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Abstract: Bagaza virus is a mosquito-borne flavivirus, first isolated in 1966 in Central African Republic.
It has currently been identified in mosquito pools collected in the field in West and Central Africa.
Emergence in wild birds in Europe and serological evidence in encephalitis patients in India raise questions
on its genetic evolution and the diversity of isolates circulating in Africa. To better understand genetic
diversity and evolution of Bagaza virus, we describe the full-genome characterization of 11 West African
isolates, sampled from 1988 to 2014. Parameters such as genetic distances, N-glycosylation patterns,
recombination events, selective pressures, and its codon adaptation to human genes are assessed. Our study
is noteworthy for the observation of N-glycosylation and recombination in Bagaza virus and provides
insight into its Indian origin from the 13th century. Interestingly, evidence of Bagaza virus codon adaptation
to human house-keeping genes is also observed to be higher than those of other flaviviruses well known
in human infections. Genetic variations on genome of West African Bagaza virus could play an important
role in generating diversity and may promote Bagaza virus adaptation to other vertebrates and become
an important threat in human health.
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1. Introduction

Bagaza virus (BAGV) belongs to the Flaviridae family, Flavivirus genus and Ntaya serological
group. BAGV is a mosquito-transmitted virus, which was first isolated in the Bagaza district of the
Central African Republic (CAR), in 1966, from a pool of mixed-species female Culex spp. mosquitoes
during entomological investigations [1]. As is characteristic of flaviviruses, BAGV possesses a linear
single-stranded, positive-sense RNA genome [2]. The BAGV genome is 10,941 nucleotides in length,
encoding a single polyprotein (3426 amino acids) from which 11 viral proteins are derived, and flanked
by 5′ and 3′ untranslated regions (UTRs) of 94 and 556 nt, respectively [3].

BAGV has been isolated repeatedly with a high titer from different species of mosquitoes in Central
and West African countries [4–6], and in India, where serological investigations suggested subclinical
infections in humans [7,8]. Despite this widespread circulation of BAGV, outbreaks involving humans
or animals have not yet been reported from these countries. Subsequently, in September 2010, BAGV
was associated with a high mortality among game birds (Partridges and pheasants) in southern Spain,
the first detection of BAGV in Europe and the first isolation from a vertebrate host [9,10]. However, it is
not surprising that BAGV infects birds since it has been shown to be synonymous with Israel turkey
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meningoencephalitis virus (ITV), a pathogen affecting poultry (turkeys) and close to West Nile virus
(WNV) in several genomic regions [3,11]. Although diverse studies have contributed greatly to our
understanding of the transmission modes of BAGV [8,12] and the pathogenesis of BAGV infection [13],
only one study has addressed BAGV genetic diversity, reporting a high homology >90% between
Central African Republic, Indian and Spanish BAGV isolates [9]. In West Africa, there is a lack of data
on BAGV genetic diversity. To fill this gap and gain better insights into BAGV molecular evolution,
we characterized the full-genome of 11 BAGV isolates, sampled from 1988 to 2014 in Senegal and
Côte d’Ivoire. Firstly, we assessed genetic distances, phylogenetically informative sites found in
more than one sequence contributing to branch ordering, N-glycosylation patterns, recombination
events, selective pressures on West African BAGV sequences and their evolutionary phylogenetic
relationships with previously available BAGV genomes. Secondly, to assess evidence of future BAGV
codon adaptation to human house-keeping genes, a bio-informatics approach was used for analysis of
codon adaptation biases.

2. Materials and Methods

2.1. Primers Design

RT-PCR amplification and complete genome sequencing were achieved by using overlapping primers
designed by aligning available BAGV sequences from GenBank with Muscle algorithm implemented
in the Mega 7.0 software (https://www.megasoftware.net/) [14]. All primer sets were designed using
Primer3web® software (version 4.0.0, Whitehead Institute for Biomedical Research, Cambridge, MA, USA)
and submitted to a BLAST analysis on NCBI to avoid non-specific cross-reactions. Primers were synthetized
by TIBMol-Biol (Berlin, Germany) and details are summarized in Table 1.

Table 1. Description of primers used for full-genome characterization of Bagaza virus isolates.

Primer Sequence 5′-3′ Direction Position
on Genome

Melting Temperature
(◦C)

5′raceBAGV1 CATCAATCCGACATCCAGAG Antisense Envelope 53
5′raceBAGV2 CCTTTCGGAAGCTTTTCAAG Antisense Envelope 53

BAG28F TTGACAGCTCAACACAAGTGC Sense Envelope 55
BAG1037R CCATCACGACATCAATCCAC Antisense Envelope 55
BAG572F GCTCTGGATGTCGGATTGAT Sense Envelope 55

BAG2069R TTGTCCCCGATGATGATGTA Antisense NS1 55
BAG3SEG1F TCATTTCGAGTTGGCTGTGT Sense NS1 55
BAG3SEG1R TATTGGACATGGGTGGAGTG Antisense NS2B 55
BAG3SEG2F GTGTAAGGTCCGTGGGAAGA Sense NS2A 55
BAG3SEG2R CAAACCAATCAGCACTCCAC Antisense NS3 55

BAG3538F GAACCATTTCAGCTGGGTGT Sense NS3 55
BAG5064R CCGACAAGAATGCCATTACC Antisense NS4A 55
BAG4825F TCGTATGGAGGACCTTGGAA Sense NS3 55
BAG6324R CCAAAGCTCAACTGGGTTGT Antisense NS4B 55

BAG6SEG1F CGAGCCGGGTTATTGATAGT Sense NS4B 55
BAG6SEG1R ACCTGCTGCTGTTCTCCTTT Antisense NS5 55
BAG6SEG2F GACGTTTTTGACACCACTGC Sense NS5 55
BAG6SEG2R GACGCGGTCTTCTACCATTT Antisense NS5 55

BAG8234F GAAAGAACTGGAACGGATGC Sense NS5 55
BAG9750R CTCGGGGATGTCTTTTCTGA Antisense NS5 55
BAG9329F AGAATGGACCCAGAGCACAG Sense NS5 55

BAG10853R TCCCAGGTGTCAATATGCTG Antisense NS5 55
3′raceBAGV1 AAAGCGCTCAATACCGACTC Sense NS5 53
3′raceBAGV2 AGTCAGGCCACAGGTTTTGT Sense NS5 53

BAGV: Bagaza virus.

2.2. Virus stock preparation and RNA extraction

All 11 virus strains analyzed in this study were derived from the WHO Collaborating Center
(http://apps.who.int/whocc/Detail.aspx?cc_ref=SEN-5&cc_code=sen) for arboviruses and viral hemorrhagic
viruses in Senegal at Institut Pasteur de Dakar (Dakar, Senegal) (Table 2). Viral stocks were prepared
by inoculating viral strains into Aedes albopictus (C6/36) cell line in Leibovitz 15 (L-15) growth medium
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(GibcoBRL, Grand Island, NY, USA) supplemented with 5% fetal bovine serum (FBS) (GibcoBRL,
Grand Island, NY, USA), 10% Tryptose Phosphate and antibiotics (Sigma, Gmbh, Germany). BAGV
infection was confirmed after 4 days of propagation by immunofluorescence assay (IFA) using specific
hyper-immune mouse ascitic fluid, as previously described [15]. Cultures supernatants were collected
for virus RNA isolation. Extraction of viral RNA from supernatants was performed with the QIAamp
viral RNA mini kit (Qiagen, Heiden, Germany) according to manufacturer’s instructions. Extracted
RNA was frozen at −80 ◦C prior to downstream applications.

Table 2. Description of Bagaza virus isolates used in this study.

Isolate Origin Year of Isolation Specie Accession Numbers

ArA23139 Dezidougou (CI) 1988 Culex poicilipes MF380429
ArD54139 Dakar-Bango (SEN) 1989 Culex poicilipes MF380430

ArUS20100 Matam (SEN) 1989 Culex poicilipes MF380424
ArD99335 Barkedji (SEN) 1994 Culex neavei MF380431
ArD137998 Diawara (SEN) 2000 Culex poicilipes MF380425
ArD138018 Diawara (SEN) 2000 Culex poicilipes MF380426
ArD152146 Diawara (SEN) 2001 Culex poicilipes MF380433
ArD152207 Diawara (SEN) 2001 Culex poicilipes MF380432
ArD171075 Barkedji (SEN) 2004 Culex poicilipes MF380427
ArD171102 Barkedji (SEN) 2004 Culex poicilipes MF380428
ArD260266 Barkedji (SEN) 2014 Culex neavei MF380434

SEN: Senegal; CI: Côte d’Ivoire.

