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Abstract: The Zika virus (ZIKV) has recently attracted major research interest as infection
was unexpectedly associated with neurological manifestations in developing foetuses and with
Guillain-Barré syndrome in infected adults. Understanding the underlying molecular mechanisms
requires reverse genetic systems, which allow manipulation of infectious cDNA clones at will. In the
case of flaviviruses, to which ZIKV belongs, several reports have indicated that the construction of
full-length cDNA clones is difficult due to toxicity during plasmid amplification in Escherichia coli.
Toxicity of flaviviral cDNAs has been linked to the activity of cryptic prokaryotic promoters within
the region encoding the structural proteins leading to spurious transcription and expression of toxic
viral proteins. Here, we employ an approach based on in silico prediction and mutational silencing
of putative promoters to generate full-length cDNA clones of the historical MR766 strain and the
contemporary French Polynesian strain H/PF/2013 of ZIKV. While for both strains construction of
full-length cDNA clones has failed in the past, we show that our approach generates cDNA clones
that are stable on single bacterial plasmids and give rise to infectious viruses with properties similar
to those generated by other more complex assembly strategies. Further, we generate luciferase and
fluorescent reporter viruses as well as sub-genomic replicons that are fully functional and suitable
for various research and drug screening applications. Taken together, this study confirms that in
silico prediction and silencing of cryptic prokaryotic promoters is an efficient strategy to generate
full-length cDNA clones of flaviviruses and reports novel tools that will facilitate research on ZIKV
biology and development of antiviral strategies.

Keywords: ZIKV; reporter virus; cryptic promoter silencing; full-length molecular clone; subgenomic
replicon; plasmid toxicity

1. Introduction

The Zika virus (ZIKV), a member of the Flavivirus genus within the Flaviviridae family,
was identified almost 70 years ago in Uganda [1] but until recently was not associated with severe
symptoms. However, outbreaks outside of Africa and Asia, in the Yap Islands (2007) [2], French
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Polynesia (2013) [3] and the Americas (2015) [4], raised major interest as infection was associated with
an increased incidence of microcephaly and other neurological manifestations in developing foetuses
as well as Guillain-Barré syndrome in infected adults [5,6]. Two lineages of ZIKV have been identified,
African and Asian, with the currently circulating strains belonging to the Asian lineage [7]. Although
48 countries have confirmed ZIKV infections associated with Aedes mosquito-borne transmission of the
virus, neither a prophylactic vaccine nor antiviral therapies are available to date [8]. As a consequence,
there is an urgent need for tools, which facilitate studying the molecular determinants that underlie
ZIKV pathogenesis and allow testing of potential antiviral therapies. In this respect, stable and
traceable reverse genetic systems to generate isogenic mutants, are of great advantage [9,10]. However,
construction of ZIKV molecular clones has been hampered by the instability of the viral cDNA genome
during propagation via bacterial plasmids. The instability of flaviviral cDNA clones in Escherichia coli
(E. coli) has been linked to the expression of toxic viral proteins from cryptic E. coli promoters (CEPs)
encoded in the flavivirus genome [11,12]. Strategies to disrupt toxic protein expression and to
overcome these toxicity problems include insertion of introns into the viral open-reading frame [13,14]
or propagation of ZIKV genome fragments on multiple plasmids and subsequent assembly of the
fragments [15–19]. Those strategies, however, have some disadvantages compared to a single plasmid
system that allows in vitro transcription of full-length infectious viral RNAs. For instance, the intron
insertion method requires nuclear transcription to generate the viral genome with the risk of undesired
splicing rendering the RNA non-functional. In the case of multi-plasmid systems, laborious and
potentially error prone in vitro assembly steps complicate the protocol. Although Shan and co-workers
were able to amplify a full-length ZIKV cDNA clone from Cambodia (FSS13025 strain, isolated in
2010) on a single plasmid in E. coli, ours and others’ data indicate that this is neither possible for the
prototypic African strain MR766 nor for the French Polynesian strain H/PF/2013 (Asian lineage) or
isolates from the Americas [13,15–17].

Here we present a different approach that overcomes these problems and is based on the
observation that full-length Japanese encephalitis virus (JEV) and Dengue virus 2 (DENV2) infectious
cDNAs could be stabilized by CEP silencing [11]. We show that mutational inactivation of multiple
CEPs predicted in silico to reside in the structural regions of the MR766 and H/PF/2013 genomes is
sufficient to stabilize the full-length cDNA genomes of both ZIKV strains enabling the construction
of a single-plasmid based reverse genetic system. Authentic virus genomes and engineered reporter
viruses generated with this approach are fully functional in cell culture and suitable for multiple
research and development purposes.

2. Materials and Methods

2.1. Cell Lines and Antibodies

VeroE6 and Huh7 cells were cultured at 37 ◦C and 5% CO2 in Dulbecco’s modified Eagle’s
medium (DMEM) (Life Technologies, Darmstadt, Germany), supplemented with 10% foetal calf serum
(FBS; Sigma-Aldrich, Taufkirchen, Germany), 2 mM L-glutamine, nonessential amino acids (all from
Gibco, Life Technologies, Darmstadt, Germany), 100 U/mL penicillin and 100 µg/mL streptomycin
(DMEMcplt). Primary antibodies used in this study were: rabbit anti-ZIKV NS3 and anti-NS4B (both
from GeneTex, Irvine, CA, USA), mouse pan-flavivirus-anti-E (4G2, ATCC®, Manassas, VA, USA),
mouse J2 anti-dsRNA antibody (Scicons, Szirák, Hungary), mouse anti-glyceraldehyde-3-phosphate
dehydrogenase (GAPDH, Santa Cruz Biotechnology, Heidelberg, Germany). Secondary horseradish
peroxidase-conjugated antibodies were purchased from Sigma-Aldrich. AlexaFluor-conjugated
secondary antibodies were obtained from Life Technologies.

2.2. Source of Virus Sequences

For the construction of the ZIKV genome we used the reference genomes KJ776791 (H/PF/2013,
accession date August 2016) and DQ859059 (MR766, accession date August 2016). In addition,
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we amplified the MR766 and the H/PF/2013 strains (obtained from the European Virus Archive;
Marseille, France) by passaging once in C6/36 mosquito cells and once in VeroE6 cells. Viral RNA was
isolated from cell lysates using the NucleoSpin RNA II kit (Machery-Nagel, Düren, Germany) and
reverse transcribed using SuperScript III RT (Thermo Fisher Scientific Waltham, MA, USA). cDNA was
amplified by PCR and amplicons were sequenced by Sanger sequencing (GATC Biotech, Constance,
Germany) using primers spanning the complete ZIKV genome. Sequences of the 5′ and 3′UTRs were
obtained by the rapid amplification of cDNA ends (RACE) using the 5′/3′ RACE second generation
kit (Roche, Basel, Switzerland) with a polyA-tail added to the cDNA prior to the 3′ RACE reaction by
using the poly(A) polymerase (New England Biolabs, Ipswich, MA, USA).

2.3. In Silico Prediction of CEPs and Sequence Modifications

Cryptic E. coli promoters were predicted with the publicly available Neural Network promoter
program from the Berkeley Drosophila Genome Project [20,21] similar to an earlier report [11].
The ZIKV sequences were analysed for CEPs from nucleotide position 1–2683 for H/PF/2013 and
1–2664 for MR766. Putative promoters with a score >0.85 were eliminated by silent nucleotide
exchanges introduced into the −10 regions (Pribnow/Schaller box) and/or the −35 regions (Figure S1).
CEPs in the 5′UTR were not modified to avoid changes in RNA secondary structures (Acosta et al.,
2014 [22]). In addition, in order to facilitate assembly and reverse genetic studies, several restriction
sites were inserted or removed by silent nucleotide exchanges (Tables S1 and S2). The T7 promoter
sequence (5′-TAATACGACTCACTATAG-3′) was inserted upstream of the 5′UTR to allow for in vitro
transcription of viral RNA. The final sequences were re-analysed with the Neural Network promoter
program to confirm that the scores were below 0.85. The sequences were ordered as synthetic
DNA fragments (four fragments/strain) from the GeneArt Gene Synthesis service (Invitrogen,
Darmstadt, Germany).

