. Upon RNA detection, both RIG-I
and MDA5 change their structures and oligomerize on the RNA ligand, which further triggers
oligomerization of the mitochondrial antiviral signaling protein (MAVS) through the interaction of
their CARD domains [128]. The MAVS oligomer recruits downstream factors and activates a signaling
cascade that leads to the expression of IFNs [129]. Notably, current knowledge regarding the specificity
of ligands and the mode of interaction between PRRs and ligands is mainly based on in vitro studies
using several model viruses or artificial ligands. The viral RNA structures formed during replication
are considered to be highly diverse for different viruses. Therefore, the mechanisms of recognition and
innate immune activation might be distinct and should be investigated separately for each virus.
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Figure 4.HDV-induced IFN response and possible HDV countermeasures. HDV RNA in the cytoplasm;
likely, the RNP complex is recognized by the pattern recognition receptor (PRR) MDA5 [106].
This recognition activates the mitochondrial antiviral signaling protein (MAVS) on the mitochondria and
downstream transcription factors, likely IFN regulatory factor (IRF) 3/7 and nuclear factor-κB (NFκB).
The activated transcription factors are translocated into the nucleus and initiate the transcription of
IFN-β/λ. Secreted IFN-β/λ binds to their receptors (IFNAR1/IFNAR2 for IFN-α/β and IFNLR1/IL10R2
for IFN-λ) on the infected cell or neighboring cells, which further activates Janus kinases (JAK) 1/2,
tyrosine kinase (TYK) 2, and transcription factors signal transducer and activator of transcription
(STAT) 1/2 and IRF9. STAT1/2 and IRF9 are translocated into the nucleus and activate hundreds of
IFN-stimulated genes (ISGs), which directly inhibit HDV replication and protect the uninfected cells
against subsequent infection. It is unknown whether MDA5 can also be transported to the nucleus
and capture nuclear HDV replication intermediates. HDV may counteract the IFN response through
different strategies: (1) HDV may replicate in a “safe” compartment, the nucleus, to avoid exposure of
the replication intermediates to PRRs; (2) HDV genomic RNA in the cytoplasm may fold into RNP
with HDAg and bud into an HBV envelope to avoid being recognized by the PRRs; and (3) HDV may
directly inhibit STAT1/2 activation.

4. IFN Response during HDV Infection

4.1. HDV-Induced Innate Immune Responses

With its highly back-folding RNA structure and mostly host-dependent replication strategy,
investigations into HDV may provide unique insights for understanding the interplay between
viruses and the innate immune system. HDV-induced innate immune responses have been reported
in HDV-infected cell lines, primary human hepatocytes (PHH), and animal models [106,130–134].
HDV mono-infection and HBV/HDV co-infection induced strong type I IFN- and ISG-responses in
differentiated HepaRG cells [130]. This was confirmed in HDV-infected PHH and NTCP over-expressing
HepG2 and HepaRG cells, where HDV replication mainly induced IFN-β and IFN-λ but not IFN-α [106].
Transcriptome analysis of HDV-infected HepaG2-NTCP cells showed a set of ISGs to be among the most
upregulated genes [106]. In a humanized uPA/SCID/beige (USB) mouse model repopulated with PHH,
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HBV/HDV co-infection activated IFNs, ISGs, and human cytokines (e.g., IP10 and TGF-β), while HBV
mono-infection remained stealth [132]. HDV replication in mouse hepatocytes was demonstrated in
an earlier study through hydrodynamic injection using naked HDV complementary DNA (cDNA)
or RNA [135]. Following the identification of NTCP as the HBV/HDV receptor, NTCP transgenic
mice partially supporting HDV replication were generated. Using these NTCP-transgenic mice,
He et al. demonstrated HDV-induced type I IFN and ISG responses through an analysis of the
liver transcriptome [131]. HDV-activated innate immune responses were further confirmed by
Benjamin et al. [134] using similar transgenic mice and by Suarez-Amaran et al. [133] using an
Adeno-associated virus (AAV) transduction-mediated mouse model.

Although the studies above have provided compelling evidence that HDV replication induces
IFN response, HDV is a relatively moderate stimulator compared to some other RNA viruses, e.g.,
Sendai- and Mengo viruses [106] or synthetic polyviruses (I:C) [136]. Notably, most of these studies
were based on acute HDV infections with relatively high levels of HDV replication. Whether this holds
true in chronically infected patients remains to be investigated. In addition, the HDV viral load and
intra-liver replication levels vary dramatically among patients, so the strength of HDV-induced innate
immune responses also likely vary accordingly.