2.3. RT-PCR and Sequencing

Real-time RT-PCR (Reverse Transcriptase-Polymerase Chain Reaction) was performed using
the Quantitect®Probe RT-PCR Kit (Qiagen, Heiden, Germany) in a final volume of 25 µL following
previously established protocols and primers [16]. Reverse-transcription was performed using the
AMV kit (Promega, Madison, WI, USA) following manufacturer’s instructions and cDNA were stored
at−20 ◦C. The polymerase chain reaction with each primer set was carried out in a final volume of 50 µL
using the GoTaq® DNA polymerase kit (Promega, Madison, WI, USA) according to manufacturer’s
instructions. Briefly, 5 µL (around 10 µg) of cDNA was added to 45 µL of a RT-PCR mix containing
25 mM MgCl2, 10 mM of dNTP, 5X reaction buffer, 5 U Gotaq polymerase, 16.5 µL of nuclease-free water
and 40 pmols of each primer (Sense and Antisense). PCR was carried using the following conditions:
an initial incubation at 95 ◦C for 5 min, followed by 40 cycles of 95 ◦C for 1 min, 1 min at melting
temperature of primers, and 72 ◦C according to the length of PCR product and 72 ◦C during 10 min.
Subsequently, 5 µL of each PCR product was analyzed by gel electrophoresis on 1% agarose gels stained
with ethidium bromide to check the size of amplified fragments by comparison to a DNA molecular
weight marker (HyperLadder™ 1 kb, Bioline, Taunton, MA, USA). The DNA bands from the PCR
amplification were purified (QIAquick Gel Extraction Kit, Qiagen, Heiden, Germany) and sequenced
from both ends for each positive sample (Beckmann Coulter, High Wycombe, UK). Sequencing of the 5′

and 3′ termini of the viral genome was performed using a 5′ RACE kit (Invitrogen, Carlsbad, CA, USA)
and a 3′ RACE kit (Roche, Basel, Switzerland) following the manufacturer’s protocols. Additional
sequences representing strains from Central African Republic, India, strain related to Spanish wild
bird’s outbreak in 2010, the ITV and the Ntaya virus were obtained from GenBank, with the following
accession numbers, respectively: AY632545, EU684972, HQ644143, KC734549 and NC_018705.

2.4. Sequence Properties Analysis

Full-length genome sequences BAGV isolates were obtained by assembling overlapping
nucleotide sequences using the Unipro UGENE software (http://ugene.net/download.html) [17].
Multiple alignments of full-genome sequences were carried out by using Muscle algorithm
(http://www.drive5.com/muscle/) [18] within Unipro UGENE software. Based on these alignments,
we investigated the genetic properties of these different isolates circulating in West Africa, such as
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genome length and location of main conserved amino acid motifs previously described in mosquito-borne
flaviviruses (MBFVs) with sometimes mutations which include no physicochemical properties changes [3].
Comparatively, conservation of these motifs was also assessed in Culex flavivirus (CxFV) and Aedes
flavivirus (AeFV) (insect-specific flaviviruses; (ISFs)) and in Modoc virus (ModV) and Rio Bravo virus
(RBV) (Vertebrate-specific flaviviruses, also known as no known vector flaviviruses (NKVFs)). We also
searched for evidence of informative amino acid sites among BAGV sequences using the DIVEIN web
server (https://indra.mullins.microbiol.washington.edu/DIVEIN/) [19]. The genetic divergence between
previously available BAGV complete genomes and new characterized sequences was also assessed at the
nucleotide and protein levels.

2.5. Prediction of N-Glycosylation Sites

Prediction of N-glycosylated sites on the genome of BAGV were performed by submitting
complete polyproteins on online version of NetNGlyc 1.0 Server (http://www.cbs.dtu.dk/services/
NetNGlyc/). N-linked glycosylation is a post-translational event whereby carbohydrates are added to
Asparagines, which occur in the consensus sequence Asn-Xaa-Ser/Thr, where Xaa is any amino acid
except proline. “Potential” scores of predicted N-glycosylated sites across the protein chain from N- to
C-terminal were illustrated using the default threshold of 0.5 and the “jury agreement” indicates how
many of the nine networks support the prediction [20].

2.6. Prediction of Conserved Structural RNA Domains in 5′ and 3′ UTRs

The RNAz method [21] implemented in the Vienna RNA Websuite (http://rna.tbi.univie.ac.at/) [22]
was used to detect thermodynamically stable and evolutionarily conserved structural RNA domains on
complete non-coding regions of the 11 West African BAGV isolates characterized in this study and the
isolates from Spain and CAR, because complete non-coding sequences are not currently available for
the isolate from India. The RNAz method use an algorithm which testing a large set of well-known
conserved structural RNA domains and reports a “RNA classification probability” or p-value as a measure
of thermodynamic stability. Structural RNA domains with p > 0.5 are classified as stable [21]. Furthermore,
the optimal secondary structures were predicted with a minimum free energy using the RNAalifold
method [23] implemented also in the Vienna RNA Websuite that use a dynamic programming algorithm
with RNA parameters as previously described [24]. Furthermore, previously described organization of
conserved sequences (CS) [3] was analyzed on predicted secondary structures of the 3′ UTR, considering
possible repetitions of these CS. Thus, a conserved sequence was considered as imperfect when it presented
three or more differences with corresponding consensus sequence previously described [3], marked by
a deletion, an insertion, or a substitution.

2.7. Phylogenetic Tree Inference

A Bayesian phylogenetic analysis for estimation of data quality and selection of the best-fit nucleotide
substitution model were performed using Mega 6.0 (https://www.megasoftware.net/) with a discrete
Gamma distribution (+G) with 5 rate categories. Thus, a total of 24 different nucleotide substitution
models were tested and model with the lowest BIC score (Bayesian Information Criterion) was considered
to describe the best substitution pattern. Further parameters as AICc value (Akaike Information
Criterion, corrected) and Maximum Likelihood value (lnL) are also estimated [25]. A maximum
likelihood tree was then constructed with complete polyprotein sequences from insect-specific flaviviruses,
no known vector flaviviruses, tick-born flaviviruses, mosquito-borne flaviviruses, the 11 ORFs from
new characterized West African BAGV isolates and BAGV sequences previously available from Spain
(HQ644143-4, KR108244-6), India (EU684972) and CAR (AY632545). Tree was inferred using FastTree v2.1.7
(http://www.microbesonline.org/fasttree/) [26], where nucleotide substitution was modeled using General
Time-Reversible with a proportion of invariant sites (GTR+I). Nodes were labeled with local support values,
which were computed with the Shimodaira-Hasegawa test (SH-like) for 5000 replications. Topology was
visualized by FigTree v.1.4.2 (http://tree.bio.ed.ac.uk/software/figtree/).

https://indra.mullins.microbiol.washington.edu/DIVEIN/
http://www.cbs.dtu.dk/services/NetNGlyc/
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2.8. Recombination Detection

To prevent potential biases during phylogenetic inference due to recombination, all polyprotein
sequences were analyzed using seven methods (RDP, GENECONV, MaxChi, BootScan, Chimaera, SiScan,
and 3Seq) implemented in the Recombination Detection Program (RDP4beta 4.8) to uncover evidence
for recombination events [27]. The disentangle recombination signals option was “on” and the linear
sequence setting was used. The remaining settings were kept at their default values. Only events with
p-values < 1× 10−6 that were detected by four or more methods were considered to represent strong
evidence for recombination using 100 permutations and the Bonferroni correction [28] implemented in the
RDP4 program to prevent false positive results. A chi-square test was used to determine if the sequence
identity between a recombinant isolate and a given parent was significantly different both inside and outside
the recombinant region. In addition, a BootScan analysis including the recombinant and the parental strains
determined above was also performed to confirm these putative recombination events. The occurrence
of recombination in BAGV genomes was also investigated with a method called Genetic Algorithms for
Recombination Detection (GARD) implemented in Datamonkey web server (http://datamonkey.org) [29],
that estimates breakpoints based on a genetic algorithm. The statistical significance of putative breakpoints
was evaluated through Kishino-Hasegawa (HK) tests; breakpoints were considered significant if their p value
was <0.05. Separate Neighbor-Joining (NJ) trees were constructed for identified putative recombinant
region and non-recombinant alignment partitions dictated by the breakpoint locations. Phylogenetic
trees were inferred using the percentage of 1000 bootstrap replications under the appropriate model of
nucleotide substitution.