2.4. Generation of synZIKV Constructs

The pFK vector used for the assembly of the synthetic ZIKV (synZIKV) sequences has been
described previously (Lohmann et al., 1999 [23]). A synthetic DNA linker encoding the restriction sites
required for assembly of the synZIKV cDNA clones (Figure 1A) was inserted into the vector via HindIII
and SpeI. For assembly of the full-length wild-type synZIKV plasmids (pFK-synZIKV) the synthetic
DNA fragments were inserted into the modified pFK vector using the indicated restriction enzymes
(Figure 1A) and in four steps in the order of fragment 4 to fragment 1. Plasmids were amplified
in dcm+/dam+ DH5α cells. To generate full-length Renilla luciferase (RLuc) reporter constructs
(pFK-synZIKV-R2A), we used a construct design similar to the one reported by us for the synthetic
DENV-2 16681 reporter genome [10]. In brief, we constructed a synthetic DNA fragment encoding
the T7 promoter followed by the 5′UTR of ZIKV, the first 102 nts of Capsid required for genome
circularization, the RLuc gene flanked by NotI and NruI restriction sites and the auto-proteolytic
FMDV 2A peptide directly fused to the first nucleotide of the ZIKV coding region. This fragment was
inserted into the pFK-synZIKV plasmid via MLuI/KpnI restriction sites. Sub-genomic synZIKV RLuc
reporter replicons (pFK-synZIKV-sgR2A) were constructed in an analogous way but with the difference
that the reporter cassette was inserted between the last 24 codons of E that we retained to ensure
proper membrane insertion of NS1 (cloning via MLuI and AgeI restriction sites). To generate turbo
far-red fluorescent protein FP635 expressing viruses (pFK-synZIKV-FP635 constructs), the reporter
gene was amplified by PCR using the FP635-encoding DENV2 16681 construct reported earlier [24]
and inserted into the pFK-synZIKV-R2A plasmids via the NotI and NruI restriction sites flanking the
RLuc gene. Note that a coding sequence for the SV40 NLS (PKKKRKV) was fused in frame to the 3′end
of the turbo far-red fluorescent protein FP635-encoding sequence by using PCR (primer sequences
available on request). All nucleotide sequences of the final constructs were validated by using Sanger
sequencing (GATC Biotech).
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Figure 1. Construction and stability of synthetic full length Zika virus (synZIKV) cDNA clones. (A) 
Schematic representation of the synZIKV MR766 construct and the four fragments used to assemble 
the genome. The 5′ and 3′UTRs are indicated with bold black lines, the promoter for the T7 RNA 
polymerase with a black arrow. Restriction sites used for the assembly of the fragments are indicated. 
An enlargement of fragment #1 is shown below with putative CEPs (score > 0.85) indicated by red 
arrow heads. CEP 1 was not mutated (indicated with the pink arrow head). (B) Same as in panel (A) 
but for synZIKV-H/PF/2013. (C) Restriction patterns of pFK-synZIKV constructs obtained after digest 
with EcoRI (MR766) or XmnI (H/PF/2013) and agarose gel electrophoresis. Plasmids were analysed 
directly after assembly (original prep) and after five passages (P5) in E. coli (five DNA clones of P5 are 
shown). 
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Figure 1. Construction and stability of synthetic full length Zika virus (synZIKV) cDNA clones.
(A) Schematic representation of the synZIKV MR766 construct and the four fragments used to assemble
the genome. The 5′ and 3′UTRs are indicated with bold black lines, the promoter for the T7 RNA
polymerase with a black arrow. Restriction sites used for the assembly of the fragments are indicated.
An enlargement of fragment #1 is shown below with putative CEPs (score > 0.85) indicated by red
arrow heads. CEP 1 was not mutated (indicated with the pink arrow head). (B) Same as in panel (A)
but for synZIKV-H/PF/2013. (C) Restriction patterns of pFK-synZIKV constructs obtained after digest
with EcoRI (MR766) or XmnI (H/PF/2013) and agarose gel electrophoresis. Plasmids were analysed
directly after assembly (original prep) and after five passages (P5) in E. coli (five DNA clones of P5
are shown).

2.5. In Vitro Transcription and RNA Transfection

The protocol for in vitro transcription has been described earlier [23]. Briefly, synZIKV sequences
were linearized with XhoI (located at the end of the 3′UTR of the viral genome) and the DNA purified
with the Nucleo-Spin Extract II kit (Macherey-Nagel, Düren, Germany). The in vitro transcription
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reaction was carried out with 10 µg of linearized plasmid DNA in a total volume of 100 µL containing
20 µL 5× RRL buffer (400 mM HEPES (pH 7.5), 60 mM MgCl2, 10 mM spermidine and 200 mM DTT),
NTP-Mix (3.125 mM ATP, CTP and UTP and 1.56 mM GTP), 1 U/µL RNasin (Promega, Madison, WI,
USA), 2 U/µL T7 RNA polymerase (New England Biolabs) and 1 mM anti-reverse cap analogue (ARCA;
3′-O-Me- m7G(5′)ppp(5′)G; New England Biolabs). After incubation at 37 ◦C for 2.5 h, 1 U/µL T7
RNA polymerase was added followed by additional 2.5 h incubation at 37 ◦C. DNA was digested with
DNaseI for one hour and RNA was purified by acidic phenol-chloroform extraction and isopropanol
precipitation. The integrity and size of the RNAs was validated by agarose gel electrophoresis. For
electroporation, subconfluent and trypsinized cells were collected in DMEMcplt, washed once with
PBS and resuspended in cytomix buffer (120 mM KCl, 0.15 mM CaCl2, 10 mM potassium phosphate
buffer, 25 mM HEPES (pH 7.6), 2 mM EGTA, 5 mM MgCl2, freshly supplemented with 2 mM ATP and
5 mM glutathione) at a concentration of 1 × 107 cells/mL for Huh7 and 1.5 × 107 cells/mL for VeroE6
cells. Four hundred µL of the cell suspension was mixed with 10 µg of in vitro transcribed RNA,
transferred into an electroporation cuvette (Bio-Rad, Hercules, CA, USA; 0.4-cm gap width) and pulsed
once with a Gene Pulser II system (Bio-Rad) at 975 µF and 270 V. Finally, the cells were transferred into
pre-warmed DMEMcplt in case of synZIKV-sgR2A replicons or DMEMcplt supplemented with 15 mM
HEPES (pH 7.5) in case of the full-length synZIKV. For replication assays, Huh7 cells transfected
with synZIKV-sgR2A RNAs were seeded into 12-well plates at a density of 2 × 105 cells/well. VeroE6
cells transfected with full-length synZIKV RNAs were seeded into 24-well plates at a density of
2 × 105 cells/well.

2.6. Virus Stocks and Passaging

Stocks of parental ZIKV strains were produced exactly as described [25]. For production of
wild-type synZIKV stocks, two electroporation reactions of the same construct were pooled in 20 mL
DMEMcplt and seeded into a single 15 cm-diameter dish. After 48 h, the medium was changed to
DMEMcplt containing 15 mM HEPES (pH 7.5). Supernatants were harvested at least twice (between
72–96 h for synZIKV-MR766 and 96–120 h for synZIKV-H/PF/2013). Virus-containing cell culture
supernatants were filtered through a 0.45 µm syringe filter and plaque-forming units (PFU) were
determined. For final stock production, 7 × 106 VeroE6 cells were seeded into 15 cm-diameter dishes
and infected at a multiplicity of infection (MOI) of 0.1 on the next day. Infected cells were cultured
in DMEMcplt containing 15 mM HEPES (pH 7.5) and supernatants were collected from day 3–7
post-infection as described above. Aliquots of the virus stocks were stored at −80 ◦C. For cell culture
adaptation of the synZIKVs, multiple rounds of infection were performed in Huh7 cells. Virus stocks
(passage 0; P0) were prepared as described above and used to infect Huh7 cells at MOI = 0.1. Virus
containing supernatants were harvested at 72 h post infection (P1) and passaged two more times in 72
h hour intervals (P2–P3).

