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Abstract: Bacteriophages SP-15 and ΦW-14 are members of the Myoviridae infecting Bacillus subtilis
and Delftia (formerly Pseudomonas) acidovorans, respectively. What links them is that in both cases,
approximately 50% of the thymine residues are replaced by hypermodified bases. The consequence
of this is that the physico-chemical properties of the DNA are radically altered (melting temperature
(Tm), buoyant density and susceptibility to restriction endonucleases). Using 454 pyrosequencing
technology, we sequenced the genomes of both viruses. Phage ΦW-14 possesses a 157-kb genome
(56.3% GC) specifying 236 proteins, while SP-15 is larger at 222 kb (38.6 mol % G + C) and encodes
318 proteins. In both cases, the phages can be considered genomic singletons since they do not possess
BLASTn homologs. While no obvious genes were identified as being responsible for the modified
base in ΦW-14, SP-15 contains a cluster of genes obviously involved in carbohydrate metabolism.

Keywords: bacteriophage; hypermodified bases; alpha-putrescinylthymine; ΦW-14; SP-15; Bacillus;
Delftia; DNA sequencing; 5-hydroxymethyluracil; 5-hydroxypentyluracil

1. Introduction

Classically, phage DNAs were characterized biophysically on the basis of their melting
temperature (Tm) and buoyant density in CsCl. These values can be correlated with the guanine plus
cytosine (mol % G + C) content in the DNA [1–3], and a discrepancy between the values obtained with
the two techniques served as a red flag for the presence of modified bases. There are a number of
well-documented cases in which one of the canonical bases is completely replaced by another base
(Table 1).
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Table 1. Examples of bacteriophages where a canonical base is completely replaced by another base.

Phage Host Substitution Reference

ΦR1-37 Yersinia Thy→ Ura [4]
PBS1 Bacillus Thy→ Ura [5]

SPO1, SP8, SP10 Bacillus Thy→ 5HmUra (a portion becomes α-glutamylthymine) [6–9]
XP-12 Xanthomonas Cyt→ 5MeCyt [10,11]

Teven phages Escherichia Cyt→ 5HmCyt (glycosylated) [12,13]
RL38JI Rhizobium Cyt→ 5HmCyt (variably glycosylated) [14]
S-2L Synechococcus Ade→ 2AminoAde [15]

Thy, thymine; Ura, uracil; 5HmUra, 5-hydroxymethyluracil; Cyt, cytosine; 5MeCyt, 5-methylcytosine; 5HmCyt,
5-hydroxymethylcytosine; Ade, adenine; 2AminoAde, 2-aminoadenine.

Partial or complete replacement of one base by another can also result in resistance to a broad range
of restriction endonucleases [16–18], difficulty in cloning [19] and problems in dideoxy sequencing.
The presence of modified and hypermodified bases in viral DNAs has been reviewed [17,20,21].
This publication will describe two phage DNAs in which thymine is only partially replaced by a
fifth base.

1.1. Delftia Phage ΦW-14

In 1967, Andrew Kropinski using raw sewage from the Iona Island wastewater treatment plant
(Richmond, BC, Canada) and Delftia (Pseudomonas) acidovorans Strain #14 from Roger Stanier’s culture
collection at the University of California, Berkeley [22], isolated phage ΦW-14. It was named after
the laboratory where it was isolated: Room 14 in the Wesbrook Building at the University of British
Columbia. This virus has a head of 85 nm and a tail of 118 × 20 nm with indistinct short fibers [23]
(see also [24]).

It was fully characterized with respect to its host range, adsorption rate constant (1.9× 10−9 mL/min),
one-step growth curve (latent period, 63 min; burst size, 300) and sensitivity to pH, temperature,
sonication and UV irradiation [23]. It spontaneously generates an unusually high number of plaque
morphology variants and can enter into a carrier state with its host [25]. The most exciting aspect of this
research was the observation of a major discrepancy between the mol % G + C calculated on the basis
of Tm measurements (71.9%) and that from CsCl buoyant density determinations (6%). Hydrolysis
of the DNA with formic acid, but not perchloric acid, revealed five UV-adsorbing spots on paper
chromatograms [26]. Spectrophotometric quantitation of the resolved bases indicated that the mol %
G + C was in fact 54.8 and that approximately 50% of the thymine content was replaced by the fifth base,
which was initially called kropinsine. The structure of this hypermodified base was elucidated through
chemical analysis and NMR spectroscopy revealing it to be 5-(4-aminobutylaminomethyl)uracil,
now commonly called alpha-putrescinylthymine (PutThy) [26,27] (Figure 1).