2.9. Evaluation of Selection Patterns on ORFs

Recombination can mislead inference of positive natural selection if it is not properly accounted
for. If recombination was identified, these potential recombinant sequences were excluded from further
analyses to avoid inferential biases [30]. The non-synonymous/synonymous rate ratio (dN/dS) is
a widely used method to detect positive selection. The statistical test dN/dS permitted to distinguish
diversifying or positive selection (dN/dS > 1) from negative or purifying selection (dN/dS < 1).
Positive selection is inferred when the rate of non-synonymous (dN) substitutions is higher than that
of synonymous (dS) substitutions (dN > dS). Episodes of positive selection in each gene of BAGV
were analyzed using methods of estimation among individual sites and internal sites on branches
of the phylogenetic tree. For this, a total of 9 alignment partitions were performed corresponding
to C, prM, E, NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5 proteins. As site model, we used the
single-likelihood ancestor counting (SLAC) that estimated the difference between non-synonymous
(dN) and synonymous (dS) rates per codon site at 0.1 significance level. The fast unconstrained
Bayesian approximation (FUBAR) method which evaluated episodic positive selection at each site in
the alignment at posterior probability ≥0.9 was also used [31]. The mixed effects model of evolution
(MEME) was also conducted at a 0.1 significance level for estimation selective pressure changes among
codon sites. Finally, branch-site random effects likelihood (Branch-site REL) analysis was used to
evaluate evidence of diversifying selection on specific branches in the phylogenetic tree at a proportion
of sites, considering p-values less than 0.05 as significant. All four methods were conducted with
HyPhy package implemented in Datamonkey web server [29]. An episode of positive diversifying
selection in concern of a region was considered if it was detected by at least two different methods.

2.10. Bayesian Analysis

The evolutionary analysis was performed using a strict clock GMRF Bayesian Skyride coalescent
tree prior [32,33]. The GTR substitution model was used with 4 gamma rate categories. The Bayesian
Markov Chain Monte Carlo (MCMC) algorithms using BEAST v1.8.4 (http://beast.community/) [34]
were employed to estimate the rate of BAGV evolution from first isolation to 2014. MCMC analyses
were run for 100 million generations, sampling every 100 thousand to ensure convergence of
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estimates. Population size (ESS) above 200 was assessed using the analysis program Tracer v1.6
(http://beast.bio.ed.ac.uk/Tracer). The posterior distribution of trees obtained from the BEAST
analysis was also used to obtain the Bayesian maximum clade credibility (MCC) tree for these sequences
generated by TreeAnnotator v.2.3.2 (http://beast.community/treeannotator) (from 100 million) after
removing 10% of the runs burn-in and visualized by FigTree v.1.4.2.

2.11. Codon Adaptation Indexes to Human House-Keeping Genes

The Codon Adaptation Index (CAI) is a measure of the synonymous codon usage bias making
comparisons of codon usage preferences in different organisms and assessing the adaptation of viral
genes to their hosts [35,36]. CAI was applied in many recent studies involving humans and RNA
viruses [37–39]. To know if there is evidence of BAGV adaptation for codon usage in humans, the CAI
was calculated for each isolate. To calculate normalized CAI, full-length polyprotein sequences of
West African BAGV isolates and previously available BAGV sequences from Spain were compared to
that of human using CAIcal v1.4 program (http://genomes.urv.es/CAIcal/) [40]. First, we obtained
a “raw” CAI (rCAI) and then, the CAI was normalized by the “expected neutral CAI” (eCAI) value
based on 1000 random viral sequences using similar length, codon composition, GC-content and
human amino acid usage. Indeed, a table for human codon usage containing the entirety of human
coding genes is publicly available [41]. Based on this table, we created a new table where only the
3804 identified human housekeeping genes were considered [42]. Normalized CAI threshold was
obtained by calculating rCAI/eCAI values and a value above ‘1’ is higher than neutral and considered
as evidence of codon adaptation to the reference set of codon preferences [40]. CAI values obtained for
BAGV were then compared to those of others MBFVs well known to infect humans such as Dengue
virus (DENV), Usutu virus (USUV), WNV, Zika virus (ZIKV) and Yellow fever virus (YFV), NKV
flaviviruses (ModV and RBV) and ISFs (CxFV and AeFV), using the non-parametric Wilcoxon test
with R program. A p-value less than 0.05 was considered as significant. Sequences of tobacco mosaic
virus (TMV) were compared to human codons and used as negative control to provide an example
that results for codon adaptation to human house-keeping genes are robust and not false positives
or anomalies. As there are no known cases of human infection, or evidence of human adaptation for
TMV, we expected all sequences to have a lower CAI threshold than the calculated CAI.

3. Results

3.1. Genetic Diversity

In this study, a total of 11 full-genome sequences (10,954 bp) of West African BAGV isolates were
obtained by sequencing overlapping PCR amplifications covering the genome and by using RACE
(Rapid amplification of cDNA ends) techniques for the terminal ends and deposited in GenBank
(www.ncbi.nlm.nih.gov/genbank/) (Accession numbers: MF380424-34) (Table 1). Analysis of new
characterized BAGV complete open reading frames (ORFs) was performed at nucleotide and amino
acid levels including previously available sequences from CAR (isolate DakArB209_CAR_1966, accession
No. AY632545) and Spain (isolate Spain_H_2010, accession No. HQ644143) into multiple sequence alignments.
The polyprotein length of the newly sequenced West African BAGV isolates was determined with respect to
gene sizes (Table 3). Although the 5′ UTR was similar in length, the 3′ UTR of these West African isolates was
either 10 nt or 137 nt longer than those of sequences from CAR and Spain, respectively.

Table 3. Comparison of genomic regions between Bagaza virus isolates.

Genomic
Regions

AY632545_DakAR
B209_CAR_1966

HQ644143_Spain_
H_2010

Isolates Sequenced in
This Study

5′ UTR 94 nt 94 nt 94 nt
Capsid 122 aa 122 aa 122 aa

prM 177 aa 177 aa 177 aa
Envelope 501 aa 501 aa 501 aa

http://beast.bio.ed.ac.uk/Tracer
http://beast.community/treeannotator
http://genomes.urv.es/CAIcal/
www.ncbi.nlm.nih.gov/genbank/


Viruses 2018, 10, 193 7 of 26

Table 3. Cont.

Genomic
Regions

AY632545_DakAR
B209_CAR_1966

HQ644143_Spain_
H_2010

Isolates Sequenced in
This Study

NS1 342 aa 342 aa 342 aa
NS2A 226 aa 226 aa 226 aa
NS2B 132 aa 132 aa 132 aa
NS3 619 aa 619 aa 619 aa

NS4A 126 aa 126 aa 126 aa
2K 23 aa 23 aa 23 aa

NS4B 253 aa 253 aa 253 aa
NS5 905 aa 905aa 905 aa

3′ UTR 566 nt 439 nt 576 nt
Total length 10,941 nt 10,794 nt 10,951 nt

nt: nucleotide; aa: amino acid. UTR: untranslated region; Gene lengths of reference sequence BAGV: AY632545 as
described by Kuno, G.; Chang, G.J. 2007 [3].

In the 5′ UTR, positions 52, 55 and 93 had nucleotide changes that were distinguishable for
West African isolates. Nucleotide changes A to C at position 52 and T to C at position 55 were seen
in West African sequences, and a T to C change at position 93 was observed only in sequences of the isolates
ARD54139_Dakar-Bango_SEN_1989 and ARA23139_Dezidougou_CI_1988. Interestingly, the 3′ UTR can
be divided into three sections; a proximal highly variable section constituted by the 139 first nucleotides
following the stop codon, a second highly conservative section located between nucleotide positions 140 and
434 and a moderately variable distal region comprising the last 142 nucleotides. In this distal section, 3′ UTR
sequences of West African isolates presented insertions of 74 nt and 1 nt, compared to the isolates from CAR
and Spanish (KR108244-6), respectively.

Pairwise genetic distances of coding sequences were evaluated at nucleotide and amino acid
levels between isolates characterized in this study and in comparison with previously available BAGV
sequences (Figure 1). Nucleotide sequences of BAGV isolated from Senegal showed a mean distance
of 1.9% ± 0.8% (0.3–3.4%). This lowest genetic distance was also apparent at amino acid level with
a mean distance of 1.9% ± 0.6% (0.4–3.7%).
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polyprotein sequences of Bagaza virus isolates characterized in this study (red line) and in comparison with
previously available Bagaza virus sequences (Black line). Genetic distances between Senegalese isolates are
encountered with zebra black line. Isolates name is labeled in the following format: Identification number,
Origin, country code (SEN: Senegal, CI: Côte d’Ivoire, CAR: Central African Republic), and year of isolation;
Except for Spanish and Indian Isolates (accession number, country, identification, and year of isolation).

