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Abstract: Infection of Herpes simplex virus 1 (HSV-1) induces severe clinical disorders, such as
herpes simplex encephalitis and keratitis. Acyclovir (ACV) is the current therapeutic drug against
viral infection and ACV-resistant strains have gradually emerged, leading to the requirement for
novel antiviral agents. In this study, we exhibited the antiviral activity of amentoflavone, a naturally
occurring biflavonoid, toward HSV-1 and ACV-resistant strains. Amentoflavone significantly
inhibited infection of HSV-1 (F strain), as well as several ACV-resistant strains including HSV-1/106,
HSV-1/153 and HSV-1/Blue at high concentrations. Time-of-drug-addition assay further revealed
that amentoflavone mainly impaired HSV-1 early infection. More detailed study demonstrated
that amentoflavone affected cofilin-mediated F-actin reorganization and reduced the intracellular
transportation of HSV-1 from the cell membrane to the nucleus. In addition, amentoflavone
substantially decreased transcription of viral immediate early genes. Collectively, amentoflavone
showed strong antiviral activity against HSV-1 and ACV-resistant strains, and amentoflavone could
be a promising therapeutic candidate for HSV-1 pathogenesis.
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1. Introduction

Herpes Simplex Virus type 1 (HSV-1) is a DNA virus with envelope and belongs to α subfamily
Herpesviridae [1]. HSV-1 can cause a variety of clinical disorders, such as encephalitis and keratitis,
and importantly, the mortality rate of HSV-1-induced encephalitis is about 70% [2]. HSV-1 establishes
latent infection in peripheral nerve ganglia and the central nervous system, and the latent virus can be
reactivated under psychological stress [3]. Further increasing evidences indicate that HSV-1 infection
plays a role in the development of neurodegeneration disease, such Alzheimer’s disease [4]. Currently,
the clinically therapeutic drug against HSV-1 infection is Acyclovir (ACV), a nucleoside analog that
has been hailed as a milestone in the history of antiviral drugs [5]. However, ACV-resistant viruses
appear gradually [6], making developing novel and high-efficiency antiviral agents important.

Cell cytoskeleton, especially actin filaments and microtubules, plays critical functions in various
cellular activities, such as cell motility and cell division, as well as pathogen infection [7,8]. Every stage of
virus life cycle, from entry to egress, is tightly associated with the reorganization of cell cytoskeleton [9,10].
Cofilin is a key regulator in controlling the temporal and spatial extent of actin dynamics and different
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viruses have evolved various molecular mechanisms to manipulate cofilin activity to subvert the actin
cytoskeletal system in host cells, promoting their internalization into the target cells and facilitating their
intracellular and intercellular dissemination [11,12]. For instance, we have demonstrated previously
that HSV-1 entry and penetration induces the rearrangement of F-actin as well as the initial inactivation
and subsequent activation of cofilin [13]. Upon viral binding, EGFR-PI3K signaling was activated to
induce cofilin phosphorylation and F-actin polymerization, which in turn promoted HSV-1’s efficient
entry. Subsequent viral penetration activated cofilin (dephosphorylation of cofilin), leading to the
fragmentation of existing actin filaments, and presumably, loosening of the actin cortex and facilitation
of virus trafficking [14]. Therefore, interruption of cofilin-mediated dynamic actin regulation represents
a promising antiviral strategy.

Numerous potent anti-HSV-1 compounds are derived from natural plants [15,16]. Amentoflavone
(AF; Figure 1A), a polyphenol compound that extensively exists in Biophytum sensitivum and other plants
including edible Garcinia Species and Juniperus communis L [17–19], displays many pharmacological
properties, including anti-inflammatory, antioxidative, antitumor, and neuroprotective activity [20–24].
In addition, amentoflavone has been found to be a broad spectrum antivirus compound against a series
of viruses [25].

In this study, we evaluated whether amentoflavone can inhibit HSV-1 infection and revealed the
mechanism thereof. The anti-ACV-resistant virus activity of amentoflavone was also investigated.

