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Abstract: Tuberculosis (TB) is caused by Mycobacterium tuberculosis (MTB) and transmitted through
inhalation of aerosolized droplets. Eighty-five percent of new TB cases occur in resource-limited
countries in Asia and Africa and fewer than 40% of TB cases are diagnosed due to the lack of accurate
and easy-to-use diagnostic assays. Currently, diagnosis relies on the demonstration of the bacterium
in clinical specimens by serial sputum smear microscopy and culture. These methods lack sensitivity,
are time consuming, expensive, and require trained personnel. An alternative approach is to develop
an efficient immunoassay to detect antibodies reactive to MTB antigens in bodily fluids, such as
serum. Sarcoidosis and TB have clinical and pathological similarities and sarcoidosis tissue has
yielded MTB components. Using sarcoidosis tissue, we developed a T7 phage cDNA library and
constructed a microarray platform. We immunoscreened our microarray platform with sera from
healthy (n = 45), smear positive TB (n = 24), and sarcoidosis (n = 107) subjects. Using a student t-test,
we identified 192 clones significantly differentially expressed between the three groups at a False
Discovery Rate (FDR) <0.01. Among those clones, we selected the top ten most significant clones and
validated them on independent test set. The area under receiver operating characteristics (ROC) for
the top 10 significant clones was 1 with a sensitivity of 1 and a specificity of 1. Sequence analyses
of informative phage inserts recognized as antigens by active TB sera may identify immunogenic
antigens that could be used to develop therapeutic or prophylactic vaccines, as well as identify
molecular targets for therapy.

Keywords: T7phage library; sarcoidosis; tuberculosis; microarray; immunoscreening

1. Introduction

Tuberculosis (TB) remains a serious global health threat with 10 million new cases and 1.7 million
deaths each year [1,2]. Currently, we have limited tools available to diagnose active TB, predict
treatment efficacy and the cure of tuberculosis, or to detect the reactivation of a latent tuberculosis
infection, and assay the induction of protective immune responses through vaccination. A major
obstacle to global control of TB remains inadequate case detection [3]. Efforts during the past decade
to consistently diagnose and treat most infectious cases have slowed the TB incidence rate, but have
not yielded substantial progress [3]. The existing TB diagnostic pipeline still does not have a simple,
rapid, inexpensive point-of-care test [3]. Qualified tuberculosis biomarkers are most urgently needed
as predictors of reactivation and cure, and indicators of vaccine-induced protection [3].
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Pulmonary tuberculosis has clinical and pathological similarities with sarcoidosis. Sarcoidosis is
a systemic granulomatous disease of unknown etiology with predominant involvement of the lungs,
among other organs [4–7]. Several studies have suggested that the cellular and humoral responses
associated with granuloma formation in sarcoidosis are the consequence of an exaggerated immune
response to specific Mycobacterium tuberculosis (MTB) antigens [4,8]. Sarcoidosis tissue has yielded
MTB components including, ESAT6 and catalase—peroxidase (mKatG) [9]. Despite the presence
of specific TB antigens in sarcoidosis lung tissues [8,10–12], patients with sarcoidosis negatively
respond to the tuberculin skin test and are considered to be anergic [13]. Additionally, sarcoidosis
subjects rarely ever develop tuberculosis. Lungs are highly involved both in sarcoidosis and TB.
Resident alveolar macrophages (AMs) play an important role in the pathogenesis and host defense
of both diseases [4,14–16]. It has been shown that AMs provide a reservoir for MTB and other slow
growing organisms [11,14,15,17]. Additionally, AMs play an integral role in autoimmunity and the
initiation of fibrosis [14]. Based on this knowledge, we hypothesized that bronchioalveolar cells
(BALs) of sarcoidosis subjects may harbor degradation products of specific pathogen(s), including
MTB. We constructed four T7 phage display cDNA libraries, two of which originate from sarcoidosis
BAL cells and white blood cells (WBCs), and two others derived from cultured human embryonic
fibroblasts and splenic monocytes, and combined all four libraries into a complex library [18,19]. We
randomly selected 1070 clones through biopanning and constructed a microarray platform with the
selected clones. Previously, upon immunoscreening of this platform with sera from healthy controls,
sarcoidosis and culture positive TB patients, we showed that we can detect highly sensitive and
specific biomarkers for TB in the sera of subjects with culture positive MTB [18,20]. In that study,
the TB patients were smear negative but culture positive and at the time of sera collection, they were
on treatment with anti-tuberculosis agents [18,20]. To investigate whether our display library also
detects specific biomarkers in sera from smear positive MTB patients and if these biomarkers differ
from those of smear negative but culture positive TB, we immunoscreened T7 phage display libraries
with sera of smear-positive TB patients. The objective of the present study was to identify the specific
diagnostic biomarkers from the sera of TB patients who had active TB. We discovered reactive clones
that distinguished sera from active TB patients from sarcoidosis patients and uninfected control sera
with a high sensitivity and specificity.