2.7. Virus Titration by Plaque Assay

For titration of wild-type viruses, VeroE6 cells were seeded into 24-well plates at a density of
2.5 × 105 cells/well one day prior to infection. The cells were infected with serial 10-fold dilutions
of virus containing supernatants for one hour at 37 ◦C. All plaque assays were performed in
duplicates. After infection, the inoculum was removed and replaced with serum-free MEM (Gibco,
Life Technologies) containing 1.5% carboxy-methylcellulose (Sigma-Aldrich). After four days, cells
were fixed by the addition of 5% formaldehyde for at least 2 h at room temperature. Fixed cells were
washed with water and stained with 1% crystal violet in 10% ethanol for at least 15 min. After rinsing
the cells with water, the number of plaques was counted and virus titres were calculated as plaque
forming units/mL (PFU/mL).
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2.8. RLuc Assays

RLuc activity was determined as previously described [26]. At the indicated time points cells
were lysed by addition of 100 µL (full-length synZIKV-R2A) or 125 µL (synZIKV-sgR2A replicons)
luciferase lysis buffer (25 mM Glycine-Glycine (pH 7.8), 15 mM MgSO4; 4 mM EGTA, 10% (v/v)
glycerol, 0.1% (v/v) Triton X-100, freshly added 1 mM DTT) to each well. The lysates were stored
at −80 ◦C until use for luciferase assays. Luciferase activity was determined with a Lumat LB9507
luminometer (Berthold Technologies, Bad Wildbad, Germany). For each sample, 20 µL of cell lysate
were mixed with 100 µL freshly prepared luciferase assay buffer (25 mM Glycine-Glycine (pH 7.8),
15 mM K4PO4 buffer (pH 7.8), 15 mM MgSO4, 4 mM EGTA, 1.42 µM coelenterazine).

2.9. Antiviral Assays and Stability of synZIKV-R2A Viruses

For characterization of RLuc-encoding synZIKV-R2A clones, VeroE6 cells transfected with the
respective in vitro transcripts were seeded into 24-well plates at densities of 2 × 105 cells/well.
Supernatants were collected 72 h post-electroporation (Passage 0; P0) and stored at−80 ◦C until use for
antiviral assays or further passaging. For antiviral assays VeroE6 cells were seeded into 24-well plates
at a density of 1× 105 cells/well and on the next day infected with a 1:10 dilution of P0 of the respective
virus at 37 ◦C. One hour later the inoculum was removed and replaced with DMEMcplt containing
the indicated concentrations of 2′-C-methylcytidine (2′CMC; Sigma-Aldrich). RLuc activities were
determined 72 h post-infection. For assessment of the stability, synZIKV-R2A P0 reporter viruses
were subjected to multiple rounds of infection of VeroE6 cells (72 h infection/passage). To determine
reporter virus stability, Huh7 cells were seeded into 24-well plates at a density of 7.5 × 104 cells/well
and infected on the next day with supernatants from each passage as described above. After 72 h
supernatants were collected and subjected to plaque assay analysis. Cells were lysed in luciferase
lysis buffer and RLuc activities were determined as described above. To check for the integrity of the
reporter genomes, RNA was isolated from P0–P3 virus-containing supernatants using NucleoSpin
RNA II kit (Machery Nagel, Düren, Germany), reverse transcribed with SuperScript III RT using
random hexamer primer (Thermo Fisher Scientific) and amplified by PCR using the forward primer
5′CGACAGTTCGAGTTTGAAGC3′ hybridizing to the 5′UTR of both strains and the reverse primers
5′AGGCTAGAATCGCCAAGACC3′ and 5′GTTGATGAGGCCCAGTGATG3′ complementary to the
capsid coding region of H/PF/2013 and MR766, respectively. Amplicons were analysed by agarose
gel electrophoresis using Midori Green (Biozym, Hessisch Oldendorf, Germany) staining of DNA.

2.10. Immunofluorescence Microscopy and Western Blotting

For immunofluorescence microscopy 2.5–3.5 × 104 cells/well were seeded in DMEMcplt into
24-well plates containing glass coverslips. At the indicated time points the cells were washed twice
with PBS and fixed for 20 min by addition of 500 µL PBS containing 4% paraformaldehyde. After three
washes with PBS, the cells were permeabilized with 0.2% Triton-X100 in PBS for 5 min. Permeabilized
cells were blocked for one hour in PBS containing 0.01% Tween20 (PBS-T-0.01%) and 5% bovine
serum albumin (BSA). The cells were incubated with the respective primary antibodies at appropriate
concentrations for 2 h at room temperature. After three washes, the cells were incubated with the
respective AlexaFluor (488, 568)-conjugated anti-mouse or anti-rabbit secondary antibodies (Life
Technologies), respectively, diluted in PBS-T-0.01% containing 5% BSA. After three washes the nuclear
DNA was stained with DAPI (Sigma-Aldrich) for 10 min. Finally, the coverslips were mounted on
slides with FluoromountG (SouthernBiotech, Birmingham, AL, USA). The images were acquired with
a Nikon Eclipse Ti microscope (Nikon, Tokyo, Japan) or a Leica SP8 (Leica, Wetzlar, Germany) confocal
microscope. Western blotting was performed exactly as described earlier [27].
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3. Results

3.1. In Silico Prediction of CEPs and Assembly of Synthetic Full Length ZIKV cDNAs

We focused on the development of infectious clones for two different ZIKV strains: MR766, which
is a historical strain isolated from a rhesus monkey in 1947 [28] and H/PF/2013, a clinical isolate
obtained in 2013 from a patient returning from French Polynesia [29]. Nucleotide sequences of the
clones were based on the reference sequence DQ859059 for MR766 and KJ776791 for H/PF/2013.
In addition, we determined the nucleotide sequences of these two virus strains that we propagated
once in C6/36 mosquito cells and once in VeroE6 cells. We found that the H/PF/2013 isolate cultured in
our cells was almost identical to the reference sequence with the exception of one nucleotide exchange
resulting in an E1399Q amino acid substitution residing in NS2B, while the MR766 isolate differed
by four nucleotide changes, two of them leading to E2197G and T3078A amino acid substitutions,
residing in the NS4A and the NS5 coding region, respectively.

To assemble the complete genomes of these two strains, we introduced the mutations found in the
viruses propagated in our laboratory and inserted in addition several silent nucleotide substitutions
removing or creating restriction sites for convenient DNA cloning (Tables S1 and S2). These two
sequences were dissected into 4 fragments that were generated by DNA synthesis (Figure 1A,B).
The synthetic DNA fragments were assembled and inserted into a pFK-based vector via unique
restriction sites [23]. A T7 promoter was inserted upstream of the ZIKV-5′UTR to allow for in vitro
transcription of viral RNA. However, while fragments #2–#4 could be combined and amplified
in E. coli with ease, insertion of fragment #1 repeatedly failed as we were not able to propagate
a full-length ligation product. We reasoned that toxicity associated with fragment #1 might be the
reason for our failure. In fact, for ZIKV it has been hypothesized that translation products generated
from transcripts initiated at CEPs present in the structural region and NS1 might cause toxicity in
bacteria [13]. Therefore, we decided to inactivate these bacterial promoters, a strategy successfully
applied to the molecular cloning of DENV2 and JEV [11] and analysed our ZIKV sequences by using
the promoter prediction tool from the Berkeley Drosophila Genome Project [20,21]. For MR766,
12 putative CEPs with a score >0.85 were detected within the first 2664 nucleotides (Figure 1A,B;
Figure S1). By contrast, only eight putative CEPs were predicted within the first 2683 nucleotides of the
H/PF/2013 genome (Figure 1B; Figures S1 and S2). To inactive these CEPs, nucleotide substitutions
were inserted affecting the -10 region (Pribnow/ Schaller box) and/or the −35 region of all but one
putative promoter. We did not alter the CEPs in the 5′ untranslated region (5′UTR) of our ZIKV strains
because they contain complex RNA structures essential for RNA replication [22]. In total, 18 point
mutations were introduced for MR766 and 12 for H/PF/2013 (Figures S1 and S2). For both strains, the
modified sequence of fragment #1 was generated synthetically and inserted into the corresponding
preassembled ZIKV constructs containing fragments #2–#4 without notable problems (Figure 1A,B).
To confirm the stability of these synthetic full length ZIKV (synZIKV) cDNAs, the plasmids were
passaged five times in E. coli and 5 clones of passage 5 were analysed by analytical restriction digest
in comparison to the parental clone (Figure 1C). No obvious changes of the restriction patterns were
found. Importantly, nucleotide sequences of the ZIKV genomes isolated after five bacterial passages
were identical to the original genome and matched exactly the one generated in silico. Together,
this result demonstrates that the synZIKV cDNA clones contained in the single bacterial plasmid
vector are stable and that CEP silencing is a very simple and versatile approach to overcome stability
problems of difficult-to-clone sequences.