Figure 1. Toxicities and antiviral activities of amentoflavone. (A) Chemical structure of amentoflavone.
(B–D) Cytotoxicities of ACV and amentoflavone. SK-N-SH and Vero cells were treated with different
concentrations of amentoflavone or ACV for 72 h and cell viability was calculated by CCK8 assay.
(E,F) Anti-HSV-1 activity of amentoflavone. Vero cells were infected with HSV-1 (MOI = 0.1) in the
presence of amentoflavone or ACV for 24 h and CPE assay was used to estimate the inhibitory effect (E).
The cells infected with HSV-1 (MOI = 0.1) were treated with amentoflavone or DMSO (control group)
for 72 h, and the inhibitory effect of amentoflavone was estimated by plaque assay (F). Data are mean ±
SD (n = 3). ** p < 0.01; *** p < 0.001 versus HSV-1-treated group.
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2. Materials and Methods

2.1. Cells and Viruses

Vero cell line (ATCC, USA) was cultured in Dulbecco’s modified Eagle’s medium (DMEM;
8118305, GIBCO/Thermo Fisher Scientific, USA) with 10% fetal bovine serum (FND500, ExCell Bio,
Shanghai, China). The neuroblastoma cell line SK-N-SH (ATCC, HTB-11, American Type Culture
Collection, Manassas, VA, USA) was propagated in Eagle’s minimal essential medium (MEM; GIBCO
/Thermo Fisher Scientific, USA) supplemented with 10% FBS. In our previous studies, HSV-1 infection
induced the biphasic F-actin dynamics in SK-N-SH cells [26]. In this study, the SK-N-SH cells
were used to study the effect of amentoflavone on F-actin. HSV-1 strain F (ATCC, USA), initially
obtained from Hong Kong University, was propagated in Vero cells and stored at −80 ◦C until use.
HSV-1/Blue, a TK mutant derived from HSV-1 (KOS) and two acyclovir-resistant clinical HSV-1 strains
HSV-1/106 and HSV-1/153 were kind gifts from Tao Peng, State Key Laboratory of Respiratory Disease,
Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences. GFP-HSV-1, expressing
a GFP-tagged viral protein Us11, was used to evaluate viral nuclear transport [27]. HSV-1 Us11 is
a multifunctional late protein which can regulate the accumulation of RNA species and facilitate
HSV-1 replication [28].

2.2. Compounds, Antibodies, and Reagents

Amentoflavone was purchased from Selleck (S3833, Houston, TX, USA) and dissolved in Dimethyl
Sulphoxide with a concentration of 20 mM. Acyclovir (ACV) was purchased from Sigma-Aldrich (St. Louis,
MO, USA). Cytochalasin B (CB) was purchased from Sigma-Aldrich (14930-96-2, St. Louis, MO, USA).
Antibodies, including anti-ICP0 (ab6513), anti-VP5 (ab6508), and anti-gD (ab6507), were purchased
from Abcam (Cambridge, UK), anti-VP22 was purchased from Santa Cruz Biotechnology (Santa Cruz,
CA, USA), anti-cofilin (5175S), anti-p-cofilin (3313S), anti-GAPDH (5174S), and anti-Acetyl-α-Tubulin
(5335S) were obtained from Cell Signaling Technology (Danvers, MA, USA). TRIzol Reagent was brought
from TIANGEN (Beijing, China).

2.3. Cytotoxicity and Antiviral Activity Assay

1 × 104 Vero cells or SK-N-SH cells were seeded in 96-well plates and incubated at 37 ◦C,
5% CO2 overnight. The supernatant was then removed and new medium with amentoflavone or
acyclovir was added. After 72 h, the CCK8 reagent (10 µL/well) was added for 2 h to record the
OD value by enzyme immunoassay reader at 490 nm. The 50% cytotoxic concentration (CC50) was
calculated accordingly [29].

Viral titration was used to determine cytopathic effects (CPEs) in Vero cells and the 50% tissue
culture infectious dose (TCID50) was calculated [30]. Subsequently, the TCID50/mL was converted
into plaque-forming units (PFU)/mL [31]. The assays were conducted as described in our previous
studies [32,33]. Briefly, 1 × 104 or 1.5 × 105 Vero cells were seeded in 96-well or 24-well plates to
perform CCK8 assay or plaque assay, respectively. The cells were infected with HSV-1/F, HSV-1/106,
HSV-1/153 or HSV-1/Blue (MOI = 0.1) for 2 h, and the culture medium was then replaced with new
medium containing amentoflavone at 37 ◦C, 5% CO2. After 72 h, the OD value of the cells in 96-well
plates was detected by CCK8 assay. The cells in 24-well plates were fixed by paraformaldehyde for
0.5 h, and strained with crystal violet for 0.5 h. Finally, the number of plaques was counted to calculate
the inhibition rate of virus infection as described previously [32]. The 50% effective concentration
(EC50) was also calculated as described previously [33].