2. Materials and Methods

2.1. Chemicals

All chemicals were purchased from Sigma-Aldrich (St. Louis, MO, USA) unless specified
otherwise. LeukoLOCK filters and RNAlater were purchased from Life Technologies (Grand Island,
NY, USA). The RNeasy Midi kit was obtained from Qiagen, (Valencia, CA, USA). The T7 mouse
monoclonal antibody was purchased from Novagen (San Diego, CA, USA). Alexa Fluor 647 goat
anti-human IgG and Alex Fluor goat anti-mouse IgG antibodies were purchased from Life Technologies
(Grand Island, NY, USA).

2.2. Patient Selection

This study was approved by the institutional review board at Wayne State University, and the
Detroit Medical Center. Sera were collected from 3 groups: (1) healthy volunteers; (2) sarcoidosis
subjects; and (3) smear positive pulmonary TB patients. All study subjects signed a written informed
consent. All methods were performed in accordance with the human investigation guidelines and
regulations by the IRB (protocol No = 055208MP4E) at Wayne State University. All sarcoidosis subjects
were ambulatory patients. Sera from patients with tuberculosis were obtained from the Foundation for
Innovative New Diagnostics (FIND, Geneva, Switzerland). All TB patients had smear positive sputum.
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2.3. Serum Collection

Using standardized phlebotomy procedures blood samples were collected and stored at
−80 ◦C [18].

2.4. Construction and Biopanning of T7 Phage Display cDNA Libraries

We have used the same T7 phage display libraries as before [18,19]. Briefly, T7 phage display
libraries from BALs, WBCs, EL-1 and MRC5 were made to generate a complex sarcoid library
(CSL) [18,19]. Differential biopanning for negative selection was the performed using sera from
healthy controls to remove the non-specific IgG, and sarcoidosis sera for positive enrichment as
described previously [18,19].

2.5. Microarray Construction and Immunoscreening

A total of 1070 individually picked phage clones from the biopannings 3 and 4 for microarray
construction were same as used in previous studies [18,19]. The phage lysates were arrayed in
quintuplicates onto nitrocellulose FAST slides (Grace Biolabs, OR, USA) using the ProSys 5510TL robot
(Cartesian Technologies, CA, USA). The nitrocellulose slides were hybridized with sera and processed
as described previously [18].

2.6. Sequencing of Phage cDNA Clones

Individual phage clones were PCR amplified using T7 phage forward primer 5′ GTTCTAT
CCGCAACGTTATGG 3′ and reverse primer 5′ GGAGGAAAGTCGTTTTTTGGGG 3′ and sequenced
by Genwiz (South Plainfield, NJ, USA), using T7 phage sequence primer TGCTAAGGACAACG
TTATCGG. cDNA sequences of T7 phage clones obtained from Genwiz were translated into
peptide/protein sequences using ExPASy translate tool. The length of each peptide clone is determined
after the last amino acid of linker sequence (GDPNSS) inserted in frame of T7 phage till the stop codon
of the sequence. Using NCBI protein BLAST site each identified sequence was used for further BLAST.
For each peptide, we performed three BLASTs. First, the identified sequences were randomly blasted
to the sequence data without indication of specific species. Second, we used random BLAST to the
human genome and thirdly to the mycobacterium genome. We selected the proteins with highest
homology with our peptide sequence.