Subsequent studies concentrated on the biosynthesis of PutThy. Phage infection caused the cessation of
host DNA synthesis within 10 min, but no host genome degradation occurs. which led to the conclusion
that all of the ΦW-14 nucleotide precursors are synthesized de novo [28]. Studies using a thymidine
auxotroph demonstrated that the initial stage of PutThy synthesis employed a phage-specific synthase,
which catalyzed the synthesis of 5-hydroxymethyl-dUMP from N(5),N(10)-methylene-tetrahydrofolate
and dUMP [29]. ΦW-14-infected Delftia acidovorans nucleotide pools do not contain dTTP as a result of
the appearance of dTTPase activity [28], but do contain hydroxymethyl dUTP (HmdUTP), resulting
from the synthesis of a phage-encoded hydroxymethyluracil synthase [30].

The alpha-putrescinyl residues of ΦW-14 DNA could be labelled using ornithine [14C(5)],
but not arginine[14C(U)], nor ornithine[14C(1)], suggesting that the putrescinyl moiety is derived from
putrescine [31]. However, ornithine-labeled nucleotides were not detected in phage-infected cells [28].
The latter finding suggested that the modification occurred post-polymerization. This was investigated
further using conditional lethal (amber) mutants. Several ΦW-14 mutants were affected in phage DNA
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synthesis [32]. For example, mutant am37 is defective in PutThy synthesis and abnormally accumulates
5-[(hydroxymethyl)-O-pyrophosphoryl]uracil (HmPPUra) in the newly-synthesized phage DNA [33].
This led to the conclusion that after DNA polymerization, HmPPUra-containing DNA was modified
with putrescinyl side chains to form PutThy-containing DNA. This resulted in an investigation of the
origin of the putrescinyl side chains, which resulted in the finding that the D. acidovorans polyamines
are putrescine, 2-hydroxyputrescine and spermidine [34,35]. The final stage involves the modification
of a portion of the HmUra residues to form PutThy and the replacement of the remainder by Thy.
The mechanisms for the latter step are unknown.
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Figure 1. Structures of the hypermodified thymine derivatives in ΦW-14 (top) and SP-15 (bottom)
phage DNAs. In both cases, R1 indicates the deoxyribosyl moiety; while in the latter case, R2/R3
represent glucosyl and phosphoglucuronolactoneresidues.

ΦW-14 DNA was found to be alkali sensitive [36]. RNA is alkali-labile because the 2′-OH on
the ribose residue, under basic conditions, allows the formation of a 2′–3′ cyclic phosphate, thereby
breaking the phosphodiester backbone. In ΦW-14 DNA, under basic conditions, intramolecular
nucleophilic attack by the unprotonated putrescinyl amine could cleave the DNA phosphodiester
backbone, whereas at neutral pH, the amine group will likely be protonated and unable to perform
such a nucleophilic attack. Presumably, this can only occur because the long side chain on the thymine
enables the chain to contact the phosphodiester bond. Acetylation of the PutThy residues in the
DNA lowered the Tm of the DNA to that expected for its mol % G + C [37]. PutThy is required
for packaging of full-length ΦW-14 DNA [24]. PutThy is not randomly distributed within the DNA
(Warren, unpublished data), and its location might be important for packaging.