2.4. Quantitative Real-Time PCR (qRT-PCR)

The cells were treated on the basis of diverse experimental requirements. Total RNA was extracted
using TRIzol and the RNA concentration was measured at 260/280 nm using a NanoPhotometer
P330 spectrophotometer (IMPLEN, Munich, Germany). One µg RNA was reverse transcribed
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into cDNA using a reagent kit (PrimeScript RT reagent Kit, Takara, Shiga, Japan). Afterwards,
the mRNA expression levels of viral genes were analyzed using Bio-Rad CFX96 real-time PCR system
(Bio-Rad) according to previous studies [26]. The expression level of 18SrRNA was used as a reference.
The primer sequences were as follows: HSV-1 UL54 F (5′-TGGCGGACATTAAGGACATTG-3′),
UL54 R (5′-TGGCCGTCAACTCGCAGA-3′), UL52 F (5′-GACCGACGGGTGCGTTATT-3′), UL52
R (5′-GAAGGAGTCGCCATTTAGCC-3′), UL27 F (5′-GCCTTCTTCGCCTTTCGC-3′), UL27 R
(5′-CGCTCGTGCCCTTCTTCTT-3′), ICP0 F (5′-CCCACTATCAGGTACACCAGCTT-3′), ICP0 R
(5′-CTGCGCTGCGACACCTT-3′), ICP4 F (5′-CGACACGGATCCACGACCC-3′), ICP4 R (5′-
GATCCCCCTCCCGCGCTTCGTCCG-3′), and 18SrRNA F (5′-CATGGTGACCACGGGTGAC-3′),
18S rRNA R (5′-TTCCTTGGATGTGGTAGCCG-3′). For viral nuclear transport assay, the DNA copy
number of viral gene UL52 and UL27 was detected [13]. Total DNA was extracted using TIANamp
Virus DNA/RNA Kit (TIANGEN, Beijing, China) and targeted genes were analyzed by qRT-PCR.

2.5. Nuclear and Cytoplasmic Protein Extraction

Vero cells infected with HSV-1 (MOI = 10) for 2 h at 4 ◦C were treated with AF (50 µM) for another
2 h at 37 ◦C. The cells were then harvested and swelled in Buffer A (10mM Hepes, 1 mM MgCl2,
10 mM KCl, 0.5 mM DTT) for 15 min on ice. After discarding the supernatant, the cells were lysed with
Buffer A containing 10% NP-40, 1mM PMSF, and subjected to a vortex for 10 s. After centrifugation,
the supernatant was harvested as cytoplasmic protein, and the cell pellet was resuspended in Buffer B
(20 mM Hepes/PH7.9, 25% glycerine, 0.42 mM NaCl, 0.2 mM EDTA, 0.5 mM DTT) containing PMSF to
lyse for 30 min. The supernatant was harvested as nuclear protein after centrifugation.

2.6. Western Blot Assay

Vero cells or SK-N-SH cells were infected with HSV-1 (MOI = 1) in the presence or absence of
amentoflavone. Cell lysates were collected at various time points using SDS buffer (Beyotime,
ShangHai, China), and proteins were separated by 10% gradient SDS-PAGE, transferred to
polyvinylidene fluoride (PVDF) membrane (Millipore), and were then blocked with 5% nonfat
milk for 1 h at room temperature. Targeted proteins were incubated with primary antibodies overnight
at 4 ◦C and with the secondary antibodies for 1 h at room temperature. Finally, those target proteins
were detected by ECL solutions. The band intensity of each protein was calculated using Quantify One
software (Bio-Rad, Hercules, CA, USA) and was normalized to that of GAPDH.

2.7. Immunofluorescence Assay

Vero cells or SK-N-SH cells infected with HSV-1 in the presence of amentoflavone (50 µM) were
washed with phosphate-buffered saline (PBS) for three times, fixed with 4% paraformaldehyde for
20 min, permeabilized with 0.1% Triton X-100 for 5 min, and blocked with 5% bovine serum albumin
for 1 h. Subsequently, the samples were incubated with anti-gD or anti-VP5 antibodies overnight at
4 ◦C. Next, the samples were incubated with Alexa Fluor 488 (green)-labelled secondary antibody
(life technologies) for 1 h. In addition, cell nucleus was stained with DAPI (blue) (C1006, Beyotime,
ShangHai, China) and cell actin filaments were stained by FITC-labelled phalloidin (red). Finally,
fluorescent images were obtained using a confocal laser scan microscope (LSM 510 meta; Zeiss,
Jena, Germany).