In comparison to sequence of the isolate ARA23139_Dezidougou_CI_1988 from Côte d’Ivoire,
Senegalese BAGV isolates showed a higher mean distance of 3.4%± 0.5% (2.7–4.1%) at nucleotide level.
However, this highest genetic distance was less apparent at amino acid level with a mean distance
of 1.7% ± 0.7% (2.7–4.1%). Furthermore, mean distances of 6.7% (6.2–7.3%), 1.3% (0.2–2.7%), 5.8%
(5.2–6.3%) were recorded at nucleotide level between Senegalese BAGV isolates and the isolate from
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CAR, Spain, and EU684972__96363_India_1996, respectively while respective mean distances were 1.5%
(0.8–2.5%), 1.7% (1.0–2.8%), 2.7% (2.0–3.8%) at amino acid level. A differentiation coefficient value of
0.17 was also observed between these West African BAGV isolates and previously available sequences.

3.2. Genetic Motifs and Informative Sites on BAGV Genome

Here, we described location of main conserved amino acid motifs on BAGV proteins using in silico
analysis of complete genome sequences of the 11 West African BAGV isolates characterized in this
study and sequences from India, CAR and Spain. Most of highly conserved amino acid motifs localized
across E, NS1, NS3 and NS5 proteins of MVFs were identified in the BAGV genomes, sometimes with
presence of conservative amino acid mutations (positions highlighted in Black) or non-conservative
amino acid mutations (positions highlighted in red) (Table 4). Non-conservative amino acid motifs
were observed between positions 667–675 in the envelope protein (E), 712–719 and 1120–1127 in NS1,
1722–1728 and 1759–1766 in NS3 and between positions 2734–2741 in NS5. A Leucine (L) insertion was
observed at position 674 (E) of the polyprotein of all BAGV isolates.

In protein NS1, all analyzed motifs were conserved, but nc T713P and T713A were observed in sequences
of isolates ARD171102_Barkedji_SEN_2004 and EU684972_96363_India_1996, respectively. The BAGV isolate
ARD54139_Dakar-Bango_SEN_1989 also contains nc P1127T. In NS3, the conserved motif identified at
positions 1722–1728 contains nc A1723P and P1724L for BAGV isolates ARD137998_ Diawara_SEN_2000
and ARD138018_Diawara_ SEN_2000, whereas nc L1722S is present in ARD138018_Diawara_SEN_2000,
and ARD171075_Barkedji_SEN_2004. A non-conserved motif at positions 1759–1766 contained nc F1766L in
all BAGV sequences analyzed and isolate ARD138018_Diawara_SEN_2000 contained additional nc T1765P
and D1785Y. A non-conserved motif in NS5 at positions 2734–2741 contained nc T2738N in all BAGV
sequences. BAGV isolate ARD54139_Dakar-Bango_SEN_1989 has two supplementary mutations S2734W
and S2737P. In addition, these MBFVs amino acid motifs were also mostly conserved in BAGV, NKVFs and
CxFV (ISFs) than in AeFV (ISFs).

Table 4. Location of highly conserved flavivirus amino acid motifs across Envelope, NS1, NS3 and
NS5 proteins.

Gene
Amino Acid Motifs

Previously Described
in MBFVs #

Cons * on Used
NKVFs/ISFs

Genome

Positions on
BAGV Genome

Cons * on
BAGV

Except on These
BAGV Isolates

Replaced by This
Consensus
Sequence

E

DRGWGNGC YES 387–394 YES ARD171075_BARKEDJI_
SEN_2004 ARSRGNGC

GLFGKGS only on NKVFs 395–401 YES ARD171102_BARKEDJI_
SEN_2004 GLFAKGS

GHLKCRV

NO
RBV

(GHVDCRV)
ModV

(GHVSCKV)

573–579 YES

PFGDSYIV NO 667–675 NO All BAGV isolates PFGDSFILV

NS1

DTAWDFGS NO 712–719 YES

ARD171102_BARKEDJI_
SEN_2004 DPAWDFGS

EU684972_96363_
India_1996 DAAWDFGS

GCWYGMEI only on NKVFs 1118–1125 YES

YGMEIRP YES 1120–1127 YES
ARD54139_

DAKAR-BANGO_
SEN_1989

YGMEIRT

GTSGSPI YES 1633–1639 YES

GLYGNG only on NKVFs
and CxFV 1648–1653 YES ARUS20100_MATAM_

SEN_1989 GVYGNG

LAPTRVV YES 1722–1728 YES

ARD137998_DIAWARA_
SEN_2000 LPLTRLV

ARD138018_DIAWARA_
SEN_2000 SPLTRLV

ARD171075_BARKEDJI_
SEN_2004 SAPTRLV
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Table 4. Cont.

Gene
Amino Acid Motifs

Previously Described
in MBFVs #

Cons * on Used
NKVFs/ISFs

Genome

Positions on
BAGV Genome

Cons * on
BAGV

Except on These
BAGV Isolates

Replaced by This
Consensus
Sequence

NS3

DVMCHATF Only on NKVFs 1759–1766 NO
ARD138018_DIAWARA_

SEN_2000 DVMCHAPL

Other BAGV isolates DVMCHATL

MDEAHF YES 1784–1789 YES ARD138018_DIAWARA_
SEN_2000 MYEAHF

SIAARGY YES 1794–1800 YES

MTATPPG YES 1815–1821 YES

ISEMGAN YES 1911–1917 YES

SAAQRRGR YES 1954–1961 YES

NS5

DLGCGRG YES 2601–2607 YES

SRNSTHEMY YES 2734–2741 NO
ARD54139_DAKAR-
BANGO_SEN_1989 WRNPNHEMY

Other BAGV isolates SRNSNHEMY

NMMGKREKK YES 2977–2986 YES

ADDTAGWDT YES 3056–3064 YES

WMTTEDML YES 3330–3337 YES

Cons *: conservation of motif; YES: conserved motif; NO: non-conserved motif; BAGV: Bagaza virus;
ISFs: insect-specific flaviviruses; Culex flavivirus (CxFV) and Aedes Flavivirus (AeFV); NKVFs: no-known vector
flaviviruses ; Modoc virus (ModV) and Rio Bravo virus (RBV); #: Conserved amino acid motifs as described in
mosquito-borne flaviviruses (MBVFs) by Kuno, G.; Chang, G.J. 2007 [3]; Positions with amino acid different on
BAGV polyprotein are highlighted in black for conservative mutations and in red for non-conservative mutations;
Isolates name is labeled in the following format: Identification number, Origin, country code (SEN: Senegal,
CI: Côte d’Ivoire, CAR: Central African Republic), and year of isolation; Except for the Indian Isolate (accession
number, name, country, and year of isolation).

Non-conservative amino acid mutations on the BAGV polyprotein might be associated to phenotypic
differences of BAGV isolates. In addition, the presence of phylogenetically informative sites was assessed on
the DIVEIN web server. The identified site LAP is harbored by the conserved motif LAPTRVV previously
identified in NS3 protein of flaviviruses [3] and presents nc mutations in the genome of three BAGV
isolates. In addition, phylogenetically informative sites IEGA and GRIWNA identified in NS4B and NS5,
showed combined variations in the genome of the CAR isolate (DKGQ and RTDMEC, respectively) and
the Senegalese BAGV isolates ARD152146_Diawara_SEN_2001 (RRAA and GRIWNA, respectively) and
ARD260266_Barkedji_SEN_2014 (RRSS and RTDMEC, respectively) (Figure 2).
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3.3. Predicted N-Glycosylated Amino Acid Sites

Prediction of N-glycosylation sites was performed using complete genome sequences of the
11 West African BAGV isolates characterized in this study and sequences from India, CAR and Spain
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on the DIVEIN web server. The “potential” score represents the averaged output of nine neural networks
and the “jury agreement” indicates how many of the nine networks support the prediction. In total,
eight N-glycosylated motifs were identified in the BAGV genome (potential > 0.5) including two highly
probable sites (potential > 0.5 and jury agreement of 9/9). Despite high potential (0.7452) and jury agreement
(9/9), the motif (Asn-X-Thr) NPTD identified at position 603 was not considered to be glycosylated because
it contained a Proline known to preclude the N-glycosylation by rendering inaccessible the Asparagine
in the majority of cases (Figure 3). This motif was in the domain III region of the E protein of all BAGV
isolates. However, a second (Asn-X-Ser) motif NFSL was highly predicted (score 0.6223 (9/9)) and suggested
an N-linked glycosylation site at the residue Asn-2333 in the NS4B protein. Interestingly, we also found
six others probable N-glycosylation at different positions on the BAGV polyprotein including one site (NYSI)
harboring, the NYS motif at the 443th position (153th position of the E protein), previously described as
a virulence factor for WNV and DENV.
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Figure 3. Prediction of N-glycosylation on Bagaza virus genome. Predictions were performed using the
NetNGlyc 1.0 server. A position with a potential (green vertical lines) crossing the threshold (horizontal
red line at 0.5) is predicted glycosylated. The “potential” score is the averaged output of nine neural
networks and the “jury agreement” indicates how many of the nine networks support the prediction.
The N-Glyc Result column shows one of the following outputs for predictions. N-glycosylated sites
highly predicted by the nine networks (potential > 0.5 and jury agreement of 9/9) are highlighted in
red and the site previously reported as virulence factor on E protein of flaviviruses is colored in blue.