1.2. Bacillus Phage SP-15

Martha J. Taylor and Curtis B. Thorne isolated bacteriophage SP-15 from soil using Bacillus subtilis
W-23 as the host [38]. It was characterized as an unclassified species in the family Myoviridae in the
International Committee on Taxonomy of Viruses (ICTV) 6th Report (1995). SP-15 DNA was found
to display extraordinary biochemical properties for a naturally-occurring DNA [39]. These include
a unique alkaline sensitivity, reactivity with orcinol typical of a pentose, the lowest known melting
temperature of any natural DNA (61.5 ◦C) and a high CsCl buoyant density (1.761 g/mL). Under
alkaline conditions that hydrolyze RNA (0.3 M NaOH, 37 ◦C), but not DNA to mononucleotides,
SP-15 DNA appears to become fragmented. In 1971, Julius Marmur directed his laboratory group to
determine whether SP-15 DNA might be a unique example of an organism with an unusual partial
DNA-RNA hybrid genome where ribose, which is orcinol reactive, would be present in addition to
deoxyribose. NMR and mass spectroscopic analysis revealed that the unusual DNA modification
was a hypermodified uracil with a 4,5-dihydroxypentyl group attached to the 5-position of uracil
(DHPU; Figure 1 [40]). This modified uracil replaces over 50% of the normal thymine residues [41–43].
However, the 4,5-dihydroxypentyl modification did not explain the orcinol reactivity or the alkaline
sensitivity of the DNA.
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Subsequently, the alkaline sensitivity of SP-15 DNA was proposed to be due to a phosphorylated
pentose of unspecified nature as part of the DHPU nucleotide residue [44]. In 1981, the phosphorylated
non-backbone sugar of the SP-15 genome was identified as glucuronolactone linked via a
phosphodiester group to one of the two hydroxyls of the DHPU residue (Figure 1, [45]). The second
hydroxyl group is attached to a glucose residue [39,45]. It has not been determined which of the two
hydroxyl groups of DHPU is glycosylated and which contains the glucuronolactone moieties. Release
of the phosphoglucuronate occurs upon treatment with alkali, although the partial fragmentation of
SP-15 DNA in alkali remains to be explained, as with ΦW-14 DNA, it is possible that, after alkaline
cleavage of the phosphoglucuronate moiety on the DHPU, the 5-hydroxyl on the DHPU is able to
intramolecularly cleave the phosphodiester backbone. This must be an infrequent occurrence, because
the size of the DNA is not dramatically decreased by alkaline treatment. With phage SPO1 DNA,
the side chain is not sufficiently long to allow such nucleophilic attack, and therefore, this DNA is not
alkali sensitive.

Because the phosphate of the phosphoglucuronate is diesterified, it adds an additional negative
charge to the hypermodified DNA residue of SP-15. Therefore, it is likely that the glucuronosyl
moiety exists predominantly in its lactone form to prevent yet another additional negative charge
from being present on the modified uracil. The glucose moiety is not released by alkaline hydrolysis
indicating that the non-backbone phosphodiester linkage is confined to the phosphoglucuronate.
The strong orcinol-reactivity of SP-15 DNA is attributable to the glucuronic acid moiety [45] rather
than the previously-speculated presence of DNA backbone ribose phosphate linkages replacing some
deoxyribose phosphate moieties. While evidence indicates that the DHPU structure is generated before
DNA synthesis [43], it is unclear whether the addition of the glucuronic acid-1-phosphate and glucose
moieties of DHPU occurs before or after the deoxynucleotide triphosphate is incorporated into the
DNA during phage replication.

Lamentably, by the end of the last century, studies on these viruses came to an end because of
funding problems and the lack of DNA sequence data. The hypermodified DNAs could not be readily
cloned or sequenced. This changed with the introduction of clone-independent sequencing, specifically
454 pyrosequencing technology [46,47], which we used in the present study of the genomes of these
extraordinary phages.

2. Materials and Methods

2.1. Host and Phages

ΦW-14 (9355-B1™) and its host Delftia acidovorans (den Dooren de Jong) Wen et al. (9355™)
were purchased from the American Type Culture Collection (Manassas, VA, USA); while phage SP-15
(HER130) and its host Bacillus subtilis (HER1130) were obtained from the Félix d’Hérelle Reference
Center for bacterial viruses of the Université Laval (Laval, QC, Canada).

2.2. Propagation

These phages were cultured in Luria broth (Difco) containing 10 mM CaCl2 at 30 ◦C and harvested
post DNase I treatment by polyethylene glycol precipitation [48]. Phage DNA was isolated using the
protocols described by Sambrook and Russell [49].

2.3. Electron Microscopy

Concentrated phage lysates were deposited on carbon-coated Formvar films on copper grids,
stained with 2% uranyl acetate (pH 4.0) and examined using a Philips EM 300 electron microscope [50].
The magnification was calibrated using phage T4 tails.
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2.4. DNA Sequencing, Sequence Assembly and Annotation

The sequence of both phages was determined using 454 technology at the McGill University and
Génome Québec Innovation Centre (Montreal, QC, Canada). The sequences were assembled using
Newbler and annotated using MyRAST [51,52] followed by visual inspection in Kodon 3.0 (Applied
Maths, Austin, TX, USA). To eliminate the potential of terminal redundancy in these phages, the raw
sequencing reads were also assembled using DNASTAR’s SeqMan NGen12 (Madison, WI, USA).