2.8. Flow Cytometry Assay

SK-N-SH cells infected with or without HSV-1 were treated with amentoflavone (50µM) or cytochalasin
B (CB, 20 µM). After 1 h at 37 ◦C, the cells were washed with PBS, fixed with 4% paraformaldehyde for
5 min, and permeabilized with 0.1% Triton X-100 for 5 min. Next, the samples were stained with 5%
TRITC-Phalloidin (YEASEN, 40734ES75) for 40 min at 37 ◦C. Finally, the fluorescence was analyzed with
a flow cytometer (Becton Dickinson, CA, USA).
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2.9. Luciferase Reporter Gene Assay

The effect of amentoflavone on the promoter activity of viral immedi ate early gene was analyzed
using a dual luciferase assay [27]. Briefly, the promoter sequence of viral immediate early gene
α0 and α4 was cloned into the luciferase reporter plasmid pGL4.12 [luc2p] (Promega, Madison,
WI, USA) according to the manufacturer’s instructions. HSV-1 virion protein 16 (VP16) is a crucial
protein involved in the assembly of a transactivation complex binding to the promoters of viral α0
and α4. Therefore, exogenous expression of VP16 was used as a positive control and the protein
coding sequence of VP16 was cloned into the expression plasmid pcDNA3.1 (pcDNA). Vero cells were
transfected with pcDNA3.1(+)-VP16 plasmid (pcDNA-VP16) (250 ng/well) in combination with the
pGL4.12 [luc2p]-α0 promoter (p-GLα0) plasmid (250 ng/well) or pGL4.12 [luc2p]-α4 promoter (p-GLα4)
plasmid (250 ng/well) using a jetPRIME®kit (PT-114-15; Polyplus Transfection, France), respectively.
The pRL-TK plasmid (5 ng/well) was transfected as an internal reference. After transfection, the cells
were treated with amentoflavone (50 µM). Dual-Luciferase®Reporter assay was performed using
a GloMax 20/20 GloMax20/20 instrument (Promega, USA).

2.10. Statistical Analysis

Data are presented as mean± SD. Data were analyzed by one-way analysis of variance or Student’s
t test as appropriate, and the level of significance was set at p < 0.05 (*), p < 0.01 (**), or p < 0.001 (***).

3. Results

3.1. Cytotoxicity and Comprehensive Antiviral Activity of Amentoflavone

The cytotoxicity of amentoflavone and ACV on Vero cells and SK-N-SH cells was detected by
CCK8 assay (Figure 1B–D), and the CC50 values are shown in Table 1. In addition, the antiviral
activity of amentoflavone was estimated by CPE and plaque assay, respectively, which showed that
amentoflavone inhibited HSV-1 infection in a dose-dependent manner (from 2.5 to 50 µM) (Figure 1E,F).
As expected, the antiviral drug ACV showed excellent antiviral effect at a low concentration of
2.5 µM. Finally, plaque assay was performed to determine the EC50 values (Table 2). Taken together,
amentoflavone displays strong anti-HSV-1 activity at high concentration.

Table 1. The cytotoxicity of amentoflavone and ACV on Vero and SK-N-SH cells.

Cell/Compounds CC50 (µM)

Vero/ACV >100
Vero/AF >100

SK-N-SH/AF >100

CC50, 50% cellular cytotoxicity concentration; Data are mean ± SD (n = 3).

Table 2. The antiviral activity of amentoflavone on four HSV-1 strains.

Virus (Vero) EC50 (µM)

HSV-1 22.13 ± 0.38
HSV-1/106 11.11 ± 0.71
HSV-1/153 28.22 ± 2.51
HSV-1/Blue 25.71 ± 3.97

EC50, the 50% effective concentration; Data are mean ± SD (n = 3).

3.2. Amentoflavone Inhibits HSV-1 Gene and Protein Expression

Next, we evaluated the effect of amentoflavone on HSV-1 gene and protein expression. Indeed,
the mRNA expression of several representative viral genes, including UL54 (viral immediate early gene,
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IE), UL52 (early gene) and UL27 (late gene), was significantly reduced by amentoflavone (Figure 2A).
Consistently, amentoflavone markedly inhibited protein levels of viral immediate early protein ICP0,
late protein gD and VP5 (Figure 2B). Immunofluorescence assay further reinforced the conclusion that
amentoflavone reduces the expression of viral proteins (Figure 2C).

Figure 2. Amentoflavone inhibits viral gene and protein expression. (A) Vero cells were infected with
HSV-1 (MOI = 1) in the presence of ACV (50 µM), amentoflavone (50 µM) or DMSO (control group).
At different time points (3, 6, 9 h p.i.), total RNA samples were extracted and the mRNA expression
levels of UL54 (immediate early gene), UL52 (early gene), and UL27 (late gene) were detected by
qRT-PCR. The mRNA expression was normalized to 18s RNA. Data are mean ± SD (n = 3). *** p < 0.001
versus HSV-1-treated group. (B) Amentoflavone inhibited viral protein expression. The cells were
infected with HSV-1 for 3 h and the representative protein level of viral immediate early protein ICP0
was detected by Western Blot. For viral late protein gD and VP5, the cells were infected with HSV-1 for
9 h. Densitometric analysis for all western blot bands was shown. GAPDH served as a loading control.
Data are mean ± SD (n = 3). ** p < 0.01; *** p < 0.001 versus HSV-1-treated group. (C) The cells were
infected with HSV-1 (MOI = 1) for 9 h in the presence of amentoflavone (50 µM) or DMSO (control
group), and were then fixed, stained with primary antibody against VP5 or gD (green). Nucleus was
stained with DAPI (Blue). Images were recorded by a confocal LSM.
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3.3. Amentoflavone Inhibits ACV-Resistant Strains Infection