2.7. Data Acquisition and Pre-Processing

Following the immunoreaction, the microarrays were scanned in an Axon Laboratories 4100
scanner (Palo Alto, CA, USA) using 532 and 647 nm lasers to produce a red (Alexa Fluor 647) and green
(Alexa Fluor 532) composite image. Cy5 (red dye) labeled anti-human antibody was used to detect
IgGs in human serum that were reactive to peptide clones, and a Cy3 (green dye) labeled antibody
was used to detect the phage capsid protein [18]. Using the ImaGene 6.0 (Biodiscovery) image analysis
software, the binding intensity of each peptide with IgGs in sera was expressed as log2 (red/green)
fluorescent intensities. These data were pre-processed using the limma package in the R language
environment [19,21,22] and the normexp method was applied to correct the background [19,23]. Within
array normalization was performed using the LOESS method [18,23,24]. The scale method was applied
to normalize between arrays [23,24]. Intensity ratio of a clone in active TB samples divided by the
same clone intensity ratio from healthy control samples were calculated to determine the fold change
of a clone.

2.8. Statistical Analyses

To detect differentially expressed antigens for TB, we applied a two-tailed t-test. In order to
correct for multiple comparisons, we applied the false discovery rate (FDR) algorithm with a threshold
of 0.01 FDR [25]. We identified 192 significant clones at 0.01 FDR. All significant clones were sorted
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in an increasing order. The top ten highly significant clones were considered as “classifier clones”.
We randomly split the TB and healthy controls samples into: (i) training; (ii) test sets. Out of the
24 TB samples, 12 samples were randomly assigned to training set and 12 samples to testing set.
The training and testing sets for the 45 healthy controls were randomly selected to 23 training and
22 test sets. A t-test was applied between TB-training samples versus healthy controls training samples.
All 107 sarcoidosis samples were assigned to the testing set. To assess the performance of classifiers
clones, we applied principal component analysis (PCA), agglomerative hierarchal clustering (HC),
heatmap, and linear discriminant analysis (LDA). The LDA model was built on the training samples to
predict TB samples from others (healthy controls and sarcoidosis) samples, and tested the classification
model on the testing set (samples not used in the training set). We performed the classification on the
classifiers clones. We applied principal component analysis (PCA), agglomerative hierarchal clustering
(HC), and heatmap with all samples (training and testing) twice. Those analyses were first applied to
all clones (1070 clones) and then with the highly significant 10 classifier clones.

3. Results

3.1. Complex Sarcoidosis (CSL) Library Detects Unique Antigens in the Sera of Active Tuberculosis Patients

A panel of potential antigens was randomly selected from two highly enriched pools of T7
phage cDNA libraries through biopanning of the CSL library [18,19]. The constructed microarray
platform was immunoscreened with 176 sera (45 healthy controls, 24 smear-positive TB patients, and
107 sarcoidosis patients). The demographics of the study subjects are shown in Table 1. Following
immunoreaction, the microarray data were pre-processed and then analyzed. First, we performed an
unsupervised PCA using all 1070 clones with data from 176 study subjects. As shown in Figure 1A,
several healthy controls and sarcoidosis patients clustered together with TB subjects. We also
performed unsupervised hierarchical clustering with all 1070 clones on these 176 samples. We observed
the magenta cluster has a mix of samples and lacks specific sub-clusters of TB samples (Figure 1B).
Next, we applied a two-tailed t-test and identified 192 clones that were differentially expressed in sera
of smear-positive TB as compared to sarcoidosis patients and healthy controls at the FDR < 0.01. To
determine whether the selected 192 significant clones can improve the class separation of TB samples
from healthy controls and sarcoidosis patients, we constructed a PCA plot. As shown in Figure 1C,
there is a good separation of TB samples from sarcoidosis and healthy controls, in which twenty six
percent of variance was along the PCA1. Similarly, when clustering algorithm was performed using
192 TB clones on all subjects, we observed a distinct hierarchical linkage clearly separating TB samples
from healthy controls and sarcoidosis patients (Figure 1D). Furthermore, we constructed a PCA plot
using 10 classifier clones that can differentiate TB patients from healthy controls and sarcoidosis
patients. The result in Figure 1E shows a clear separation of TB samples from healthy controls and
sarcoidosis patients. Fifty four percent of variance was explained along the PCA 1. Similarly, when the
clustering algorithm was performed using 10 TB classifier clones, we observed a distinct hierarchical
linkage separating the TB patients from others (Figure 1F).