3.2. Functionality of Full-Length synZIKV Wild-Type Genomes

With the aim to determine functionality of the cloned full length synZIKV genomes VeroE6 cells
were transfected with in vitro transcripts of synZIKV-MR766 and synZIKV-H/PF/2013. Peak virus titres
of about 106 plaque-forming units (PFU/mL) were detected in cell culture supernatants; maximum titres
were reached faster by the MR766 strain than the HP/F/2013 strain arguing for different replication
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kinetics (Figure 2A). A comparison of the replication kinetics of the two synZIKV strains with the
parental strains in Huh7 cells revealed virtually identical viral fitness in the case of the MR766 strain
(Figure 2B). By contrast, wild-type synZIKV-H/PF/2013 replication was attenuated in this cell line
relative to the parental H/PF/2013 strain but titres still reached ~106 PFU/mL (Figure 2C). Similar
results were obtained after infection with lower MOI [30]. Irrespective of that, plaque morphology
was well comparable between the two synZIKVs and their parental strains (Figure 2D). The synMR766
strain formed smaller and more defined plaques, whereas synZIKV-H/PF/2013 formed large more
diffuse and heterogeneous plaques but in both cases just like the corresponding WT strains (Figure 2D).
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Figure 2. Replication kinetics of viruses obtained with the full-length synZIKV clones. (A) Replication
kinetics of the two synZIKV clones as determined by plaque assay. VeroE6 cells were transfected
with in vitro transcribed synZIKV RNAs and virus contained in culture supernatant at different time
points after transfection was measured. Mean ± SEM of two independent experiments is shown.
(B,C) Comparison of replication kinetics of synZIKV and parental viruses. Huh7 cells were infected
with either ZIKV using a multiplicity of infection (MOI) of 1. Supernatants from infected cells were
harvested at indicated times post-infection and titres were determined by plaque assay. Mean ± SEM
of three independent experiments is shown. (D) Comparison of plaque morphology of synZIKV and
the parental viruses. (E,F) Replication kinetics of passaged synZIKVs. Virus stocks were prepared as
described in Materials and methods (P0). Huh7 cells were infected with MOI = 0.1 of P0 virus, cell
culture supernatants were collected 72 h post-infection (P1) and passaged two more times by infection
of Huh7 cells (P2–P3) in 72 h intervals. Huh7 cells were then infected using a MOI of 0.01 of P0 and P3
virus, respectively and virus titres were measured at indicated time points by plaque assay.
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To determine whether passaging in cell culture could increase the fitness of our synZIKVs,
we performed three serial passages in Huh7 cells and compared the replication kinetics of P0 and P3
viruses (Figure 2E,F). For both strains titres obtained with passaged viruses were higher than the ones
of the corresponding P0 stock arguing for rapid adaptation of synZIKVs to cell culture conditions.
Whether distinct adaptive mutations or the viral quasispecies in P3 virus cultures were responsible for
increased fitness remains to be determined.

3.3. Replication and Stability of synZIKV Luciferase Reporter Virus Genomes

Reverse genetic systems are powerful tools to study virus biology and pathogenesis but for
some applications such as high-content screens reporter systems are superior because of the ease to
measure virus replication in high-throughput formats [10]. We therefore manipulated both synZIKV
genomes by insertion of a Renilla luciferase (RLuc) reporter gene (Figure 3A). In these genomes, the 5′

UTR is followed by the first 102 nts of the C-coding region containing an element that is required for
genome circularization (CAE; capsid-circularization sequence). Downstream of the CAE we inserted
the RLuc gene via engineered NotI and NruI restriction sites followed by the ribosome-skipping 2A
sequence of the foot-mouth-disease virus (FMDV) to allow the release of the RLuc protein from the viral
polyprotein. The functionality of these two synZIKV-R2A genomes was evaluated by electroporation of
in vitro transcripts into VeroE6 cells. Virus replication was confirmed in transfected cells by E-specific
immunofluorescence (Figure 3B) and quantified by measuring RLuc reporter activity in lysates of cells
harvested at different time points after transfection (Figure 3C). As a reference, we constructed for both
synZIKV-R2A clones a mutant, in which the catalytic site of the RNA-dependent-RNA-polymerase
was inactivated by site-directed mutagenesis (mutants “GAA”). In addition, values were normalized
to the 4 h-value reflecting transfection efficiency. For both synZIKV-R2A clones, robust replication
was detected with faster kinetics in the case of the MR766 strain (Figure 3C) but comparable values
detected at later time points after transfection (>96 h). However, as reported earlier [31], synZIKV-R2A
viruses did not form plaques when harvested at early times post-transfection arguing that the insertion
of the reporter gene caused attenuation [32].

Therefore, we determined the stability of the reporter virus genomes by multiple passaging of
synZIKV-R2A particles collected 72 h post-transfection in VeroE6 cells. Virus contained in supernatants
of each passage was used to infect Huh7 cells to determine RLuc reporter activity and plaque formation
(Figure 3D,E). While RLuc activities were steadily decreasing with each passage and lost after passage
3 (Figure 3D), virus titres (PFU/mL) were increasing (Figure 3E) indicating a loss of the reporter gene
and selection for synZIKV viruses with high replication fitness and plaque forming capability.

To support this assumption, synZIKV-R2A viruses released into culture supernatants were
harvested after each passage, RNA was isolated and the region encompassing the RLuc coding
sequence was amplified by RT-PCR (Figure 3F). In virus released from transfected cells (P0 supernatant),
the amplicon had the expected size for the luciferase reporter gene (~1350 bp) although trace amounts
of a smaller amplicon were also detected. However, already in P1 supernatant we could only amplify
a fragment with a size expected for a WT clone (~250 bp). Sequence analysis of this PCR product
confirmed a perfect match to the WT clone sequence, consistent with a rapid loss of the reporter
gene. Nevertheless, by using virus contained in the supernatant of synZIKV-R2A transfected cells
(i.e., P0 virus), virus replication was robustly detected and could be used for various assays, including
antiviral drug testing. For instance, in line with a previous report [33], we found that the nucleoside
2′CMC strongly reduced the replication of both reporter viruses, thus demonstrating the versatility of
our synZIKV system (Figure 3F).
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Figure 3. Construction and characterization of synZIKV-R2A reporter virus genomes. (A) Schematic
representation of the synZIKV-R2A reporter virus genomes. For both strains the R2A reporter
cassette (light red) was inserted into the wild-type pFK-synZIKV plasmids via MLuI/KpnI restriction
sites. The NotI/NruI sites flanking the RLuc gene allow for the exchange of the reporter gene.
(B) Immunofluorescence analysis of VeroE6 cells transfected with synZIKV-R2A in vitro transcripts.
Cells were grown on coverslips, fixed 72 h and 96 h after transfection and stained with E-specific antibody
(green). Nuclear DNA was counterstained with DAPI (grey). Scale bar = 15 µm. (C) Replication kinetics
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of the synZIKV-R2A reporter viruses in VeroE6 cells. After electroporation (EPO) cells were harvested at
given time points and RLuc activity was determined. Values were normalized to the 4 h-value reflecting
transfection efficiency. Mean ± SEM of three independent experiments is shown. Replication deficient
mutants containing two mutations affecting the active site of the RNA-dependent-RNA polymerase
in NS5 (GAA) served as negative controls. (D) VeroE6 cells were transfected with synZIKV-R2A
RNAs, cell culture supernatants were collected 72 h post- transfection (P0) and passaged three times by
infection of VeroE6 cells (P1-P3) in 72 h intervals. Culture supernatants obtained from each passage
were used to inoculate Huh7 cells. In the case of supernatant obtained directly from transfected
VeroE6 cells (P0), Huh7 cells were inoculated with undiluted (undil) or 1:10 diluted supernatant.
After 72 h cells were harvested and RLuc activity in cell lysates was determined. Mean ± SEM from
two independent experiments is shown. (E) Virus titres as determined by plaque assay for each
synZIKV-R2A passage; values are mean ± SEM of two independent experiments. (F) Stability of the
reporter gene. SynZIKV-R2A viruses released into culture supernatants were harvested after each
passage as described in panel D, RNA was isolated and the region encompassing the RLuc coding
sequence was amplified by using random hexamer primers for reverse transcription and specific
primers for subsequent PCR. The ~1350 bp long DNA fragment in the P0 virus sample corresponds to
the reporter gene, while the ~250 bp long fragment corresponds to the WT sequence. (G) Antiviral
assay using synZIKV-R2A viruses. VeroE6 cells were inoculated with a 1:10 dilution of a P0 stock and
one hour later the medium was replaced with DMEM containing the indicated amount of 2′CMC.
RLuc activity was measured in cell lysates 72 h post-infection. Mean ± SEM from two independent
experiments is shown.