ACV mainly acts as a substrate of HSV Thymidine kinase (TK) and inhibits viral DNA replication,
and ACV-resistant HSV clinical isolates are TK-negative, TK-low-producer mutants, and TK-altered
mutants [34]. In this study, we also assessed whether amentoflavone had antiviral activity against
ACV-resistant strains, including HSV-1/Blue, a TK mutant derived from HSV-1, and two clinical
HSV-1 strains HSV-1/106 and HSV-1/153 [35]. As shown in Figure 3A, no antiviral activity of ACV
toward those viruses was observed even at a high concentration (50 µM). In contrast, amentoflavone
significantly inhibited HSV-1/106 strain at the concentration of 20 µM and inhibited HSV-1/153 strain
and HSV-1/blue strain at the concentration of 40 µM, respectively. In addition, plaque assay showed
that amentoflavone completely inhibited all ACV-resistant strains at 50 µM (Figure 3B), consistent with
CPE results. The EC50 values are shown in Table 2.

Figure 3. Amentoflavone inhibits infection by ACV-resistant HSV-1 strains. (A) Vero cells were infected
with HSV-1/106, HSV-1/153, and HSV-1/Blue (MOI = 0.1) in the presence of amentoflavone or ACV for
72 h. The antiviral effect was assessed by CCK8 assay. (B) Vero cells were infected with HSV-1/106,
HSV-1/153, and HSV-1/Blue (MOI = 0.1) for 2 h. The viruses were then removed and cover fluid
with amentoflavone was added. After 72 h, the cells were fixed and strained with crystal violet dye.
The plaque numbers were counted to calculated the inhibitory effect. Data are mean ± SD (n = 3).
** p < 0.01, *** p < 0.001 versus HSV-1-treated group.

Furthermore, we evaluated the inhibitory effect of amentoflavone on the gene and protein
expression of all three ACV-resistant viruses. As expected, amentoflavone almost completely suppressed
viral gene production (UL54, UL52, and UL27) (Figure 4A). Western Blot assay also clearly demonstrated
that amentoflavone exhibited a dose-dependent inhibitory effect on viral proteins, as illustrated by
protein ICP0, gD, and VP5 (Figure 4B). The differences in viral protein expression among three
ACV-resistant viruses were mainly attributed to the unequal concentrations of total proteins used
for western blot assay. All these results indicated that amentoflavone has the ability to inhibit
ACV-resistant virus.
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Figure 4. Amentoflavone affects the gene and protein expression of ACV-resistant viruses. (A) Vero
cells were infected with HSV-1/106, HSV-1/153, and HSV-1/Blue (MOI = 1) in the presence of ACV
(50 µM), amentoflavone (50 µM), or DMSO (control group). Total RNA samples were extracted to
detect the expression levels of UL54, UL52, and UL27 at 3, 6, and 9 h p.i., respectively. Data are mean ±
SD (n = 3). *** p < 0.001. (B) The expression of various viral proteins was detected by Western Blot.
The cells infected with HSV-1 were treated with amentoflavone or DMSO (control group) for 3 h and
total proteins were subjected to western blot for ICP0 analysis. For viral late protein gD and VP5,
the cells were infected with HSV-1 for 9 h in the presence of amentoflavone or DMSO. Different protein
concentrations for the different virus samples were used for Western blot. Data are mean ± SD (n = 3).
* p < 0.05; ** p < 0.01; *** p < 0.001 versus HSV-1-treated group.
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3.4. Amentoflavone Reduces the Nuclear Import of HSV-1