4.2. Innate Immune Sensing of HDV Replication

The sensing of PAMPs by PRRs triggers the activation of innate immune responses. In contrast to
some viruses, e.g., the Influenza virus, whose incoming genomes can activate an IFN response [137].
UV-inactivated HDV failed to activate this response [106], indicating the requirement of active HDV
RNA replication. The depletion of RIG-I, MDA5, and TLR3 in HepG2-NTCP and HepaRG-NTCP cells
proved that MDA5 is the key sensor in recognizing HDV replication [106]. This finding is in line with
a previous observation in a mouse model demonstrating the essential role of MAVS, a key downstream
adaptor of MDA5, in innate immune activation during HDV replication [133].

The mechanism of HDV RNA recognition by MDA5 is still unclear. MDA5 is preferentially
located, and acts, in the cytoplasm. However, HDV RNA replicates in the nucleus, and its single-
and double-stranded genomic and antigenomic RNA intermediates are confined to this compartment.
Accordingly, it is unlikely that these intermediates are available for sensing at the site of the primary
location of MDA5. However, the progeny HDV genomes are delivered to the cytoplasm where they can
be captured by MDA5. A recent study demonstrated that a minor portion of RIG-I could reside in the
nucleus and capture nuclear RNP complexes of the Influenza A virus [138]. Although the contribution
of this recognition in innate immunity activation is still unclear, the possibility that nuclear-localized
HDV RNAs are captured by PRRs like MDA5 cannot be ruled out. Except for MDA5, the roles of other
cellular factors (e.g., LGP2) and viral factors (HDAg and HBV envelope proteins) in the innate immune
recognition of HDV RNA remain unknown.

Besides infected hepytocytes, innate immune cells like dendritic cells (DCs) and macrophages
may also produce IFNs during HDV infection [139]. For example, plasmacytoid DCs (pDCs) can
dedicate an astonishing 60% of their transcriptional activity to make type I IFN during activation [140].
Lacking the receptor NTCP, these cells are not the natural target of HDV. However, they may
capture viral RNA via unspecific uptake pathways. As known from HCV, extracellular vesicles (EVs)
containing viral replication intermediates can be secreted from infected cells and transferred to DCs and
macrophages [141,142]. However, depending on the virus, the concentration of viral RNA containing
EVs may be below the threshold for activating general cellular innate immune responses [143].
Moreover, it has been demonstrated that pDC can also capture viral RNA more efficiently by directly
contacting infected cells and forming an interferogenic synapse that enables efficient EV-mediated
viral RNA delivery for IFN activation [143–146]. EVs secreted from HDV-infected hepatoma cell
lines and PHH were analyzed recently [147]. These EVs can activate peripheral blood mononuclear
cells (PBMCs) and macrophages in vitro, leading to the production of pro-inflammatory cytokines
(TNF-α, IFN-γ, IL6, etc.) [147]. However, the level of IFN activation was not reported in this study.
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It is unclear yet whether these EVs can deliver HDV RNA to PBMCs and macrophages to activate IFNs
and, if so, which species of HDV RNA are transferred for this activation. Further investigations are,
therefore, needed to understand the possible roles of innate immune cells in physiologically relevant
models, e.g., co-cultures of HDV-infected hepatocytes with innate immune cells, mouse models,
and—ideally—patient samples.

4.3. Effect of IFN Response on HDV Replication

As an off-label drug, IFN-α has been used for treating CHD patients since the 1980s. Although its
rate of HDV elimination is low, IFN-α therapy decreases the HDV viral load in most patients [148–151].
A similar effect was observed in HDV-infected humanized mice upon IFN-α/λ treatment [152].
Regarding the mode of action, an early study showed that the IFN-α treatment of HDV-infected PHHs
preferentially affected the early stages of infection (entry, including the establishment of replicative
intermediates). Moreover, a high dose of IFN-α (600 units/mL) was needed to achieve an effect, which is
300 times greater than the dose needed for the inhibition of vesicular stomatitis virus (VSV) [153].
In a recent study, poly (I:C) was used to artificially activate the cellular IFN response either 12 h before
or 12 days after HBV/HDV infection. Pretreatment significantly inhibited the replication of both viruses,
while late treatment only affected HBV replication [136]. This was confirmed by our study using NTCP
expressing HepG2 and HepaRG cells, where early treatment (d1–7) with IFN-α (100 IU/mL) and IFN-λ1
(10 ng/mL) reduced HDV infection by around 50%, while late treatment (d5-11) barely affected HDV
replication [106]. Besides exogenous IFN treatment, we also investigated the long-term effects of the
virus-induced IFN response on HDV replication in this study. Intracellular HDV RNA replication
was comparable in HepaRG-NTCP regardless of MDA5 depletion within the first week post-infection.
However, it was significantly decreased in cells with intact MDA5 at late time points, e.g., 7.6-fold
lower compared to that in MDA5-depleted cells at day 23 post-infection [106]. Thus, a long-term
virus-induced IFN response also restricts intracellular HDV RNA replication. This effect was also
supported by studies using immune-competent mouse models where the depletion of innate immune
responses by knocking out the IFN-α/β receptor [131] or MAVS [133] promoted HDV replication in
mouse hepatocytes.