The phage proteins were scanned for homologs using the PSI-BLASTp [53], and domains and
motifs were identified using the InterProScan [54] features of Geneious R7 (BioMatters Ltd., Auckland,
New Zealand) and HHpred [55] in an effort to identify the functions of the proteins. In addition,
the mass and pI of each of the phage proteins was recorded (Supplementary Tables S1 and S2).

Comparative genomics and proteomics: Comparative genomics was assessed using BLASTn
against the non-redundant NCBI database limited to the taxonomic identifier “Viruses” (taxid: 10239),
while comparative proteomics employed CoreGenes 3.5 [56,57]. Phylogenetic analysis of the major
capsid and “thymidylate synthases” was conducted using “One click” mode from phylogeny.fr [58].
The data were exported in Newick format and visualized in FigTree [59].

2.5. GenBank

The annotated sequences of SP-15 and ΦW-14 were deposited to GenBank under the accession
numbers KT624200 and GQ357915, respectively.

2.6. Diagrams

Schematic maps of the SP-15 and ΦW-14 genomes were prepared using the CGView Comparison
Tool [60,61] and annotated with Adobe Illustrator. The chemical structures were produced using
ChemDraw [62]. The short gene map diagram associated with Table 2 was prepared using EasyFig [63].

3. Results

3.1. Phage ΦW-14

The most recent electron micrographic analysis of this phage (Figure 2) revealed that the phage
head is icosahedral as indicated by the observation of pentagonal and hexagonal particles, and the
tail contractile. The diameter of the capsid is about 81 nm, while the tail is 150 nm in the extended
state and 80 × 23 nm in the contracted state. A 7-nm neck, but no collar, was observed. The tail was
terminated by a 33-nm baseplate to which indistinct 12-nm fibers were attached.Viruses 2018, 10, x FOR PEER REVIEW  6 of 12 

 

 
Figure 2. Electron micrograph of phages ΦW-14 (left) and phage SP-15 (right) stained with 2% w/v 
uranyl acetate. 

DNA pyrosequencing revealed a 157-kb (56.3 mol % G + C) genome with no evidence for 
terminal repeats and that encodes for 236 proteins and no tRNAs (Supplementary Table S1; 
Supplementary Figure S1). BLASTn analysis reveals that it is a genomic orphan or singleton since 
they do not possess BLASTn homologs [64], but it does share 47 protein homologs (16.9%) with 
coliphage T4, as shown using CoreGenes 3.5 [57]. Indeed, Petrov and Karam considered it part of the 
T4 superfamily [65]. 

As described in the Introduction, we expected to find genes that could encode a dTTPase 
(deoxythymidine-5′-triphosphatase), a hydroxymethyluracil synthase and possibly a novel DNA 
polymerase, plus enzymes involved in polyamine metabolism. The deduced 912-amino acid DNA 
polymerase (gp34) is related to other T4-like gp43 proteins and has its closest homologs among 
phages that have recently been classified to the viral family Ackermannviridae [66]. This is also true for 
the hydroxymethyluracil synthase (Figure 3). Interestingly, there is some evidence that other 
members of the Ackermannviridae family may possess modified bases derived from HmUra [67,68]. 
However, the only deduced ΦW-14 protein remotely related to a polyamine biosynthetic protein is a 
434-amino acid polypeptide that is a putative bifunctional glutathionylspermidine 
synthetase/amidase (gp91). This polypeptide shows homology to proteins from three Pseudomonas 
phages-phiPMW [69], ventosus (GenBank Accession No. MG018930) and Lu11 [70,71]. Interestingly, 
the DNA of the latter phage is also resistant to many restriction endonucleases [72]. 

 
Figure 3. Phylogenetic analysis of the major capsid protein (gp39, left panel) and hydroxymethyluracil 
synthase (gp230, right panel) of Delftia phage ΦW-14 reveals a peripheral relationship with viruses 
belonging to the Ackermannviridae family. 

Figure 2. Electron micrograph of phages ΦW-14 (left) and phage SP-15 (right) stained with 2% w/v
uranyl acetate.