Table 1. Subjects demographics.

Characteristic Control Subjects Sarcoidosis Subjects TB Subjects

Age (Mean ± SEM) 40.3 ± 7.5 30.6 ± 11.8 40.5 ± 8.5

Gender, N (%)

Male 11 (25) 27 (25) 18 (64)

Female 34 (75) 80 (75) 10 (36)

Race, N (%)

African American 31 (69) 95 (89)

African - 4 (25)
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Table 1. Cont.

Characteristic Control Subjects Sarcoidosis Subjects TB Subjects

Caucasian - 12 (11)

Asians 14 (31) 20 (75)

BMI (Mean ± SEM) 27 ± 3.8 28 ± 10.5 28 ± 6.9

Organ involvement

Neuro-ophthalmologic NA 31 (29) -

Lung NA 101 (94) 24 (100)

Skin NA 46 (43) -

Multiorgan NA 65 (61) -

PPD a NA Negative -

TB smear b NA Negative Positive

NA = not applicable; a PPD = Mantoux test (purified protein derivative); b TB Smear obtained from sputum.
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Figure 1. PCA and Hierarchal clustering. (a) PCA score plots along PC1 and PC2 generated with
1070 clones of three groups: (1) healthy control samples (black circles); (2) TB samples (green squares)
and; (3) Sarcoidosis samples (blue triangle). Biomarker clusters along the PCA1 explain a variance
of only 0.15, while the variance along PC2 was about 0.14. (b) The hierarchal clustering was applied
on the healthy controls (black labels), TB patients (green labels) and sarcoidosis (blue labels) with
1070 clones. (c) PCA score plots along the PC1 and 2 results when applied on 192 TB clones. The PC1
explained 0.26 of variance, whereas PC2 explained 0.15 of variance. As shown, the TB samples are well
separated from the healthy controls and sarcoidosis samples. (d) Hierarchal clustering using only the
highly significant 192 TB clones. The blue and black clusters include sarcoidosis and healthy controls,
the green cluster includes all the TB samples except one. (e) PCA score plots along PC1 and 2 generated
with top 10 highly significant clones. The PC1 explained 0.54 of variance, whereas PC2 explained
0.11 of variance. (f) Hierarchal clustering using 10 top significant TB clones. This figure demonstrates
better clustering with 192 TB clones and the highly significant 10 TB clones (panels c, d, e, and f) when
compared the clustering using all clones (panels a and b).
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Figure 2A displays a heatmap plot of the distinct expression features of 192 TB clones among
the study subjects. The heatmap using ten significant TB clones (classifiers) among study subjects is
highlighted as a plot in Figure 2B.

Furthermore, we applied the classifier model and calculated the AUC values using 192 TB clones
on testing sets. As shown in Figure 3A, the AUC under the ROC using 192 clones was one with no
false positive and no false negative prediction. Next, we applied the classifier model on the test set
(12 TB patients, 107 sarcoidosis patients, and 22 healthy controls) using 10 classifier clones. Figure 3B,
shows that despite reduction of clones to 10, the AUC under the ROC remained one, again with no
false positive or false negative class labeling. These suggest robust classifier performance.
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Figure 2. Heatmaps generated based on 192 clones and the 10 highly significant clones from the data of
176 study subjects (45 healthy controls, 24 with TB, and 107 with sarcoidosis) (a,b). Each row represents
a clone, while each column represents a study subject. As shown in Figure 2, most of TB samples
clustered to the right side of heatmap plots, while sarcoidosis samples and healthy controls clustered
on the left side of the plot, indicating different expression profiles.
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Figure 3. Classifiers to predict TB from healthy controls and sarcoidosis patients. (a) Performance
of 192 clones on test set. (b) Performance of the top 10 classifier clones on test set. The ROC curves
demonstrate excellent classification performance with AUC of 1 with sensitivity of 1 and specificity
of 1.
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3.2. Characterization of Ten TB Classifiers