Besides de novo infection and intracellular HDV RNA replication, the effect of IFN on the
newly discovered cell-division-mediated HDV spread was also evaluated recently. This spread
was very efficient in the absence of an IFN response (e.g., in HuH7-NTCP cells). However, it was
significantly suppressed by IFN-α/λ treatment and the HDV-induced IFN response in innate immune
competent cells, e.g., HepaRG-NTCP cells [20]. In contrast to the slow and mild effects in resting
cells, the suppression of HDV replication via IFN response is rapid and robust in mitotic cells.
However, this seems contradictory to the overall transcription regulation during mitosis. Studies have
demonstrated that IFN/ISG production is downregulated, and, consequently, antiviral activity is low
during mitosis [154,155], which is likely due to the chromosome condensation and global repression
of cellular transcription in the G2/M phase [156,157]. The replication of some IFN-sensitive and
cytoplasmic replicating viruses like VSV-∆M51 is also enhanced in this phase due to the reduction
of cellular antiviral activity [154]. In contrast to VSV-∆M51, HDV is a nuclear replicating virus.
One possible explanation for the stronger HDV suppression by IFN responses during cell division
is that the nucleus-resident HDV replication intermediates in resting cells are exposed to PRRs and
ISGs during mitosis because of the destruction of the nucleus. Therefore, although the global IFN
response is lower in this phase, the HDV-specific antiviral activity might be more efficient than that
in HDV-infected resting cells. In addition, due to the reorganization of nuclei after cell division,
HDV likely needs to “re-establish” the replication system in the daughter cells. Since the IFN response
can efficiently impair the establishment of HDV replication during de novo infection (see above),
it might exhibit similar inhibition in this re-establishment.

Discovery of this new mode of action by IFN also provides insights for CHD therapy. As mentioned
in Section 2.3, cell-division-mediated HDV spread is refractory to drugs like Hepcludex [19,82] and
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Lonafarnib [82] targeting de novo infections. A combination of IFN and these inhibitors is predicted
to provide better antiviral activity by targeting both HDV-spreading pathways. This hypothesis is
supported by recent clinical studies demonstrating strong synergistic antiviral effects with a combination
of pegylated IFN-α and Hepcludex/Lonafarnib [158–161]. To verify the effect of this combination
treatment in vitro, we recently generated a model supporting both spreading pathways using
HuH7-NTCP cells stably expressing HBV envelope proteins. As observed in the clinical studies,
a combination of inhibitors targeting both spreading pathways (e.g., Hepcludex plus IFN-α) in this
model showed strong synergism against HDV [82]. More information about novel HDV antivirals and
combination therapies is reviewed elsewhere [162,163].

The effect of IFN response on HDV assembly and cellular particle egress from infected cells has
not been studied so far. This is mainly due to the lack of a suitable HBV/HDV co-infection system
and the rarity of “true” co-infection at the single cell level. In response, hepatoma cell lines stably
expressing NTCP and the three HBV envelope proteins under endogenous promoter control have been
constructed recently [52,53]. Such models mimic the possible replication of HDV in HBsAg-expressing
hepatocytes after the integration of double-strand linear HBV DNA [50], as reported frequently in
preferentially hepatitis B e antigen (HBeAg)-negative patients [51,75]. The efficient secretion of progeny
viruses was achieved after HDV infection [52] or the stable integration of HDV-encoding cDNA [53].
IFN-α/λ treatment in these models indicates that IFN does not significantly affect HBsAg secretion and
HDV production. Notably, these studies were performed on hepatoma cell lines, where HDV secretion
efficiency was found to be much lower than that in the liver. Further investigations using better models
are needed to clarify the effect of the IFN response on HDV particle assembly and release.