To determine which step of HSV-1 infection amentoflavone affected, time-of drug-addition assay
was performed. As shown in Figure 5A,B, the number of plaques was significantly reduced when
amentoflavone was added at the time point 0–4 h.p.i, suggesting that amentoflavone mainly affected
HSV-1 early infection. The early steps of HSV-1 infection include viral attachment to host cell membrane,
penetration, and subsequent transportation to nucleus. To evaluate whether amentoflavone affected
viral nuclear transport, Vero cells were infected with HSV-1 for 2 h in the absence or presence of
amentoflavone and total DNA was extracted to analyze the DNA copy number of viral gene UL52 and
UL27 as described in our previous work [13]. We found that the relative amount of UL52 and UL27 in
the amentoflavone-treated group was lower than in the HSV-1-treated group, suggesting that viral
entry was affected by amentoflavone (Figure 5C). To further confirm the above result, we extracted
nuclear and cytoplasmic protein at 2 h.p.i, respectively. As showed in Figure 5D, both nuclear and
cytoplasmic viral protein VP5 and VP22 was largely reduced by amentoflavone treatment. Next,
GFP-HSV-1, expressing a GFP-tagged viral protein, US11, was used to further assess the effect of
amentoflavone on viral nuclear transport process (Figure 5E). GFP-labelled viral particles reached
the nucleus at 2 h.p.i in control group, whereas most virions were blocked in the cytoplasm in the
presence of amentoflavone, implying impaired nuclear transport of HSV-1. Finally, we performed
immunofluorescence assay using viral tegument protein VP5 as an indication of HSV-1 particles [36].
The viruses were mostly being transferred to the nucleus in control group. However, treatment with
AF significantly reduced the number of viral particles and only a few viral particles docked at the
nucleus (Figure 5F). Taken together, amentoflavone significantly reduced the nuclear transport of
viral particles.
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Figure 5. Amentoflavone impairs the viral nuclear transport process. (A) Simple diagram of the
time-addition assay. (B) Vero cells were treated with HSV-1 (MOI = 0.1) at 4 ◦C to adsorb. After 2 h,
the cells were washed with PBS to remove the virions and were subsequently incubated at 37 ◦C. Then,
amentoflavone was added at different time points. After 72 h, the cells were fixed and strained with
crystal violet dye. Data are mean ± SD (n = 3), *** p < 0.001. (C) The cells were challenged with HSV-1
(MOI = 10) at 4 ◦C for 2 h, and were treated with amentoflavone for another 2 h. The total DNA was
extracted, and the expression level of UL52 and UL27 was detected. Data are mean ± SD (n = 3),
* p < 0.05. (D) The cells infected with HSV-1 (MOI = 10) for 2 h at 4 ◦C were treated with amentoflavone
(50 µM) or DMSO (control group) for another 2 h at 37 ◦C, and the total proteins in the cytoplasm
and nucleoplasm were extracted. The protein levels of viral proteins VP5 and VP22 were analyzed by
western blot assay. (E) Vero cells were challenged with GFP-HSV-1 (MOI = 10) at 4 ◦C for 2 h, and were
treated with amentoflavone or DMSO (control group) for another 2 h at 37 ◦C. The cells were then fixed
and the immunofluorescence images were acquired by a Nikon microscope. In addition, the number of
intra/extranuclear virus particles was counted in 100 fields. White arrows indicated the GFP-labeled
HSV-1 virion within nucleus. Data are mean ± SD (n = 3), *** p < 0.001. (F) SK-NSH cells were infected
with HSV-1 for 2 h at 4 ◦C and were treated with amentoflavone or DMSO (control group) for another
2 h at 37 ◦C. The cells were then fixed and stained with anit-VP5 primary antibody (green) and DAPI
(blue). The immunofluorescence images were acquired by a confocal LSM. Data are mean ± SD (n = 3),
** p < 0.01, *** p < 0.001.
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Viral intracellular transportation relies on the dynamic regulation of the cell’s cytoskeleton,
including F-actin and the microtubule system. In the previous study, we have showed that early
infection of HSV-1 mobilizes tubulin and F-actin reorganization to facilitate viral entry and nuclear
transport [14,26]. Biphasic F-actin depolymerization and polymerization promotes HSV-1 entry
and penetration, whereas acetylation of tubulin facilitates nuclear transportation of viral particles.
Therefore, we first analyzed whether the reorganization of microtubule was involved in the antiviral
effect of amentoflavone. Indeed, HSV-1 infection increased acetylated-tubulin levels in neuronal cells
detected by western blot assay (Figure 6A). However, such enhanced acetylated tubulin remained
unchanged when amentoflavone was added (Figure 6B,C), suggesting the involvement of other
cytoskeleton components.

Figure 6. Amentoflavone does not affect microtubule organization. (A) SK-N-SH cells seeded in 30 mm2

dish were infected with HSV-1 (MOI = 10) at 4 ◦C for 2 h, and were then incubated at 37 ◦C for different
time points. Total proteins were extracted to detect the level of acetylated tubulin. (B) The SK-N-SH
cells infected with HSV-1 were treated with amentoflavone or DMSO (cell and HSV-1 group) for 2 h at
37 ◦C. The cells were then fixed and stained with anti- ace-tubulin primary antibody. (C) SK-N-SH cells
seeded in a 30 mm2 dish were infected with HSV-1 (MOI = 10) at 4 ◦C for 2 h, and then incubated at
37 ◦C in the presence of amentoflavone or DMSO (HSV-1 control group) for 2 h at 37 ◦C. Total proteins
were extracted to detect the level of acetylated tubulin.