3.4. Predicted Structural RNA Domains on UTRs of BAGV Genome

Assessment of thermodynamically stable and evolutionarily conserved structural RNA domains was
performed using complete non-coding sequences of the 11 West African BAGV isolates characterized in
this study and the isolate from Spain. The RNAz method implemented in the Vienna RNA Websuite was
used to identify conserved structural RNA domains in the UTRs of BAGV characterized by a p > 0.5. Using
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the RNAz method, highly conserved structural RNA domains was not identified in the 5′ UTR of BAGV
genome while a total of four highly conserved structural RNA domains were determined in the 3′ region
with respective classification probabilities of 0.671490, 0.994641, 0.976295 and 0.846482 (Figure S1).

However, the RNAalifold method implemented in the Vienna RNA Websuite server predicted that,
as in the genome of other members of the genus flavivirus, BAGV has a shorter 5′ UTR (≈100 nt), consisting
of a pair of conserved stem-loops (SL-A and SL-B) (Figure 4). SL-A serves as promoter of viral polymerase
activity followed by a shorter loop which contains a cyclisation sequence upstream of the 5′ AUG (SL-B).
The secondary structure of BAGV’s 3′ UTR could be divided in three parts; a highly variable domain 1
following the stop codon and consisting in an AU-rich stem-loop (SL-I), a second domain 2 with highly
conserved sequence and two stem-loops (SL-II and SL-III) and dumbbell structures (DB1 and DB2), and the
moderately conserved distal domain 3 which contains the complementary cyclisation elements. In the
intermediate domain, the SL-II presented a pseudoknot PK1 preceding a short conserved loop (RCS3).
This structural motif was repeated in a stem-loop SL-III with PK2 and CS3. These stem-loops were followed
by dumbbell structures DB1 and DB2 that presented conserved loop RCS2 connected with a pseudoknot
PK3 and its repetition CS2, respectively [43]. Thus, organization of conserved sequences on consensus
secondary structure of BAGV’s 3′ UTR was structured RCS3-CS3-RCS2-CS2-ImCS1. Indeed, CS1 was
imperfect (ImCS1) only on sequences of West African BAGV isolates with a total of nine substitutions
compared to the corresponding consensus sequence previously described [3].
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(+G) with 5 rate categories. The General Time-Reversible with a discrete Gamma distribution and a 
proportion of invariant sites (GTR+I) was the best nucleotide substitution model for our sequences 
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Figure 4. Secondary structure predicted from 5′ UTR (A) and 3′ UTR (B) sequences of Bagaza virus.
Prediction was performed using the RNAalifold method implemented in the Vienna RNA Websuite.
Sub-genomic RNA structure (sfRNA) of the 3′ UTR is organized as follows: RCS3-CS3-RCS2-CS2-ImCS1.
Stem-loops (SL), dumbbell structures (DB*), pseudoknots (PK) and short conserved loops (CS), repeated
conserved loops (RCS) are identified in the figure.

3.5. Maximum Likelihood Tree

The Bayesian phylogenetic analysis for estimation of data quality and selection of the best-fit nucleotide
substitution model were performed using Mega 6.0 with a discrete Gamma distribution (+G) with 5 rate
categories. The General Time-Reversible with a discrete Gamma distribution and a proportion of invariant
sites (GTR+I) was the best nucleotide substitution model for our sequences data presenting score values
of 69,924.128, 69,453.449 and −34,680.714 for BIC, AICc and lnL criteria, respectively. The maximum
likelihood (ML) tree was inferred using FastTree v2.1.7 [26] on our total data set including the 11 complete
polyprotein sequences of West African BAGV isolates circulating in Senegal and Côte d’Ivoire from
1988 to 2014, the 5 BAGV sequences from Spain, the BAGV sequences from India and CAR and complete
polyproteins from different flaviviruses, with 10,281 bp alignment length (Figure 5). A GTR+I model
was used, as selected by Bayesian criteria. Nodes were labeled with local support values computed with
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5000 bootstrap replications using the Shimodaira-Hasegawa (SH) test. The phylogeny of complete BAGV
genome sequences presented evidence of a single BAGV phylogenetic group. Furthermore, we observed
also that Israel meningo-encephalitis turkey virus (ITV) was closed to BAGV in genetic relatedness [11].
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3.6. Evidence of Recombination Events

Given the major implications of recombination events for evolution, pathogenicity, or diagnosis
of non-segmented positive RNA viruses like flaviviruses [44], it is clearly important to determine their
occurrence in the BAGV genome. The RDP4beta 4.8 program used for assessment of recombination events
on complete polyprotein sequences [27] revealed evidence of only one highly credible recombination
event from the E protein to NS2B, with estimated breakpoints at positions 2202 and 4908 of
BAGV genome. This recombination event involved the isolate ARD54139_Dakar-Bango_SEN_1989
originating from Saint-Louis, in the North of Senegal (Figure 6). Considering the isolates
ARD260266_ Barkedji_SEN_2014 and ARD171075_Barkedji_SEN_2004 as respective minor and major
parents of the isolate ARD54139_Dakar-Bango_SEN_1989 (Similarity of 98.8% and 97%, respectively), this
recombination event was found by RDP, GENECONV, Bootscan, Maxchi, Chimaera, SiSscan and 3Seq
methods and supported by significant p-values of 3.09 × 10–16, 9.23 × 10−12, 7.36 × 10−13, 8.45 × 10−7,
1.59× 10−7, 3.60× 10−8 and 1.17× 10−12, respectively. The BootScan and GARD analyzes identified one
significant recombination breakpoint at nucleotide position 2201 corresponding to the E protein, supported
by a LHS p-value of 0.024 and a RHS p-value of 0.001.

This breakpoint divides the BAGV genome into two regions: one that encodes the structural
proteins and another that encodes the non-structural proteins. Phylogenetic trees were constructed
using 1000 bootstrap replications and midpoint rooted for clarity only (Figure 7). This recombination
event led to a mismatch between NJ phylogenetic trees constructed using comparison of nucleotides
sequences of recombinant (positions 2202–4908) and non-recombinant genomic regions (positions
1–2201 and 4909–10,281).

Viruses 2018, 10, x  14 of 26 

 

Figure 5. Maximum Likelihood (ML) tree based on complete polyprotein sequences of Bagaza virus 
isolates circulating in Senegal and Côte d’Ivoire from 1988 to 2014. The tree is midpoint-rooted, nodes 
are labeled with local support values computed using the Shimodaira-Hasegawa (SH) test for 5000 
bootstrap replications, species names are color-coded as follows: new characterized BAGV isolates—
dark blue with dots; previous sequences of BAGV—dark blue; mosquito-borne flaviviruses 
(MBFVs)—green; dual-host affiliated ISFs (dISFs)—red; no Known Vector (NKV) flaviviruses—
yellow; tick-born flaviviruses (TBFVs)—light blue; classical ISFs (cISFs)—Orange. 