3.4. SynZIKV Reporter Viruses Suitable for Live Cell Imaging

In order to have at hand an easy to handle ZIKV system suitable for microscopy-based studies such
as live-cell imaging, we replaced the RLuc reporter gene by a gene encoding the turbo far-red fluorescent
protein FP635 (Figure 4A) [24]. Since ZIKV replicates in the cytoplasm we added a nuclear localization
sequence (NLS) to the FP635 marker protein to avoid interference with imaging of cytoplasmic events.
We used the well-studied NLS of the Simian Virus 40 (SV40) large T antigen that was fused to the
C-terminus of FP635. Ninety-six hours after transfection with synZIKV-FP635 in vitro transcripts,
cells were analysed by immune fluorescence to detect the E protein whereas FP635 was detected by
its fluorescence (Figure 4B). Virtually all of the E-positive cells also expressed detectable amounts of
FP635 (Figure 4B,C) suggesting that the synZIKV-FP635 reporter genomes are functional and allow
the detection of infected cells just by means of the fluorescent marker protein. We noted that FP635
primarily accumulated within defined sub-nuclear regions, in line with a previous study reporting the
accumulation of a GFP-SV40-NLS fusion protein in the nucleoli [34].



Viruses 2018, 10, 368 12 of 17
Viruses 2018, 10, x FOR PEER REVIEW  12 of 17 

 

 
Figure 4. Construction and characterization of synZIKV-FP635 reporter viruses suitable for live cell 
imaging. (A) Schematic representation of the synZIKV-FP635 reporter genomes. The FP635 gene 
fused at the 3′ end to the coding sequence of the SV40 NLS (not indicated) was inserted into the 
synZIKV constructs via NotI/NruI restriction sites. (B) Detection of E-antigen by immunofluorescence 
analysis of VeroE6 cells 96 h post-transfection with synZIKV-FP635 RNAs. The FP635 signal (red) was 
detected by its fluorescence. Note the accumulation of FP635 in distinct nuclear sites, most likely 
corresponding to nucleoli. Nuclear DNA was counterstained with DAPI (grey). Scale bar = 15 μm. (C) 
Quantification of E- and FP635-positive VeroE6 cells 96 h post-transfection of synZIKV-FP635 RNAs. 
Results show the mean from two independent experiments ± SEM. At least 150 cells per condition 
were counted. 

3.5. Sub-Genomic synZIKV Replicons 

In addition to full-length reporter viruses, sub-genomic replicons are powerful tools as they 
allow studying virus replication without biosafety concerns. Therefore, by using our full-length 
synZIKV molecular clones, we established sub-genomic RLuc reporter replicons. The overall 
construct design was analogous to the one of the synZIKV-R2A reporter genomes but the replicons 
lacked the region encoding the ZIKV structural proteins (Figure 5A). Replication of these sgR2A-
synZIKV replicons was assessed in Huh7 cells (Figure 5B). RLuc activities detectable in the cell lysates 
at different time points after transfection correlated well with the amounts of ZIKV NS3 and NS4B 
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Figure 4. Construction and characterization of synZIKV-FP635 reporter viruses suitable for live cell
imaging. (A) Schematic representation of the synZIKV-FP635 reporter genomes. The FP635 gene fused
at the 3′ end to the coding sequence of the SV40 NLS (not indicated) was inserted into the synZIKV
constructs via NotI/NruI restriction sites. (B) Detection of E-antigen by immunofluorescence analysis
of VeroE6 cells 96 h post-transfection with synZIKV-FP635 RNAs. The FP635 signal (red) was detected
by its fluorescence. Note the accumulation of FP635 in distinct nuclear sites, most likely corresponding
to nucleoli. Nuclear DNA was counterstained with DAPI (grey). Scale bar = 15 µm. (C) Quantification
of E- and FP635-positive VeroE6 cells 96 h post-transfection of synZIKV-FP635 RNAs. Results show the
mean from two independent experiments ± SEM. At least 150 cells per condition were counted.

3.5. Sub-Genomic synZIKV Replicons

In addition to full-length reporter viruses, sub-genomic replicons are powerful tools as they allow
studying virus replication without biosafety concerns. Therefore, by using our full-length synZIKV
molecular clones, we established sub-genomic RLuc reporter replicons. The overall construct design
was analogous to the one of the synZIKV-R2A reporter genomes but the replicons lacked the region
encoding the ZIKV structural proteins (Figure 5A). Replication of these sgR2A-synZIKV replicons
was assessed in Huh7 cells (Figure 5B). RLuc activities detectable in the cell lysates at different
time points after transfection correlated well with the amounts of ZIKV NS3 and NS4B proteins
detectable by Western blot revealing that also in this case replication kinetics of the MR766 strain
was faster than the H/PF/2013 strain (Figure 5C). NS3 as well as double-stranded RNA (dsRNA),
a replication intermediate [22], were detectable by immunofluorescence (Figure 5C). As described
for ZIKV-infected Huh7 cells, sgR2A-synZIKV-transfected cells had a kidney shaped nucleus [25].
This observation suggests that the non-structural proteins of ZIKV are sufficient to induce changes of
nucleus morphology. In summary, these results show that sgR2A-synZIKV replicons are functional
and induce morphological changes resembling a ZIKV infection.
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Figure 5. Properties of synZIKV sub-genomic reporter replicons. (A) Schematic representation of
the synZIKV-sgR2A subgenomic reporter replicons. The reporter cassette (grey) was inserted into
the synZIKV genomes via the MLuI and AgeI restriction sites and replaces the region encoding the
structural proteins. (B) RLuc activity in Huh7 cells transfected with wild-type or replication-deficient
(mutant GAA) synZIKV-sgR2A replicon RNAs measured at given times post-transfection. Shown
RLuc values were normalized to the 4 h value to correct for transfection efficiency. Mean ± SEM of
three independent experiments is presented. (C) Western blot showing the abundance of ZIKV NS3
and NS4B proteins in Huh7 cells transfected with synZIKV-sgR2A replicon RNAs. Cells were lysed
at indicated times post-transfection and ZIKV-specific antibodies were used to detect viral proteins.
β actin served as loading control. Numbers on the left refer to the positions of marker proteins that are
given in kilodalton (kDa). (D) Immunofluorescence analysis of Huh7 cells 48 h post-transfection of
synZIKV-sgR2A RNAs. Cells were stained with a dsRNA- (green) and a NS3-specific antibody (red).
Nuclear DNA was stained with DAPI (grey). Scale bars = 15 µm. Boxed areas indicate regions that are
shown in the left panels as enlargements.
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4. Discussion

Here we describe a straightforward and very simple approach to establish a ZIKV reverse genetics
system. The key feature is to remove CEPs, responsible for genome instability [9], by using in
silico prediction with an open-access online tool and subsequent elimination in the virus sequence
by silent nucleotide substitutions. This strategy was successfully applied to two different ZIKV
strains—MR766 and H/PF/2013—for which construction of full-length cDNA clones has failed in the
past [13,15,17,18] (A.P. and R.B., unpublished). Our approach allows the amplification of functional
ZIKV infectious clones on a single, low-copy plasmid, which is superior to time consuming and error
prone multi-vector systems reported earlier [15–19]. Moreover, in vitro transcripts generated from
our synZIKV clones are infectious, thus mimicking an infection better than DNA-launched systems
requiring nuclear transcription of the viral RNA genome. Finally, the possibility to stably propagate
the ZIKV genome in a pBR-derived vector circumvents several disadvantages inherent to the use of
bacterial artificial chromosome (BAC) systems, such as low DNA yield and complicated procedures to
introduce mutations into the genome [35–37].