Based on the results of training and test sets, we characterized the top 10 highly performing active
TB clones through sequencing. After obtaining the sequences of clones, the Expasy program was used
to translate the cDNA sequences to peptide/protein sequences [18,19]. Protein blast using algorithms
of the BLAST program were applied to identify the highest homology to identified peptides [18,19].
The identified clones were blasted with human and MTB genomes and then selected those specific
peptide sequences with the highest homology of amino acids sequence. All top 10 clones have the
highest homology with TB sequences. Additionally, we compared these results with corresponding
nucleotide sequences using nucleotide BLAST and determined the predicted amino acids in frame
with T7 phage 10B gene capsid proteins. All of the 10 classifier clones are coded by the inserted gene
fragments leading to out-of-frame peptides, therefore meeting the criteria of mimotopes [26] (Table 2).
As sera of active TB patients reacted with these out-of-frame peptides, it is likely that these TB clones
are produced as a result of altered reading frames or alternative splicing, as described in previous
studies [18,19,26]. Full length of peptides and genes of the ten classifiers clones are shown in Table
S1. Table 2 shows the 10 most significant TB antigens, gene names, sensitivity, specificity, and FDR
adjusted p-values. Figure 4 shows the ROC curves for six clones that are increased in TB, while Figure 5
shows ROC curves for four clones decreased in TB.

Table 2. 10 Top Significant TB Clones.

Clone Increased in
Tuberculosis (TB) Gene Name p Value

FDR
Corrected

p Value

AUC
95% CI

Sensitivity,
95% CI

Specificity,
95% CI

P51_BP3_38 Polyketide
synthase

Pks13
Rv3800c 4.7 × 10−7 2.79 × 10−5 0.98 1 0.97

P51_BP3_60 Hydrolase Rv1723 1.62 × 10−8 3.46 × 10−6 0.95 0.92 0.95

P51_BP3_72 Ferredoxin fdxA
Rv2007c 1.36 × 10−9 7.27 × 10−7 0.92 0.91 0.89

P51_BP3_131 Dihydroxy acid
dehydratase

ilvD
Rv0189c 2.15 × 10−8 3.84 × 10−6 0.95 0.92 0.98

P51_BP3_137 Transketolase TKT
Rv1449c 7.14 × 10−8 9.72 × 10−6 0.95 1 0.81

P197_BP4_1078 Signal peptidase lepB
Rv2903 1.44 × 10−7 1.36 × 10−5 0.78 0.92 0.64

Decreased in
Tuberculosis (TB)

P51_BP3_334
TetR family

transcriptional
regulator

MRA_2532 4.02 × 10−10 4.3 × 10−7 0.98 1 0.91

P51_BP4_403
Menaquinone
biosynthesis

protein

menD
Rv0555 7.27 × 10−8 9.71 × 10−6 0.95 1 0.87

P51_BP4_497
Cobalamin

biosynthesis
protein

CobN
Rv2062c 1.11 × 10−8 2.96 × 10−6 0.88 0.92 0.78

P51_BP4_584 5-oxoprolinase OplA
Rv0266c 5.82 × 10−9 2.10 × 10−6 0.94 1 0.83
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4. Discussion

Standard methods to diagnose TB and to monitor response to treatment rely on sputum
microscopy and culture. The current CDC/NIH roadmap emphasizes the need for development
of new TB biomarkers as alternative methods [2]. Recently, a tremendous effort has been put forward
elucidating the antibody responses to MTB antigens, which has implications for the development
of new antigens to diagnose and monitor successful treatment, as well as to develop effective
vaccination [27]. Most other studies searching for TB antigens have identified unspecific markers
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primarily involving host response such as C-reactive protein, serum amyloid A and other non-specific
markers [28,29].