3.6. Evidence of Recombination Events 

Given the major implications of recombination events for evolution, pathogenicity, or diagnosis 
of non-segmented positive RNA viruses like flaviviruses [44], it is clearly important to determine 
their occurrence in the BAGV genome. The RDP4beta 4.8 program used for assessment of 
recombination events on complete polyprotein sequences [27] revealed evidence of only one highly 
credible recombination event from the E protein to NS2B, with estimated breakpoints at positions 
2202 and 4908 of BAGV genome. This recombination event involved the isolate ARD54139_Dakar-
Bango_SEN_1989 originating from Saint-Louis, in the North of Senegal (Figure 6). Considering the 
isolates ARD260266_Barkedji_SEN_2014 and ARD171075_Barkedji_SEN_2004 as respective minor 
and major parents of the isolate ARD54139_Dakar-Bango_SEN_1989 (Similarity of 98.8% and 97%, 
respectively), this recombination event was found by RDP, GENECONV, Bootscan, Maxchi, 
Chimaera, SiSscan and 3Seq methods and supported by significant p-values of 3.09 × 10–16, 9.23 × 10−12, 
7.36 × 10−13, 8.45 × 10−7, 1.59 × 10−7, 3.60 × 10−8 and 1.17 × 10−12, respectively. The BootScan and GARD 
analyzes identified one significant recombination breakpoint at nucleotide position 2201 
corresponding to the E protein, supported by a LHS p-value of 0.024 and a RHS p-value of 0.001. 

This breakpoint divides the BAGV genome into two regions: one that encodes the structural 
proteins and another that encodes the non-structural proteins. Phylogenetic trees were constructed 
using 1000 bootstrap replications and midpoint rooted for clarity only (Figure 7). This recombination 
event led to a mismatch between NJ phylogenetic trees constructed using comparison of nucleotides 
sequences of recombinant (positions 2202–4908) and non-recombinant genomic regions (positions 1–
2201 and 4909–10,281). 

 
Figure 6. Recombination analyses of the full genome of Bagaza virus. Evidence of only one 
recombination event was observed and involved the Senegalese isolate ARD54139_DAKAR-
BANGO_SEN_1989. The genomic region with a recombinant origin, ranging from the E protein to the 
NS2B, is colored in pink. The breakpoint identified at nucleotide position 2201 of E protein and 
supported by high bootstrap value and significant p-values (LHS: 0.024 and a RHS: 0.001) is colored 
in red. 

Figure 6. Recombination analyses of the full genome of Bagaza virus. Evidence of only one recombination
event was observed and involved the Senegalese isolate ARD54139_ DAKAR-BANGO_SEN_1989.
The genomic region with a recombinant origin, ranging from the E protein to the NS2B, is colored
in pink. The breakpoint identified at nucleotide position 2201 of E protein and supported by high
bootstrap value and significant p-values (LHS: 0.024 and a RHS: 0.001) is colored in red.
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3.7. Positive Selection Pressures

The structural and non-structural coding regions were analyzed separately for estimation of
sites and branches under positive diversifying selection, applying four different methods to ensure
consistency of these events along of BAGV sequences. Using this approach, we found several sites
under strong negative selection and most of them were in the E, NS3 and NS5 proteins (Table 5).
However, the significant evidence (p < 0.1) of episodic positive selection was obtained for all the
coding genes, except for the prM, NS2B and NS4A regions. All positively selected sites estimated by
the FUBAR model (posterior probability ≥ 0.9) were also identified by the MEME method (p < 0.1).
Thus, an important number of positively selected sites were detected; interestingly, the majority of
such sites were in the E, NS1 and NS5 proteins. Branch-site analysis showed also a total of 11 branches
evaluating under positive selection (p < 0.05) and the highest proportion was in the E and NS1 proteins.

Table 5. Episodes of positive diversifying selection on Bagaza virus proteins.

Proteins Number of Sites Detected by Method Evidence of
Positive Selection

SLAC
(p < 0.1)

FUBAR
(Posterior Probability≥ 0.9)

MEME
(p < 0.1)

Branch-Site REL
(p < 0.05)

Capsid

Sites under negative selection
(dN/dS < 1) 0 4 0 0

YES
Sites under positive selection

(dN/dS > 1) 0 2 2 0

prM

Sites under negative selection
(dN/dS < 1) 6 11 0 0

NO
Sites under positive selection

(dN/dS > 1) 0 0 0 0
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Table 5. Cont.

Proteins Number of Sites Detected by Method Evidence of
Positive Selection

SLAC
(p < 0.1)

FUBAR
(Posterior Probability≥ 0.9)

MEME
(p < 0.1)

Branch-Site REL
(p < 0.05)

E

Sites under negative selection
(dN/dS < 1) 15 88 0 0

YES
Sites under positive selection

(dN/dS > 1) 0 1 15 4

NS1

Sites under negative selection
(dN/dS < 1) 7 33 0 0

YES
Sites under positive selection

(dN/dS > 1) 0 0 11 3

NS2A

Sites under negative selection
(dN/dS < 1) 3 9 0 0

YES
Sites under positive selection

(dN/dS > 1) 0 0 1 1

NS2B

Sites under negative selection
(dN/dS < 1) 4 8 0 0

NO
Sites under positive selection

(dN/dS > 1) 0 0 0 0

NS3

Sites under negative selection
(dN/dS < 1) 17 63 0 0

YES
Sites under positive selection

(dN/dS > 1) 0 0 4 1

NS4A

Sites under negative selection
(dN/dS < 1) 2 5 0 0

NO
Sites under positive selection

(dN/dS > 1) 0 0 0 0

NS4B

Sites under negative selection
(dN/dS < 1) 2 14 0 0

YES
Sites under positive selection

(dN/dS > 1) 0 0 3 1

NS5

Sites under negative selection
(dN/dS < 1) 0 274 0 0

YES
Sites under positive selection

(dN/dS > 1) 0 0 10 1

Pervasive diversifying selection at posterior probability ≥ 0.9 with FUBAR model; Episodic diversifying selection
at 0.1 significance level with SLAC and MEME models; Episodic diversifying selection at p-value p ≤ 0.05 with
Branch-sites REL model.

3.8. Phylodynamics of Bagaza Virus

MCMC convergence was obtained for three independent runs with 100 million
generations, which were sufficient to obtain a proper sample for the posterior at MCMC
stationarity assessed by effective sample sizes (ESS) above 200 for each gene. Furthermore,
the evolutionary rates (µ) and the highest posterior densities (HPD with 95% of confidence
interval) were 1.226 × 10−3 (1.271 × 10−3–1.178 × 10−3), 4.218 × 10−7 (4.262 × 10−3–4.168 × 10−3),
3.181 × 10−3 (3.224 × 10−3–3.125 × 10−3), 1.092 × 10−3 (1.142 × 10−3–1.044 × 10−3), 3.910 × 10−3

(3.951 × 10−3–3.882 × 10−3), 1.921 × 10−3 (1.970 × 10−3–1.868 × 10−3) and 6.430 × 10−3

(6.480 × 10−3–6.386 × 10−3) substitutions/site/year for C, E, NS1, NS2A, NS3, NS4B and NS5,
respectively. The Bayesian MCC analysis for proteins demonstrated one phylogenetic group of BAGV
evolving from the most recent common ancestor (MRCA) originating in India during the 13th century
(Figure 8). The West-African isolates diverged from the MRCA since the 15th century while the
Spanish isolates had a recent divergence from the MRCA during the 20th century. In addition,
the median root date estimates and 95% Bayesian credibility interval indicated that C, E, NS1, NS2A,
NS3, NS4B and NS5 proteins diverged, respectively, 398 (93–3358), 1577 (267–18,784), 938 (16–9092),
308 (81–3043), 1626 (284–17,185), 946 (136–11,489) and 4525 (535–55,707) years ago from the MRCA.
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Figure 8. Maximum Clade Credibility (MCC) tree inferred for concatenated sequences from C, E, NS1,
NS2A, NS3, NS4B and NS5 proteins of Bagaza virus isolates. Consensus MCC tree on which nodes
were supported by posterior’s values and tree has been rooted with estimated times of emergence from
the most recent common ancestor (TMRCA). Names of African BAGV isolates are highlighted in red,
names of Spanish isolates in blue and name of the Indian isolate in black.