Viruses 2018, 10, 217 6 of 13

DNA pyrosequencing revealed a 157-kb (56.3 mol % G + C) genome with no evidence for terminal
repeats and that encodes for 236 proteins and no tRNAs (Supplementary Table S1; Supplementary
Figure S1). BLASTn analysis reveals that it is a genomic orphan or singleton since they do not possess
BLASTn homologs [64], but it does share 47 protein homologs (16.9%) with coliphage T4, as shown
using CoreGenes 3.5 [57]. Indeed, Petrov and Karam considered it part of the T4 superfamily [65].

As described in the Introduction, we expected to find genes that could encode a dTTPase
(deoxythymidine-5′-triphosphatase), a hydroxymethyluracil synthase and possibly a novel DNA
polymerase, plus enzymes involved in polyamine metabolism. The deduced 912-amino acid DNA
polymerase (gp34) is related to other T4-like gp43 proteins and has its closest homologs among phages
that have recently been classified to the viral family Ackermannviridae [66]. This is also true for the
hydroxymethyluracil synthase (Figure 3). Interestingly, there is some evidence that other members
of the Ackermannviridae family may possess modified bases derived from HmUra [67,68]. However,
the only deduced ΦW-14 protein remotely related to a polyamine biosynthetic protein is a 434-amino
acid polypeptide that is a putative bifunctional glutathionylspermidine synthetase/amidase (gp91).
This polypeptide shows homology to proteins from three Pseudomonas phages-phiPMW [69], ventosus
(GenBank Accession No. MG018930) and Lu11 [70,71]. Interestingly, the DNA of the latter phage is
also resistant to many restriction endonucleases [72].
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Figure 3. Phylogenetic analysis of the major capsid protein (gp39, left panel) and hydroxymethyluracil
synthase (gp230, right panel) of Delftia phage ΦW-14 reveals a peripheral relationship with viruses
belonging to the Ackermannviridae family.

An important conclusion from our analysis of the genome of this virus is that the presence of a
hypermodified base may not be readily assessable from the phage’s DNA sequence. Therefore, great
care should be used in distinguishing amino acid sequences of hydroxymethyluridylate synthase
from thymidylate synthases. Enzymatic analyses are often needed in addition to the evaluation of
DNA-derived amino acid sequences when deducing the likely function of phage proteins.

3.2. Phage SP-15

Buoyed by our success in sequencing the ΦW-14 genome, we turned to that of SP-15. The most
recent electron micrographic analysis of this phage (Figure 2) revealed it to be a large phage with an
isometric head and rigid contractile tail; and the observation of occasional particles with two tails.
The head diameter was 105 nm between opposite apices and the slender tail 250 × 20 nm in the
extended state, showing about 56 striations with a periodicity of 3.5 nm. In the contracted state, the tail
was 100 × 23 nm. Again, it showed a similarly-sized neck and no collar. The base plate was indistinct
(27 × ca. 3 nm), carrying short spikes of about 10 nm in length [73].
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DNA sequencing revealed that the genome was 222 kb (38.6 mol % G + C) and that it was predicted
to encode 306 proteins, and no tRNAs (Supplementary Table S2; Supplementary Figure S2). It was also
a genomic orphan (or singleton).

This phage encodes two “thymidylate synthetases”, the products of genes 9 and 130. These two
proteins both contain Pfam family Thy1 (PF02511.9; [74]) motifs [75] and are structurally homologous
to Thermotoga maritima flavin-dependent thymidylate synthase [76,77], though the latter protein had a
low expect (E) score. The product of gene 130 has no homologs, while the gene 9 protein is peripherally
related to a currently unclassified group of Streptomyces phages and members of the Andromedavirus
clade. Essentially nothing is known about these phages, though their genomes have been sequenced.
We hypothesize that gp9 is a thymidylate synthase, while gp130 is the hydroxymethyluridylate
synthase (Figure 4).
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Figure 4. Phylogenetic analysis of the major capsid protein (gp34, left panel) and synthases (gp09, right
panel) of Bacillus phage SP-15 reveals the former’s relationship with cyanobacterial and Sinorhizobium
phage protein, while the gp09 synthase is related to an unclassified group of Streptomyces phages and
Andromedavirus.