In view of this background, we hypothesized complex library derived from sarcoidosis tissue may
harbor degradation products of MTB antigens and these antigens can be used as a bait to specifically
and selectively bind to antibodies present in sera from active TB subjects. Our microarray platform
identified 10 highly significant TB clones that can discriminate TB patients from healthy controls and
sarcoidosis patients. All of these clones are TB specific and related to bacterial growth of M. Tuberculosis
and its metabolism (Table 2). We sequenced the top 10 highly significant clones for TB and identified
homologies in a public database. The range in length of identified peptides for TB antigens was
between 6–23 amino acids (AA). Among the 10 TB specific phage peptides, six out-of-frame peptides
were increased in sera of active TB patients (Table 2). One of the highly sensitive and specific peptide
antigens (P51_BP3_38) identified in sera from active TB subjects is polyketide synthase (PKS). There
are about 24 PKS encoding genes in M. Tuberculosis. This is an essential enzyme for mycolic acid
formation [30]. The cell envelope of M. Tuberculosis is distinctive and associated with its pathogenicity
and resistance. Mycolic acid is a long chain fatty acid found in the cell wall of M. Tuberculosis and
this compound constitutes major strategic elements of the protective coat surrounding the tubercle
bacillus [30]. Moreover, the cyclopropane ring of mycolic acid protects the bacteria from oxidative
stress [31]. Another identified peptide antigen (P51_BP3_60) highly reactive to sera of MTB patients was
hydrolase. M. Tuberculosis secretes hydrolases that have lipase activity and catalyzes lipid hydrolysis.
They are responsible for the degradation of host lipid material [31]. It has become clear that in vivo
MTB prefers to consume fatty acids and lipids over carbohydrates. Tubercle bacillus utilizes the host
derived lipids/fatty acids as nutrients for prolonged persistence in a hypoxic environment [31].

Ferredoxin is another antigen (P51_BP3_72) significantly increased in sera of MTB patients.
Ferredoxins are acidic, soluble iron–sulfur proteins. They act as redox partner for the cytochrome
P450 enzyme (CYP51B). The M. Tuberculosis genome contains 20 CYPs. They are involved in metabolic
processes such as epoxidation, sulfoxidation, and hydroxylation. M. Tuberculosis’s CYPs and their
redox partners such as ferredoxin are essential for pathogen viability [32]. Another important MTB
specific peptide antigen (P197_BP4_1078) belongs to the signal peptidase I (SPase I) enzyme. This is a
membrane-bound endopeptidase responsible for cleavage of signal peptides of secreted proteins [33].
SPase I is an attractive target for the development of novel anti-tuberculosis treatments because
first, it is essential for survival in all bacterial species; and secondly, bacterial SPase I is distinctively
different from eukaryotic SPase I. Similarly, peptide antigen (P51_BP3_131) dihydroxyacid dehydratase
(DHAD), which is involved in the growth of Mycobacterium is significantly increased. It is a key enzyme
involved in branched-chain amino acid synthesis and also catalyzes the synthesis of 2-ketoacids from
dihydroxyacids. It has been shown that the downregulation of this enzyme inhibits the growth of
M. Tuberculosis in vitro and in mice model of TB infection [34]. The peptide antigen (P51_BP3_137)
increased in MTB belongs to transketolase (Tkt) enzyme. This enzyme catalyzes the synthesis of
ribose-5-phosphate (R5P) from the intermediates of the oxidative pentose phosphate pathway. Studies
have shown that the depletion of Tkt using RNA silencing and protein degradation systems arrested
the growth of M. Tuberculosis in vitro. The studies further demonstrated, using an ex vivo model of
TB transfection in THP-1 cells, that Tkt-depleted bacteria showed less virulence as compared to wild
type bacilli, confirming the essentiality of this enzyme in intracellular growth [35]. The three peptide
antigens (transketolase, ferredoxin, and dihydroxy acid dehydratase) identified with the present
study were also identified in our previous published study using sera from culture positive but smear
negative patients [18]. These results clearly demonstrate the importance of these peptide antigens in TB.
Among ten mimotopes, we found four with decreased expression in TB patients (Table 2). Interestingly,
one of these four peptides with higher sensitivity and specificity (P51_BP3_334), belongs to repressor
transcriptional regulators such as TetR [36]. TetR is involved in the regulation of antibiotic resistance
and controls the expression of membrane-associated proteins involved in antibiotic resistance [37,38].
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In this study, we have identified 10 highly significant clones from the sera of smear positive TB
patients. These identified clones are mostly involved in the growth and virulence of M. Tuberculosis.
Most of these clones have high specificity and sensitivity. Previous studies using a combination of
ESAT-6 and CFP10 antigens, which are two Mycobacterium tuberculosis-specific antigens, to diagnose
TB provided a sensitivity of 73% and 93% of specificity [39,40]. While studies in countries with higher
TB prevalence has shown even lower sensitivity and specificity using various antigens including
ESAT-6 and CFP10 [41]. Interestingly, Drake and et.al showed that higher percentage of sarcoidosis
subjects (16/26) exhibit immunoreactivity to ESAT-6 and katG [9]. Our results appear to have a higher
sensitivity and specificity as compared with those studies. One limitation of our study is that we
did not include infected subjects with non-tuberculous mycobacteria. Although among the control
group, 16 Asian subjects had BCG vaccination and 6 had positive quantiferon gold tests, we did
not have enough power to detect possible differences between subjects with latent TB and active TB
infection. Larger studies using sera from diverse populations including, subjects with non-tuberculous
mycobacterial infection, latent TB infection and after BCG vaccination need to further validate the
sensitivity and specificity of our classifiers.