3.9. Codon Adaptation Indexes of Viral Coding Genes

Evidence of BAGV adaptation to human house-keeping genes was analyzed by calculating CAI
indices using complete coding polyprotein sequences of West African BAGV isolates and BAGV
sequences available from Spain, in comparison to other MBFVs such as DENV, USUV, WNV, ZIKV and
YFV, NKV flaviviruses (ModV and RBV) and ISFs (CxFV and AeFV). CAI values > 1 were obtained for
polyprotein sequences of all BAGV isolates. Thus, there is evidence that BAGV could have adaptation
to the human genes (Figure 9). ModV(mean CAI: 1.072 and median CAI: 1.072), RBV (mean CAI: 1.059
and median CAI: 1.059) and YFV (mean CAI: 1.075 and median CAI: 1.072) showed the highest CAI
values for human housekeeping genes and were significantly different to Spanish and West African
BAGV isolates (Wilcoxon Rank Sum Test, p-values ranging from 0.0001 to 1.028 × 10−7). Compared to
those of Spanish isolates, sequences of West African BAGV isolates presented significantly higher CAI
values (mean CAI: 1.044 and median CAI: 1.044, Wilcoxon Rank Sum Test, p-value < 0.002). In addition,
they were also higher than DENV serotype 2 (DENV-2) (Wilcoxon Rank Sum Test, p-value < 1.4× 10−6).
However, CAI values of West African BAGV isolates were lower than those of DENV-1 (Wilcoxon
Rank Sum Test, W = 231, p-value = 2.869 × 10−6) and comparable to CAI values given by DENV-3
and DENV-4 (Wilcoxon Rank Sum Test, W = 3258, p-value = 0.06477 and W = 824, p-value = 0.3463,
respectively). Interestingly, CAI values of West African isolates were also significantly higher than
those obtained for other MBFVs well known to infect human such as USUV (Wilcoxon Rank Sum Test,
p-value < 6.796 × 10−9), WNV (Wilcoxon Rank Sum Test, p-value < 2.718 × 10−10), ZIKV (Wilcoxon
Rank Sum Test, p-value < 1.67 × 10−8) and ISFs (means CAI: 1.0015 and 1.0006 and median CAI:
1.0015 and 1.0006 for CxFV and AeFV, respectively) which showed low evidence for codon adaptation
towards human housekeeping genes (Wilcoxon Rank Sum Test, p-value < 2.328 × 10−16). Although
CAI results for ISFs were significantly lower to human housekeeping genes, we did not find any
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significant difference between CxFV and AeFV codon adaptation. Compared to codon usage of human
genes, sequences of tobacco mosaic virus (TMV) showed mean and median CAI values of 0.9587 and
0.9592, respectively.
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Figure 9. Evidence of Bagaza virus codon adaptation to human house-keeping genes. Normalized CAI
values obtained with complete polyprotein sequences of Spanish (dark grey) and West African (brown)
Bagaza virus isolates were compared to CAI of DENV (1 dark green, 2 grey, 3 bleu, 4 orange), USUV
(red), WNV (dark purple), ZIKV (cyan), YFV (yellow), CxFV (purple), AeFV (green), Modv (dark blue),
RBV (dark red) and TMV (black). CAI value > 1 (the black dashed line) was considered as evidence of
codon adaptation to human house-keeping genes.

4. Discussion

With an increasing number of emergent and re-emergent pathogens involved in human
encephalitis, it is important to try to better understand which viruses have a potential to emerge
causing human infection in the future. Since its first isolation, BAGV was only detected in mosquito
pools collected in the field during entomological investigations in West and Central Africa and in
India [12]. However, in 2010, BAGV was identified as the cause of an encephalitis outbreak in wild birds
circulating in Southern Spain [9]. In a possible host-switching event [45], BAGV could acquire future
adaptation to other vertebrates such as humans [46]. In this study, genetic properties of BAGV isolates
circulating in West Africa, the evolutionary phylogeny of BAGV and evidence of BAGV adaptation to
human house-keeping genes were evaluated in comparison with different flavivirus groups.

Genomes of 11 West African BAGV strains isolated from mosquito pools collected in the field
from 1988 to 2014 showed similarities in terms of gene lengths when compared with polyprotein
sequences of previously available isolates from CAR and Spain.

Low amino acid distances observed between West African isolates (<2%) in comparison with
previously non-West African sequences (<3%) combined with the weak coefficient of differentiation
(<0.2) revealed evidence of a low genetic diversity of BAGV sequences analyzed in this study as
previously described [9]. In addition, the West African BAGV isolates were more closely related to
the CAR isolate. Genome sequences originating from BAGV isolates from other geographic locations
would be helpful to understand if this low diversity is secluded to West-Africa.

Although the 5′ UTR was conserved between isolates, the 3′ UTR of West African isolates varied in
terms of length and structure. As in other mosquito-borne flavivirus genomes, BAGV genome harbored
structural RNA domains both in 5′ and 3′ UTRs which play a major role in flaviviral replication and
interactions with host proteins and regulate cellular response to infection [47,48]. However, differences
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in determination of structural RNA domains in 5′ UTR between the RNAz and the RNAalifold
methods used in this study could be attributed to variations in algorithm of analysis used by each
method [21–24]. The small subgenomic RNA (sfRNA) identified in the 3′ UTR of BAGV is generated
through incomplete degradation of the viral genome by cellular 5′-3′ exonuclease XRN1 [49,50] and
plays an important role in viral pathogenicity [49] and modulation of host responses [51,52].

In addition, the stable 3’ terminus region of the sfRNA following the dumbbell structures (DB1
and DB2) and complementary to the 5′ terminus of the 5′ UTR, was shown to be necessary in genomic
RNA cyclisation for viral replication and translation [46]. The sfRNA can be in competition with the
3′ UTR of genomic RNA in binding to proteins of viral replication complexes (RC) [53] and/or cellular
machinery [54]. Thus, it slows down the replication or translation and assembly of particles [51].

The 3′ UTR region is important for translation and replication of the RNA genome through
interactions with viral and host proteins, genome stabilization, and RNA packaging [55]. A better
understanding of the potential impact of 3′ UTR variations in replication of BAGV could be important
in the study of mechanisms implicated in their pathogenicity [56,57].

Most motifs linked to virulence previously described in these proteins of other MBFVs were
conserved among BAGV isolates. However, some non-conservative mutations were identified in E,
NS1, NS3 and NS5. In general, non-conservative amino acid mutations (nc) are spontaneous, rare,
and hazardous, and then represent the main causes of genetic diversity. Thus, non-conservative
mutations observed on BAGV genome could modulate viral phenotypes of particular isolates in
mechanisms such as virus cell entry, replication, production of viral particles, and assembly, and cause
modifications in post-translational regulation as previously demonstrated for other flaviviruses such as
DENV [58–60]. The E protein is involved in cell receptor recognition, attachment, cell fusion, tropism,
and virulence [58]. NS1 is the most conserved non-structural protein of flaviviruses. Associated with
the other non-structural proteins, the NS1 protein plays an important function in viral replication and
assembly and viral escape to host innate immune response [61]. The NS3 protein is the main component
of the replication machinery and ensures multiple functions in viral evasion to host antiviral response
and in production and assembly of infectious viral particles [62]. The NS5 protein is the largest viral
protein that serves as the RNA-dependent RNA polymerase (RdRp) and performs multiple functions
essential for viral replication, including processing the viral polyprotein, replicating the viral RNA.
Sharing these motifs of virulence mostly with MBFVs, NKVFs and CxFV than with AeFV showed that
BAGV could be more closely related to MBFVs transmitted by Culex mosquitoes and could explain
frequent BAGV isolations mainly from mosquitoes of Culex genus and its capacity to infect vertebrates
such as wild birds [1,4,5,9,10]. In addition, The West African BAGV isolates characterized in our study
were mainly isolated from Culex poicilipes and Culex neavei mosquitoes which have been reported
as potential vectors for flaviviruses such as WNV [63]. Culex neavei was also found as a competent
vector able to transmit flaviviruses such as USUV and WNV [64,65]. Despite no available data on
Culex poicilipes competency to transmit flaviviruses, these two mosquito species belonging to Culex
genus could play an important role in natural transmission of BAGV to vertebrates such as wild
birds since another member of the Culex genus, Culex tritaeniorhynchus, has been found competent to
transmit BAGV to mice [8].

The phylogenetically informative sites identified on the BAGV genome located mainly in NS3,
NS4B and NS5 proteins, respectively, could have a considerable impact in viral fitness on host for
corresponding West African isolates. In addition, the prediction of the N-glycosylated sites at different
positions on BAGV genome such as Asn2333 in NS4B and the NYSI motif at 153th position of the
E protein showed that post-translational modifications may influence acquisition or loss of capacity in
mechanisms such as pathogenicity, evasion of innate immune pathways. Indeed, flaviviruses NS4B
plays an important role in replication of viral RNA facilitating the formation of replication complexes
and modulating host innate immune response such as interferons, microRNAs and RNA interference,
formation of stress granules and the unfolded protein responses [66–68]. A previous study had shown
that N-glycosylation of NS4B of DENV does not affect the protein stability but causes a considerable
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reduction in efficiency of viral production [69]. Presence of a glycosylation site and an informative
site in the viral NS4B protein could influence the efficiency of viral replication and the outer shape
of the virion. The presence of the N-linked glycosylation motif NYS had been previously reported at
67/153th and 154th on the E protein of DENV and WNV (lineage 1 strains and some neuroinvasive
lineage 2 strains), respectively, involving in receptor binding, viral morphogenesis, viral infectivity,
and tropism [70–74]. Since glycosylation is a means of evasion to immune recognition within the host
by masking particular antigenic sites from recognition by neutralizing antibodies, it could increase the
diversity of the glycosylation on viral proteins [75,76]. Nevertheless, it could be important in future
studies to determine whether the predicted glycosylation sites are really used (asparagine-linked)
using specific enzymatic digestion by Endo H and peptide N-glycosidase (PNGase F) [77]. Our data
suggest the ability of BAGV to develop phenotypically important variations and potentially adaptation
to new vertebrate hosts such as humans. However, to understand better the impact of variation
on these predicted N-glycosylation sites and the identified phylogenetically important variations
would require in vitro studies with reverse genetically engineered infectious clones on mosquito or
mammalian cell lines and in vivo experiments in mosquitoes or in animal models like mouse [78,79].
However, antibodies against BAGV proteins or infectious clone are currently not available for BAGV.