4.4. Countermeasures by HDV

HDV replication accumulates up to 300,000 copies of genomic RNA and 50,000 copies of
antigenomic RNA per cell (Figure 1) [26]. To avoid being sensed by the host PRRs and activating
a high level of innate immune responses, HDV might have evolved strategies to hide, mask,
or shield these viral RNAs. Firstly, HDV uses a relatively “safe” compartment, the nucleus for
RNA replication. Most of the host RNA sensors and IFN-induced effectors are localized in the
cytoplasm. Therefore, HDV RNA replication intermediates are likely to be inaccessible to them.
This speculation is indirectly supported by the observation that only HDV mRNA, but not the genome
and antigenome, is targetable by siRNA [164]. Secondly, the progeny genomes in the cytoplasm are
protected by HDAg and HBV envelope proteins. HDAg and HDV genomes form the RNP complex,
which is highly compressed [165,166] and might even be resistant to nuclease [167], indicating its
spatial inaccessibility to at least some cellular factors. Recognition by MDA5 may also be dampened
by the assembly of RNP. Thirdly, besides escaping from PRRs, HDV may also directly counteract
the IFN signaling pathways. Following the transfection of hepatoma cells with an HDV cDNA,
an earlier study showed that HDV could inhibit IFN-α-induced STAT1/2 phosphorylation and nuclear
translocation and, therefore, downregulate the transcription of ISGs, such as Mx1, 2′,5′-OAS, and PKR,
in response to IFN-α treatment [168]. Similarly, poly (I:C)-activated IFN production was also impaired
in HDV replicating 293 stable cells, and this impairment could also be achieved by expressing S-HDAg,
although with less efficiency [153]. Notably, these studies were performed using either cDNA-driven
HDV replication systems or the overexpression of HDAg. Using a humanized mouse model, it was
later shown that a portion of human hepatocytes with a high-level HDV replication were deficient in
STAT1 activation [132]. In contrast, recent work from our group demonstrated profound ISG (e.g., Mx1)
induction in HDV-replicating HepG2-NTCP and HepaRG-NTCP cells [106]. Further investigations
using authentic infection systems are needed to clarify these discrepancies.
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5. Crosstalk between HDV-Induced IFN Response and HBV

5.1. The Role of HBV in IFN Response Activation during HBV/HDV Co-Infection

In contrast to HDV, HBV replication does not activate significant innate immune responses [132,169–174].
Although some publications described HBV-induced IFN or pro-inflammatory responses [175–179],
these responses are usually low and temporary compared to those activated by HDV. Other studies
showed that HBV pgRNA and DNA could be substrates of cellular PRRs [174,175,178,179]. However,
such RNA/DNA is likely not reachable by PRRs in the cytoplasm due to shielding by the HBV capsid
(Figure 2).

Regarding their effects on HDV, HBV envelope proteins can wrap the HDV RNP complex, which likely
prevents the recognition of HDV RNA by PPRs. This hypothesis has not been experimentally tested so
far, mainly due to the low HBV/HDV co-infection rates in most of the available models. However,
the recently generated stable cell lines expressing HBV envelope proteins and supporting the full HDV
life cycle mentioned above [52,53] might be good models for investigating the role of HBsAg in the
innate immune sensing of HDV RNA.

5.2. Effect of HDV-Induced IFN Response on HBV Replication

The repression of HBV is frequently observed in CHD patients [79,180,181], which was confirmed
in humanized mice [132] and differentiated HepaRG cells [130]. In addition, the kinetics of HBV
repression in both experimental models correlated with those of IFN activation. Moreover, due to
the low infection rate, most of the positive cells were only positive for either HBV or HDV, while the
co-infection rate at the single cell level was very low. Thus, HBV repression was likely not a direct
effect of HDV markers. Similar to HDV, HCV co-infection also leads to HBV repression. A recent
study demonstrated that HBV reactivation after HCV clearance is mainly due to the diminishing
HCV-induced IFN response [182]. These studies indicate the important role of HDV-induced IFN
response in HBV inhibition.

6. Conclusions and Perspectives

In contrast to HBV, HDV replication activates profound IFN-β/λ responses in hepatocytes.
MDA5 is the key sensor recognizing HDV replication, but other MDA5-associated factors may also be
involved. The IFN response efficiently inhibits the early stages of HDV infection and suppresses HDV
RNA amplification during hepatocyte proliferation. However, this response only weakly impairs the
intra-nuclear HDV RNA replication in resting cells. HDV may counteract the cellular IFN response
through escaping recognition by PRRs and possibly also impairing the IFN signaling pathway. Future
work using patient samples and HDV-susceptible infection models with defined genetic modifications
of the innate immune signaling pathways will help answer the following questions: (i) What are the
statuses of innate immune responses in HDV-infected patients with different viral loads and at different
stage of disease progression? (ii) How is HDV RNA recognized, including the viral RNA ligand(s),
location of the recognition, roles of the host factors besides MDA5, and the impact of viral factors like
HDAg and HBV envelope proteins? (iii) How does the IFN response affect HDV replication/persistence,
and how does HDV counteract this affect? These studies will not only help understand the interplay
between HDV and the innate immune system but also provide important insights for developing
curative therapies against CHD.
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