We did not observe a difference in replication dynamics between the wild-type synZIKV-MR766
molecular clone and the parental MR766 virus, suggesting that the molecular clone fully recapitulates
the properties of the parental strain. Also, the plaque morphologies produced by both synZIKV-MR766
and synZIKV-H/PF/2013 closely resembled those of reference viruses. However, we observed that the
synZIKV-H/PF/2013 molecular clone was attenuated (Figure 2E). The reasons underlying the reduced
fitness are currently unknown. Although the sequence of the synZIKV-H/PF/2013 clone was modified
to silence the CEPs and introduce unique restriction sites, these changes are unlikely to contribute to
decreased viral fitness as all of the inserted mutations were silent and the regions known to contain
regulatory RNA elements were omitted. We note however, that the attenuation observed by us is
in line with the study of Widman and co-workers who constructed an H/PF/2013 molecular clone
by using an in vitro ligation strategy and observed a similar degree of attenuation [15]. The fitness
difference between the synZIKV-H/PF/2013 clone and the reference strain might be due to the
genetic homogeneity of the molecular clone whereas the genome population of the H/PF/2013 isolate
most likely is more heterogeneous, thus allowing for faster adaption to the cell culture conditions.
Additionally, studies on poliovirus and influenza viruses showed that individual variants within viral
quasispecies can cooperate to increase the fitness of the total virus population [38,39]. For MR766
this might not apply because this virus has been well adapted to cell culture conditions through
intensive passaging since its isolation in 1947 [7]. This adaptation probably is already reflected in
the cDNA sequence that served as reference for our clone (DQ859059). Nevertheless, fitness of both
synZIKVs could be increased by cell culture passaging, arguing for rapid adaptation of both synZIKV
strains and selection for variants with fitness even higher than the parental strains. Although we do
not know whether distinct mutations in these synZIKV genomes or the -most likely- higher genetic
heterogeneity in P3 stocks account for increased fitness, the use of extensively cell culture passaged
virus is less desirable as it might have altered in vivo properties that are not necessarily detectable
in vitro. Therefore, it is preferable to work with strains of low passage and defined sequence, which is
the case with molecular clones as described here. Moreover, we note that the MR766 strain belongs
to the early ZIKV isolates whereas H/PF/2013 is a more recent clinical strain that is closely related
to strains isolated during the ZIKV epidemic in Brazil. For instance, the HP/F/2013 strain that we
constructed has ~99.5% nucleotide sequence identity with the PE243 strain isolated from a Brazilian
patient in 2015 (accession number KX197192) and only one amino acid change. Thus, our synZIKV
clones should be useful for comparative studies between historical and contemporary ZIKV strains.

Owing to the reduction of replication fitness by the insertion of the RLuc reporter gene this
ZIKV reporter virus was rather unstable and reporter-less variants with higher replication fitness
were rapidly enriched during cell passage and already after one passage WT was the predominant
species. This rapid deletion might be due to recombination occurring in E. coli during plasmid
amplification and being facilitated by the partial duplication of the capsid coding region (i.e., the first
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103 nts containing important cis-acting sequences of ZIKV), up- and downstream of the reporter
gene. Alternatively, recombination might occur during virus propagation in cell culture. In any
case, owing to higher fitness the WT virus rapidly out-competes the reporter virus and becomes the
predominant species. Although this problem can be overcome by using ZIKV RLuc reporter viruses
contained in culture supernatant of transfected (producer) cells, in which WT virus was not detected
(Figure 3D,F), long-term propagation is not possible, which is a limitation when large stocks of reporter
viruses are required. Therefore, further attempts are required to stabilize the inserted reporter gene,
for example, by altering the sequences flanking the reporter gene, or inserting it into another region
of the ZIKV genome. An alternative strategy might be the use of trans-complemented particles as
we have developed for hepatitis C virus and DENV [40,41]. In this case the subgenomic replicon is
transfected into a packaging cell line stably expressing the structural proteins. Virus-like particles are
released from these cells that retain infectivity but contain the subgenomic RNA, thus requiring only
low biosafety level. Importantly, since the size of the subgenomic replicon is much smaller than the
complete genome it allows the insertion of rather long heterologous sequences without exceeding the
size of the full-length genome.

In summary, this study reports a comprehensive toolbox for ZIKV research and an easy
ZIKV cloning strategy that is based on CEP silencing, initially described for DENV2 and JEV [11].
As continuing globalization supports spreading of flaviviruses and their arthropod hosts, it is possible
that outbreaks of other poorly characterized flaviviruses might occur in the future. Therefore, the
strategy described here for ZIKV should allow the rapid construction and stable propagation of
functional molecular clones of potentially emerging flaviviruses and other difficult-to-clone viruses.
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Results of in silico prediction of cryptic prokaryotic promoters in the H/PF/2013 sequence. Table S1: Modified
restriction sites in the MR766 syn-sequence. Table S2: Modified restriction sites in the H/PF/2013 syn-sequence.

Author Contributions: Conceived and designed the study: A.P. and R.B.; performed the experiments: M.M., A.P.,
C.J.N., S.G., M.C.; analysed and interpreted the data: M.M., A.P., M.C.; provided important advice: G.L.; wrote
the manuscript: M.M., A.P. and R.B.

Funding: This research was funded by the Bundesministerium für Bildung und Forschung (project TTU 01.911)
and the Deutsche Forschungsgemeinschaft (Ba1505/8-1). A.P. was funded via the European Union’s Horizon 2020
research and innovation programme under the Marie Skłodowska-Curie grant agreement No 642434 (to R.B.).
C.J.N was funded by a European Molecular Biology Organization (EMBO) Long-Term Fellowship (ALTF 466-2016).
The funding institutions had no role in the design of the study; in the collection, analyses, or interpretation of
data; in the writing of the manuscript and in the decision to publish the results.

Acknowledgments: We are grateful to Marie Bartenschlager and Ulrike Herian for excellent technical support.
We also thank the European Virus Archive (EVAg) for the provision of the MR766 and the HP/F/2013 strains.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Dick, G.W.; Kitchen, S.F.; Haddow, A.J. Zika virus (I). Isolations and serological specificity. Trans. R. Soc. Trop.
Med. Hyg. 1952, 46, 509–520. [CrossRef]

2. Duffy, M.R.; Chen, T.H.; Hancock, W.; Powers, A.M.; Kool, J.L.; Lanciotti, R.S.; Pretrick, M.; Marfel, M.;
Holzbauer, S.; Dubray, C.; et al. Zika virus outbreak on Yap Island, Federated States of Micronesia. N. Engl.
J. Med. 2009, 360, 2536–2543. [CrossRef] [PubMed]

3. Cao-Lormeau, V.M.; Roche, C.; Teissier, A.; Robin, E.; Berry, A.L.; Mallet, H.P.; Sall, A.L.; Musso, D. Zika
virus, French Polynesia, South Pacific, 2013. Emerg. Infect. Dis. 2014, 20, 1085–1086. [CrossRef] [PubMed]

4. Brasil, P.; Calvet, G.A.; Siqueira, A.M.; Wakimoto, M.; de Sequeira, P.C.; Nobre, A.; de Mendonça, M.C.L.;
Lupi, O.; de Souza, R.V.; Romero, C.; et al. Zika Virus Outbreak in Rio de Janeiro, Brazil: Clinical
Characterization, Epidemiological and Virological Aspects. PLoS Negl. Trop. Dis. 2016, 10, e0004636.
[CrossRef] [PubMed]

http://www.mdpi.com/1999-4915/10/7/368/s1
http://dx.doi.org/10.1016/0035-9203(52)90042-4
http://dx.doi.org/10.1056/NEJMoa0805715
http://www.ncbi.nlm.nih.gov/pubmed/19516034
http://dx.doi.org/10.3201/eid2011.141380
http://www.ncbi.nlm.nih.gov/pubmed/25341051
http://dx.doi.org/10.1371/journal.pntd.0004636
http://www.ncbi.nlm.nih.gov/pubmed/27070912


Viruses 2018, 10, 368 16 of 17

5. Do Rosario, M.S.; de Jesus, P.A.; Vasilakis, N.; Farias, D.S.; Novaes, M.A.; Rodrigues, S.G.; Martins, L.C.;
da Costa Vasconcelos, P.F.; Ko, A.I.; Alcântara, L.C., Jr.; et al. Guillain-Barre Syndrome After Zika Virus
Infection in Brazil. Am. J. Trop. Med. Hyg. 2016, 95, 1157–1160. [CrossRef] [PubMed]