We detected these novel antigens using a heterologous library derived from sarcoidosis subjects.
Lungs are highly exposed to numerous bacteria and our library is predominantly derived from
sarcoidosis BAL cells and WBCs containing diverse immune cells, including macrophages that were
exposed to various pathogens. We postulate that the CSL represents a segment of the lung microbe
containing diverse antigens for TB, sarcoidosis, and cystic fibrosis [18–20].

There are various applications of a phage display. In the current work, we used a phage display
for the discovery of TB biomarkers. The same system can be applied to identify novel markers
for multi-drug resistance in TB, which is becoming a major issue in TB treatment. Additionally,
phage displays can be used for the development of specific targeted therapies [42]. The phage
display technology and immunoscreening has utilities not only in identifying diagnostic biomarkers,
but also may enable us to develop a novel targeted therapy utilizing the peptide sequences
(mimotopes) as vehicles to deliver specific drugs. The identified sequences can be used to develop
peptide/protein-coated magnetic nanoparticles for clinical testing or for applications in drug
delivery [43]. Additionally, this technology might enable us to discover unknown epitopes targeting
specific bacterial antigens leading to immunogenicity and antibody production in TB subjects, as well
as providing us with a better understanding of host immune defenses in TB subjects. For instance, TB
sera were less reactive to some of the identified clones (TetR, menD, CobN, and OplA), these clones
are less likely to be used for diagnostic purposes. However, these clones can be used to develop new
vaccine and to boost the immunity against TB infection. Furthermore, this microarray platform can be
hybridized to detect IgA in sputum of TB patients that may have clinical values. Moreover, antibody
detection in the sera of patients has a potential value in clinical practice, as it is non-invasive and
requires a minimal amount of blood or other bodily fluids.

The lack of sensitivity and specificity and cross-reactivity of biomarkers with other diseases
dampened the enthusiasm in TB biomarker discovery studies. However, our study shows excellent
sensitivity and specificity, not only as compared to healthy controls but also to another granulomatous
disease. Other studies using gene expression profiling between TB and sarcoidosis found 94%
similarities [44,45]. Our system has the advantage of detecting TB clones with high sensitivity and
specificity and is based on an immune reaction rather than gene expression. The detection of this
immune reaction, in form of antibodies, relies on a complex interaction between antigen presenting
cells, T cells and B cells that leads to a specific antibody production in response to a TB infection.
Highly specific biomarkers may have a potential role as candidate antigens in the development of
novel vaccination for TB or for multidrug resistant bacterial infections.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4915/10/7/375/s1,
Table S1: Full length of sequence analysis of top 10 TB phage clones using NCBI BLAST.
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