Considering that cofilin-mediated F-actin polymerization promotes HSV-1 binding and entry, whereas
F-actin depolymerization facilitates viral penetration and subsequent nuclear transportation [14], we thus
analyzed the possible effect of amentoflavone on F-actin-mediated HSV-1 early infection. As shown in
Figure 7A, HSV-1 infection clearly induced the formation of lamellipodia and filopodia (different forms
of accumulated F-actin), or the formation of cortical actin in accordance with our previous works [13,26].
In contrast, cytochalasin B (CB), which induces the depolymerization of existing actin filaments, dramatically
disturbed F-actin and reduced viral particles docked in cytoplasm. In addition, AF treatment exhibited
a similar effect as CB that substantially impaired the reorganization of F-actin and viral infection (Figure 7A,B).
Moreover, AF-mediated F-actin remodeling was further confirmed by flow cytometry analysis (Figure 7C).
Similarly, both CB and AF induced the depolymerization of HSV-1-induced F-actin as the fluorescence
intensity of F-actin was largely reduced by CB and AF. These results clearly indicated that amentofalvone
perturbed HSV-1-induced F-actin dynamics. Furthermore, we analyzed the activity of cofilin, a key regulator
for F-actin polymerization, and found that amentoflavone reduced the phosphorylation level of cofilin
during early viral infection (Figure 7D). Considering these results together with our previous report [14],
it is possible that inhibition of cofilin by amentoflavone may thereby interrupt viral membrane docking and
subsequent intracellular transportation. Taken together, amentoflavone influenced cofilin-mediated F-actin
assembly and reduced the nuclear import of HSV-1.
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Figure 7. Amentoflavone disturbs cofilin-mediated F-actin assembly. SK-N-SH cells seeded in confocal
dishes or six-well plates were infected with HSV-1 (MOI = 10) at 4 ◦C for 2 h, and were treated with
cytochalasin B (CB, 20 µM), amentoflavone (50 µM), or DMSO (cell and HSV-1 group) for 1 h at 37 ◦C.
(A,B) The cells were then stained with anti-VP5 primary antibody (green), TRITC-phalloidin (F-actin,
red), and DAPI (nucleus, blue). (B) Image J software was used to analyze the percent of F-actin
fluorescence area of each cell in images (50 cells). Data are mean ± SD (n = 3). ** p < 0.01, *** p < 0.001.
(C) F-actin was stained with TRITC-phalloidin and was analyzed by flow cytometry (Becton Dickinson).
Data are mean ± SD (n = 3). *** p < 0.001. (D) After HSV-1 attachment at 4 ◦C for 2 h, SK-N-SH cells
were shifted to 37 ◦C for 1 h in the presence of amentoflavone or DMSO. The protein levels of total or
phosphorylated cofilin were detected by western blot. Data are mean ± SD (n = 3). ** p < 0.01.

3.5. Amentoflavone Reduces Immediate Early Gene Promoter Activity

Our above results clearly demonstrated that treatment of infected cells with amentoflavone almost
completely inhibited HSV-1 infection at 4 h.p.i, and substantially decreased the expression of early
viral genes (Figures 2A and 4A); therefore, we speculated that amentoflavone might affect the activity
of the immediate early gene promoter. Firstly, we tested whether amentoflavone broadly inhibited
HSV-1 immediate early gene expression and found that the expression of ICP0, ICP4, and UL54
was decreased in the presence of amentoflavone (Figure 8A). Then, we constructed the luciferase
reporter gene under the control of the promoter of the ICP0 and ICP4 genes and performed a dual
luminal assay to evaluate the activity of amentoflavone (Figure 8B). HSV-1 tegument protein VP16
promotes the formation of a transactivation complex, which binds to the promoters of immediate early
genes to initiate their gene expression [37]. Indeed, overexpression of VP16 significantly increased
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luciferase activity in the pcDNA3.1(+)-VP16 plasmid and pGL-α0-transfected group. We also found
that such enhanced VP16-mediated luciferase activity was suppressed by amentoflavone (Figure 8B).
These results confirmed that amentoflavone suppressed the immediate early gene expression partly by
inhibiting its promoter activity.