6. Mlakar, J.; Korva, M.; Tul, N.; Popovic, M.; Poljsak-Prijatelj, M.; Mraz, J.; Kolenc, M.; Rus, K.R.; Vipotnik, T.V.;
Vodušek, V.F.; et al. Zika Virus Associated with Microcephaly. N. Engl. J. Med. 2016, 374, 951–958. [CrossRef]
[PubMed]

7. Haddow, A.D.; Schuh, A.J.; Yasuda, C.Y.; Kasper, M.R.; Heang, V.; Huy, R.; Guzman, H.; Tesh, R.B.;
Weaver, S.C. Genetic characterization of Zika virus strains: Geographic expansion of the Asian lineage.
PLoS Negl. Trop. Dis. 2012, 6, e1477. [CrossRef] [PubMed]

8. Diamond, M.S.; Coyne, C.B. Vaccines in 2017: Closing in on a Zika virus vaccine. Nat. Rev. Immunol. 2018,
18, 89–90. [CrossRef] [PubMed]

9. Aubry, F.; Nougairede, A.; Gould, E.A.; de Lamballerie, X. Flavivirus reverse genetic systems, construction
techniques and applications: A historical perspective. Antivir. Res. 2015, 114, 67–85. [CrossRef] [PubMed]

10. Fischl, W.; Bartenschlager, R. High-Throughput Screening Using Dengue Virus Reporter Genomes.
In Antiviral Methods and Protocols; Humana Press: Totowa, NJ, USA, 2013; Volume 1030, pp. 205–219.

11. Pu, S.Y.; Wu, R.H.; Yang, C.C.; Jao, T.M.; Tsai, M.H.; Wang, J.C.; Lin, H.M.; Chao, Y.S. Successful propagation
of flavivirus infectious cDNAs by a novel method to reduce the cryptic bacterial promoter activity of virus
genomes. J. Virol. 2011, 85, 2927–2941. [CrossRef] [PubMed]

12. Ruggli, N.; Rice, C.M. Functional cDNA Clones of the Flaviviridae: Strategies and Applications. In Advances
in Virus Research; Academic Press: Cambridge, MA, USA, 1999; Volume 53, pp. 183–207.

13. Schwarz, M.C.; Sourisseau, M.; Espino, M.M.; Gray, E.S.; Chambers, M.T.; Tortorella, D.; Evans, M.J. Rescue
of the 1947 Zika Virus Prototype Strain with a Cytomegalovirus Promoter-Driven cDNA Clone. mSphere
2016, 1, e00246-16. [CrossRef] [PubMed]

14. Tsetsarkin, K.A.; Kenney, H.; Chen, R.; Liu, G.; Manukyan, H.; Whitehead, S.S.; Laassric, M.; Chumakovc, K.;
Pletneva, A.G. A Full-Length Infectious cDNA Clone of Zika Virus from the 2015 Epidemic in Brazil as
a Genetic Platform for Studies of Virus-Host Interactions and Vaccine Development. mBio 2016, 7, e01114-16.
[CrossRef] [PubMed]

15. Widman, D.G.; Young, E.; Yount, B.L.; Plante, K.S.; Gallichotte, E.N.; Carbaugh, D.L.; Peck, K.M.; Plante, J.;
Swanstrom, J.; Heise, M.T.; et al. A Reverse Genetics Platform That Spans the Zika Virus Family Tree. MBio
2017, 8, e02014-16. [CrossRef] [PubMed]

16. Weger-Lucarelli, J.; Duggal, N.K.; Bullard-Feibelman, K.; Veselinovic, M.; Romo, H.; Nguyen, C.; Rückert, C.;
Brault, A.C.; Bowen, R.A.; Stenglein, M.; et al. Development and Characterization of Recombinant Virus
Generated from a New World Zika Virus Infectious Clone. J. Virol. 2017, 91, JVI-01765. [CrossRef] [PubMed]

17. Gadea, G.; Bos, S.; Krejbich-Trotot, P.; Clain, E.; Viranaicken, W.; El-Kalamouni, C.; Mavingui, P.; Desprès, P.
A robust method for the rapid generation of recombinant Zika virus expressing the GFP reporter gene.
Virology 2016, 497, 157–162. [CrossRef] [PubMed]

18. Atieh, T.; Baronti, C.; de Lamballerie, X.; Nougairede, A. Simple reverse genetics systems for Asian and
African Zika viruses. Sci. Rep. 2016, 6, 39384. [CrossRef] [PubMed]

19. Setoh, Y.X.; Prow, N.A.; Peng, N.; Hugo, L.E.; Devine, G.; Hazlewood, J.E.; Suhrbier, A.; Khromykh, A.A.
De Novo Generation and Characterization of New Zika Virus Isolate Using Sequence Data from
a Microcephaly Case. mSphere 2017, 2, e00190-17. [CrossRef] [PubMed]

20. Berkeley Drosophila Genome Project, Neural Network Promoter Prediction. Available online: http://www.
fruitfly.org/seq_tools/promoter.html (accessed on 15 May 2017).

21. Reese, M.G. Application of a time-delay neural network to promoter annotation in the Drosophila
melanogaster genome. Comput. Chem. 2001, 26, 51–56. [CrossRef]

22. Acosta, E.G.; Kumar, A.; Bartenschlager, R. Revisiting Dengue Virus-Host Cell Interaction: New Insights
into Molecular and Cellular Virology. In Advances in Virus Research; Academic Press: Cambridge, MA, USA,
2014; Volume 88, pp. 1–109.

23. Lohmann, V.; Korner, F.; Koch, J.; Herian, U.; Theilmann, L.; Bartenschlager, R. Replication of subgenomic
hepatitis C virus RNAs in a hepatoma cell line. Science 1999, 285, 110–113. [CrossRef] [PubMed]

http://dx.doi.org/10.4269/ajtmh.16-0306
http://www.ncbi.nlm.nih.gov/pubmed/27645785
http://dx.doi.org/10.1056/NEJMoa1600651
http://www.ncbi.nlm.nih.gov/pubmed/26862926
http://dx.doi.org/10.1371/journal.pntd.0001477
http://www.ncbi.nlm.nih.gov/pubmed/22389730
http://dx.doi.org/10.1038/nri.2017.132
http://www.ncbi.nlm.nih.gov/pubmed/29199280
http://dx.doi.org/10.1016/j.antiviral.2014.12.007
http://www.ncbi.nlm.nih.gov/pubmed/25512228
http://dx.doi.org/10.1128/JVI.01986-10
http://www.ncbi.nlm.nih.gov/pubmed/21228244
http://dx.doi.org/10.1128/mSphere.00246-16
http://www.ncbi.nlm.nih.gov/pubmed/27704051
http://dx.doi.org/10.1128/mBio.01114-16
http://www.ncbi.nlm.nih.gov/pubmed/27555311
http://dx.doi.org/10.1128/mBio.02014-16
http://www.ncbi.nlm.nih.gov/pubmed/28270583
http://dx.doi.org/10.1128/JVI.01765-16
http://www.ncbi.nlm.nih.gov/pubmed/27795432
http://dx.doi.org/10.1016/j.virol.2016.07.015
http://www.ncbi.nlm.nih.gov/pubmed/27471954
http://dx.doi.org/10.1038/srep39384
http://www.ncbi.nlm.nih.gov/pubmed/27991555
http://dx.doi.org/10.1128/mSphereDirect.00190-17
http://www.ncbi.nlm.nih.gov/pubmed/28529976
http://www.fruitfly.org/seq_tools/promoter.html
http://www.fruitfly.org/seq_tools/promoter.html
http://dx.doi.org/10.1016/S0097-8485(01)00099-7
http://dx.doi.org/10.1126/science.285.5424.110
http://www.ncbi.nlm.nih.gov/pubmed/10390360


Viruses 2018, 10, 368 17 of 17

24. Schmid, B.; Rinas, M.; Ruggieri, A.; Acosta, E.G.; Bartenschlager, M.; Reuter, A.; Fischl, W.; Harder, N.;
Bergeest, J.-P.; Flossdorf, M.; et al. Live Cell Analysis and Mathematical Modeling Identify Determinants
of Attenuation of Dengue Virus 2’-O-Methylation Mutant. PLoS Pathog. 2015, 11, e1005345. [CrossRef]
[PubMed]