DNA replication involves a phage DNA polymerase, which is the product of genes 109 and 111,
resulting in the incorporation of dTMP and DHPU into the nascent DNA. The biosynthesis of the
DHPU, its glucuronolactone-1-phosphate and glucosyl moieties probably involves enzymes specified
by genes within a 10-gene cluster (genes 146 to 155) in the SP-15 genome. These are listed in Table 2
and Figure 5 and integrated into an overall picture in Figure 6.

Table 2. Summary of the genes thought to be involved in the modification of the 4,5-dihydroxypentyl
group attached to the 5-position of uracil (DHPU) residues in SP-15 DNA.

Gene Product Function

11 glucose-6-phosphate isomerase Glc-6-P→ Fru-6-P
129 acyl carrier protein reductase
146 UDP-glucose dehydrogenase UDP-Glc→ UDP-GlcA
148 UTP-glucose-1-phosphate uridylyltransferase Glc-1-P→ UDP-Glc
149 glycosyl transferase
151 CDP-glycerol:poly(glycero-phosphate) glycerophosphotransferase
152 glycosyl transferase
155 phosphomannomutase Glc-6-P→ Glc-1-P
219 dCMP deaminase dCMP→ dUMP
130 hydroxymethyldeoxyuridine synthase dUMP→ dHmdUMP
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Figure 6. Detailed structure of the hypermodified base in SP-15 DNA with potential phage proteins
indicated in red.

Most of the cluster genes are not present in the genomes of other bacteriophages that are known to
contain modified uracil moieties. The phage gene encoding CDP-glycerol glycerophosphotransferase
(also called teichoic acid synthase, gene 151) together with uridylyl transferase (gene 148) and a glucose
dehydrogenase (gene 146) may be required for synthesis of a phospho-esterified dihydroxypentyl
chain, which could then be transferred to the uracil by a UTP-glucose-1-phosphate uridylyltransferase
encoded by another gene in the cluster. The UDP-glucose dehydrogenase and several other genes in
the cluster are similar to some genes in Bacillus and Micrococcus species known to catalyze teichoic and
teichuronic acid biosynthesis [78,79]. In Micrococcus luteus, a 440-kDa enzyme complex (encoded by a
gene cluster like that of SP-15) contains two types of glycosyltransferases, a glucuronosyltransferase
and other enzymes that are necessary for teichuronic acid biosynthesis [79].

Horizontal gene transfer leading to mosaic phage genomes is frequently raised in manuscripts
(see, e.g., [80]), but the origins of the nonhomologous regions are frequently not addressed. Here,
we have a clear example where the closest homologs are to be found in non-prophage regions of
bacterial genomes. As such, our results clearly rank with the discovery of host photosynthesis genes in
cyanomyoviruses [81] and quorum sensing genes in Clostridioides difficile phages [82].

Whether or not insertion of the (modified) DHPU or the normal thymine deoxynucleoside
triphosphate precursors occurs randomly in the DNA has not been determined. Analysis of di-,
tri-and tetranucleotides in SP-15 DNA digests revealed that adjacent DHPU residues are not found
in the DNA backbone [45]. This suggests that the phosphodiester within the modified uracil base is
preventing, by either steric or charge interference, the positioning of two neighboring DHPU bases
during replication. The biological functionality of SP-15′s hypermodified DNA is still unclear, but the
modified base does not seem to be simply protecting the phage DNA from phage-encoded DNA
degradative enzymes and thereby allowing only degradation of host DNA [43]. DNA containing
normal amounts of DHPU is apparently not needed for phage gene expression, but proper phage
packaging does appear to require the presence of the hypermodified DHPU [83].
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To the next generation of phage scientists goes the challenge of identifying other novel nucleotides
in phage DNA. Microchemical analyses and single-molecule real-time (SMRT) DNA sequencing using
PacBio or Nanopore instruments [84] should assist in meeting this challenge. In the case of these
two phages with baroque DNAs, much more research is needed on the biochemistry and genetics
of the post-polymerization reactions in ΦW-14, and specifically what controls the insertion of side
chains. For phage SP-15, studies are needed on what controls the differential incorporation of dTTP
and dDHpentylUTP; and where the two saccharides are attached. Both phages are unusually sensitive
to strand scission caused by alkali, yet this has not been mechanistically investigated.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4915/10/5/217/s1,
Figure S1: Delftia phage phiW-14 genomic map, Table S1: Delftia phage phiW-14 genome features, Figure S2:
Bacillus phage SP-15 genomic map, Table S2: Bacillus phage SP-15 genome features.
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