Figure 8. Amentoflavone inhibits the promoter activity of viral immediate early gene. (A) Vero
cells were infected with HSV-1 (MOI = 1) in the presence of amentoflavone (50 µM) or DMSO for
3 h and the expression of ICP0 and ICP4 was detected by qRT-PCR, respectively. Data are mean
± SD (n = 3). ** p < 0.01; *** p < 0.001. (B) Vero cells seeded in 48-well plates were transfected with
indicated plasmid combinations for 24 h, the cell lysates were then subjected to luciferase activity
assays. The cells only transfected with pGL-α0 plasmids (pGL-α4 plasmids) or cotransfected with
pGL-α0 and pcDNA plasmids (pGL-α4 and pcDNA plasmids) were treated as the negative control.
Data are mean ± SD (n = 3). * p < 0.05.

4. Discussion

There is a clear need for the development of new antiviral agents against gradually emerging
ACV-resistant HSV strains. In this study, we showed that amentoflavone had antiviral activity
against HSV and ACV-resistant strains. Mechanically, amentoflavone affected cofilin-mediated F-actin
remodeling and reduced viral nuclear transportation to suppress HSV-1 early infection.

Amentoflavone has been showed to inhibit the infection of various viruses, such as herpes viruses,
influenza A and B viruses, and coxsackie virus B3 [23,38]. For instance, amentoflavone decreases
coxsackievirus B3 replication by inhibiting fatty acid synthase [25]. However, the detailed mechanisms
about how amentoflavone inhibits herpes and influenza virus are largely unknown. In our work,
we found that amentoflavone not only inhibited normal HSV virus, but also significantly suppressed
ACV-resistant strains, including HSV-1/Blue, HSV-1/106, and HSV-1/153. We further investigated the
anti-HSV-1 mechanism and showed that amentoflavone affected viral early infection events, such as
viral nuclear translocation and viral immediate early gene expression.

Time-point-addition experiments revealed that amentoflavone mainly affected HSV-1 early
infection (Figure 5B). Early infection events consist of viral binding, penetration, and intracellular
nuclear transportation, all of which rely on the reorganization of the cell’s cytoskeleton, including actin
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filaments and microtubules [7,8]. The microtubule system plays a central role in cell division and spatial
organization of the cell cytoplasm and viruses are able to hijack the microtubule transport system
for intracellular transportation of virion/viral genomic material to the sites of replication, assembly,
and egress. We have also demonstrated that HSV-1 nuclear translocation requires the rearrangement
of tubulin [36]. However, both western blotting assay and immunofluorescence experiments showed
that the microtubule system was not influenced by amentoflavone, as indicated by the unchanged
level of acetylated tubulin (Figure 6). Cortical actin acts as an obstacle to pathogen entry or egress
and, as a consequence, different viruses have evolved to utilize various strategies that subvert the
actin cytoskeleton to facilitate their infections [9,10,12]. For instance, HSV-1 and HIV modulate
cofilin-mediated actin biphasic polymerization and depolymerization to promote viral internalization
and penetration via EGFR-PI3K signaling and CXCR4-PAK signaling, respectively [11,14]. The actin
regulator cofilin is the specific cellular machinery usurped by virus infection [12]. In addition, F-actin
dynamic-disrupting drugs strongly reduce the transport of HSV-1 [26,39]. Similarly, in our work,
we found that amentoflavone reduced F-actin assembly (Figure 7). Amentoflavone also inhibited the
phosphorylation of cofilin, the key regulator of F-actin dynamics, at 1 h.p.i (Figure 7D). Whether the
upstream signaling of cofilin, such as EGFR-PI3K-LIMK, was affected by amentoflavone remains to be
further investigated.

Finally, we found that amentoflavone remarkably inhibited immediate early gene expression of
both ordinary HSV strain and ACV-resistant strains via attenuating promoter activity. The expression
of immediate-early genes requires the viral VP16-HCF-1-Oct-1 complex to stimulate its promoter
activity independently of DNA replication [40]. It will be interesting to verify whether amentoflavone
interferes with the interaction among each component of this complex. Alternatively, other activities
of amentoflavone may also contribute to its antiviral effect. For instance, HSV-1 infection triggers
severe inflammatory responses to damaged cells, whereas amentoflavone can significantly suppress
NF-κB-mediated inflammation [21]. Autophagy plays a crucial role in antiviral innate immunity and
HSV-1-encoded neurovirulence protein ICP34.5 directly binds to autophagy regulator Beclin 1 to inhibit
autophagy [41]. Importantly, amentoflavone has a positive effect on the induction of autophagy [42],
which may in turn stimulate the antiviral activity of autophagy.

In summary, our results demonstrated that amentoflavone inhibited common HSV-1 F strain and
ACV-resistant strains though influencing viral nuclear transport process and immediate early gene
promoter activity. The antiviral effects of amentoflavone, especially for ACV-resistant strains, should
be further evaluated in animal studies.
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