25. Cortese, M.; Goellner, S.; Acosta, E.G.; Neufeldt, C.J.; Oleksiuk, O.; Lampe, M.; Haselmann, U.; Funaya, C.;
Schieber, N.; Ronchi, P.; et al. Ultrastructural Characterization of Zika Virus Replication Factories. Cell. Rep.
2017, 18, 2113–2123. [CrossRef] [PubMed]

26. Kumar, A.; Buhler, S.; Selisko, B.; Davidson, A.; Mulder, K.; Canard, B.; Miller, S.; Bartenschlager, R. Nuclear
localization of dengue virus nonstructural protein 5 does not strictly correlate with efficient viral RNA
replication and inhibition of type I interferon signaling. J. Virol. 2013, 87, 4545–4557. [CrossRef] [PubMed]

27. Chatel-Chaix, L.; Fischl, W.; Scaturro, P.; Cortese, M.; Kallis, S.; Bartenschlager, M.; Fischer, B.;
Bartenschlager, R. A Combined Genetic-Proteomic Approach Identifies Residues within Dengue Virus
NS4B Critical for Interaction with NS3 and Viral Replication. J. Virol. 2015, 89, 7170–7186. [CrossRef]
[PubMed]

28. Kuno, G.; Chang, G.J. Full-length sequencing and genomic characterization of Bagaza, Kedougou, and Zika
viruses. Arch. Virol. 2007, 152, 687–696. [CrossRef] [PubMed]

29. Baronti, C.; Piorkowski, G.; Charrel, R.N.; Boubis, L.; Leparc-Goffart, I.; de Lamballerie, X. Complete coding
sequence of zika virus from a French polynesia outbreak in 2013. Genome Announc. 2014, 2, e00500-14.
[CrossRef] [PubMed]

30. Płaszczyca, A.; Bartenschlager, R. Heidelberg University, Heidelberg, Germany. Replication kinetics of
synZIKVs in Huh7 cells. Unpublished work. 2018.

31. Shan, C.; Xie, X.; Muruato, A.E.; Rossi, S.L.; Roundy, C.M.; Azar, S.R.; Yang, Y.; Tesh, R.B.; Bourne, N.;
Barrett, A.D.; et al. An Infectious cDNA Clone of Zika Virus to Study Viral Virulence, Mosquito Transmission,
and Antiviral Inhibitors. Cell Host Microbe 2016, 19, 891–900. [CrossRef] [PubMed]

32. Münster, M.; Bartenschlager, R. Heidelberg University, Heidelberg, Germany. Titration of synZIKV-R2A
viruses. Unpublished work. 2017.

33. Zmurko, J.; Marques, R.E.; Schols, D.; Verbeken, E.; Kaptein, S.J.; Neyts, J. The Viral Polymerase Inhibitor
7-Deaza-2'-C-Methyladenosine Is a Potent Inhibitor of In Vitro Zika Virus Replication and Delays Disease
Progression in a Robust Mouse Infection Model. PLoS Negl. Trop. Dis. 2016, 10, e0004695. [CrossRef] [PubMed]

34. Kitamura, A.; Nakayama, Y.; Kinjo, M. Efficient and dynamic nuclear localization of green fluorescent protein
via RNA binding. Biochem. Biophys. Res. Commun. 2015, 463, 401–406. [CrossRef] [PubMed]

35. Mutso, M.; Saul, S.; Rausalu, K.; Susova, O.; Zusinaite, E.; Mahalingam, S.; Merits, A. Reverse genetic system,
genetically stable reporter viruses and packaged subgenomic replicon based on a Brazilian Zika virus isolate.
J. Gen. Virol. 2017, 98, 2712–2724. [CrossRef] [PubMed]

36. Tischer, B.K.; Kaufer, B.B. Viral bacterial artificial chromosomes: Generation, mutagenesis, and removal of
mini-F sequences. BioMed Res. Int. 2012, 2012, 472537. [CrossRef] [PubMed]

37. Yang, Y.; Shan, C.; Zou, J.; Muruato, A.E.; Bruno, D.N.; de Almeida Medeiros, D.B.; Vasconcelos, P.F.C.;
Rossi, S.L.; Weaver, S.C.; Xie, X.; et al. A cDNA Clone-Launched Platform for High-Yield Production of
Inactivated Zika Vaccine. EBioMedicine 2017, 17, 145–156. [CrossRef] [PubMed]

38. Vignuzzi, M.; Stone, J.K.; Arnold, J.J.; Cameron, C.E.; Andino, R. Quasispecies diversity determines
pathogenesis through cooperative interactions in a viral population. Nature 2006, 439, 344–348. [CrossRef]
[PubMed]

39. Xue, K.S.; Hooper, K.A.; Ollodart, A.R.; Dingens, A.S.; Bloom, J.D. Cooperation between distinct viral
variants promotes growth of H3N2 influenza in cell culture. eLife 2016, 5, e13974. [CrossRef] [PubMed]

40. Scaturro, P.; Trist, I.M.; Paul, D.; Kumar, A.; Acosta, E.G.; Byrd, C.M.; Jordan, R.; Brancale, A.;
Bartenschlager, R. Characterization of the mode of action of a potent dengue virus capsid inhibitor. J. Virol.
2014, 88, 11540–11555. [CrossRef] [PubMed]

41. Steinmann, E.; Brohm, C.; Kallis, S.; Bartenschlager, R.; Pietschmann, T. Efficient trans-encapsidation of
hepatitis C virus RNAs into infectious virus-like particles. J. Virol. 2008, 82, 7034–7046. [CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1371/journal.ppat.1005345
http://www.ncbi.nlm.nih.gov/pubmed/26720415
http://dx.doi.org/10.1016/j.celrep.2017.02.014
http://www.ncbi.nlm.nih.gov/pubmed/28249158
http://dx.doi.org/10.1128/JVI.03083-12
http://www.ncbi.nlm.nih.gov/pubmed/23408610
http://dx.doi.org/10.1128/JVI.00867-15
http://www.ncbi.nlm.nih.gov/pubmed/25926641
http://dx.doi.org/10.1007/s00705-006-0903-z
http://www.ncbi.nlm.nih.gov/pubmed/17195954
http://dx.doi.org/10.1128/genomeA.00500-14
http://www.ncbi.nlm.nih.gov/pubmed/24903869
http://dx.doi.org/10.1016/j.chom.2016.05.004
http://www.ncbi.nlm.nih.gov/pubmed/27198478
http://dx.doi.org/10.1371/journal.pntd.0004695
http://www.ncbi.nlm.nih.gov/pubmed/27163257
http://dx.doi.org/10.1016/j.bbrc.2015.05.084
http://www.ncbi.nlm.nih.gov/pubmed/26032495
http://dx.doi.org/10.1099/jgv.0.000938
http://www.ncbi.nlm.nih.gov/pubmed/29022864
http://dx.doi.org/10.1155/2012/472537
http://www.ncbi.nlm.nih.gov/pubmed/22496607
http://dx.doi.org/10.1016/j.ebiom.2017.02.003
http://www.ncbi.nlm.nih.gov/pubmed/28196656
http://dx.doi.org/10.1038/nature04388
http://www.ncbi.nlm.nih.gov/pubmed/16327776
http://dx.doi.org/10.7554/eLife.13974
http://www.ncbi.nlm.nih.gov/pubmed/26978794
http://dx.doi.org/10.1128/JVI.01745-14
http://www.ncbi.nlm.nih.gov/pubmed/25056895
http://dx.doi.org/10.1128/JVI.00118-08
http://www.ncbi.nlm.nih.gov/pubmed/18480457
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Cell Lines and Antibodies 
	Source of Virus Sequences 
	In Silico Prediction of CEPs and Sequence Modifications 
	Generation of synZIKV Constructs 
	In Vitro Transcription and RNA Transfection 
	Virus Stocks and Passaging 
	Virus Titration by Plaque Assay 
	RLuc Assays 
	Antiviral Assays and Stability of synZIKV-R2A Viruses 
	Immunofluorescence Microscopy and Western Blotting 

	Results 
	In Silico Prediction of CEPs and Assembly of Synthetic Full Length ZIKV cDNAs 
	Functionality of Full-Length synZIKV Wild-Type Genomes 
	Replication and Stability of synZIKV Luciferase Reporter Virus Genomes 
	SynZIKV Reporter Viruses Suitable for Live Cell Imaging 
	Sub-Genomic synZIKV Replicons 

	Discussion 
	References