The identification of natural recombination events between virus isolates is important for
our understanding of virus evolution. In our study, we identified a recombination event in the
E protein BAGV. Recombination was documented in other members of the mosquito-borne flavivirus
group [80,81], but had not yet been demonstrated to occur in BAGV. Identification of recombination
breakpoints and the graphical detection of conflicting phylogenetic signals gave confirmation of
this recombination event in E protein of the Senegalese isolate ARD54139_Dakar-Bango_SEN_1989
as previously described for ZIKV [74,82]. Nevertheless, the precise molecular mechanisms of the
template switches are unknown. The E protein is highly important because it encodes the most
important antigen with regards to virus biology and humoral immunity. Therefore, large-scale genetic
changes in this region, as might be brought about by recombination, could have significant impact on
virus phenotype [44].

The estimation of the selection pressures acting on each protein of BAGV demonstrated episodes of
strong negative selection in functionally important proteins. These results suggested frequent purging
of deleterious polymorphisms in the BAGV genome that could be associated with accumulation
of synonymous mutations during BAGV transmission [83]. However, location of more significant
episodes of positive selection in the E, NS1 and NS5 proteins indicated that they could represent
preferential selection targets during BAGV evolution [84]. Indeed, the E protein of flaviviruses plays
a crucial role in early steps of host cell binding and viral entry and represents a main target for immune
responses influencing antigenic response and positive selection on the E protein is a hallmark of the
emergence of flaviviruses [85,86]. Positive selection episodes have been also previously reported for
the DENV-3 capsid, however, the impact needs to be further investigated [87]. Likewise, non-structural
proteins could also be targets of positive selection.

The NS1 protein is essential for viral RNA replication, is involved in immune system evasion,
and represents the major positive selection target during speciation of arthropod-born flaviviruses
such as DENV and ZIKV [88]. NS2A and NS4B proteins have been shown to antagonize the
interferon response during DENV infection [89] and changes in these regions would be evolutionary
advantageous selecting for BAGV strains with strong innate immunity suppression mechanisms.
Mutations in the NS4B protein were also seen to modulate several phenotype mechanisms of
flaviviruses, such as pathogenesis [90], viral adaptation [91], replication [68], neurovirulence [66]
and host preferences [92]. Thus, presence of positively selected sites in NS4B of BAGV isolates could
have major impact in its natural evolution.

NS3 and NS5 proteins are crucial for viral replication, since non-conservative changes in these
regions could modify process of protease and ATPase/helicase functions of NS3 protein [93] and RNA
polymerase activity of NS5 protein [94]. These several polymorphic amino acid coding sites in the
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BAGV genome suggest that these proteins may be experiencing relatively adaptive changes in the
natural evolution and they should be prioritized in future experimental studies.

Despite the evidence of a single phylogenetic group for BAGV sequences analyzed in our study,
the evolutionary rates are expected in accordance to proteins functions; the NS5 representing the
polymerase and the most conserved protein [86]. The inferred Bayesian MCC trees indicated a single
introduction of BAGV into Europe and Africa from India, contrary to other African flaviviruses as
WNV [95] and ZIKV [74], suggesting an Indian origin of BAGV. Estimated times from the MRCA
suggested a distant origin of West African BAGV sequences analyzed in this study from the 15th century.
Thus, further phylodynamic analyzes based on more complete sequences could be interesting for
determining geographical pathways and potential evolution patterns in correlation with BAGV spread
from India to African and European continents.

The Codon Adaptation Index (CAI) represents a reliable bio-informatics approach to measure
the synonymous codon usage bias and to assess the adaptation of viral genes to their hosts [96].
Flaviviruses can infect and replicate in hosts of different phyla. Therefore, their versatility in gene
expression and protein synthesis and changes in the viral RNA genome could affect the fitness of
the virus in a specific host relating to dinucleotide frequencies, codon preferences, and codon pair
biases [97–99]. Nevertheless, ecology, different virus-host relationships, biogeographical migrations
of flavivirus species and genetic differences may explain observed differences in flaviviral codon
usage preference to human housekeeping genes [98,100,101]. In particular, NKV flaviviruses were only
isolated from vertebrates and are maintained in nature by horizontal transmission between vertebrate
hosts [102,103]. Although ISFs were thought to sustain their populations in their respective insect
vectors in the absence of mammal reservoirs, so lower translational efficiency in vertebrates could be
expected [97,104].

In addition, the highest CAIs of YFV and DENV could be related to their long histories of
infection in humans [105]. Indeed, YFV and DENV are maintained in endemic and sylvatic cycles,
which conducted to repeated epidemics for more than one hundred years. However, YFV showed
generally a higher virulence in human infections, particularly when it is compared to DENV infections
reported in Africa [106]. This could explain the higher CAI values of YFV towards codon usage of the
human housekeeping genes.

With evidence of adaptation to human house-keeping genes, BAGV could be potential cause of
infection in vertebrates, such as humans. Considering the highest CAI values of West African BAGV
isolates when compared to isolates responsible of the Spanish wild bird’s outbreak in 2010 [9], BAGV
adaptation to vertebrate species such as birds could have led to an extension of adaptation to other
species as shown in a previous virus study [46]. Interestingly, West African BAGV isolates showed
a higher evidence of codon adaptation than MBFVs well known to infect humans, such as WNV which
is a major cause of human encephalitis in USA and responsible of recent outbreaks in Europe [107] and
ZIKV associated with microcephaly in fetuses and newborns during the outbreak in Brazil in 2015 [91].
Thus, further comparison of codon adaptation indexes of other BAGV genomic regions, such as the
3′ UTR, among isolates that differ in biological, ecological, and genetic characteristics could help to
characterize the evolutionary adaptation of BAGV genomes to vertebrate hosts [46,108].

Nevertheless, to ensure the potential of BAGV to be involved in human encephalitis cases, it would
be important to evaluate its pathogenicity on human induced pluripotent stem cell lines (iPSC) capable
of differentiating into brain microvascular endothelial cells (BMECs) and constituting a robust model
of the human blood-brain barrier [109]. Otherwise, the iPSC cells can also generate primitive neural
stem cells (NSCs), which can differentiate into neurons, astrocytes, or oligodendrocytes [110]. These
BAGV sequences data obtained in our study could be used not only in future viral studies, but also in
development of reverse genetic reagents or reliable diagnostic tools for investigation of this virus in
human populations.
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79. Szentpáli-Gavallér, K.; Lim, S.M.; Dencső, L.; Bányai, K.; Koraka, P.; Osterhaus, A.D.; Bálint, Á. In vitro and
in vivo evaluation of mutations in the NS region of Lineage 2 West Nile virus associated with neuroinvasiveness
in a mammalian model. Viruses 2016, 8, 49. [CrossRef] [PubMed]

80. Simon-Loriere, E.; Holmes, E.C. Why do RNA viruses recombine? Nat. Rev. Microbiol. 2011, 9, 617–626.
[CrossRef] [PubMed]

81. Waman, V.P.; Kolekar, P.; Ramtirthkar, M.R.; Kale, M.M.; Kulkarni-Kale, U. Analysis of genotype diversity
and evolution of Dengue virus serotype 2 using complete genomes. PeerJ 2016, 4, e2326. [CrossRef] [PubMed]

82. Martynova, E.U.; Schal, C.; Mukha, D.V. Effects of recombination on densovirus phylogeny. Arch. Virol. 2016,
161, 63–75. [CrossRef] [PubMed]

83. Hanada, K.; Suzuki, Y.; Gojobori, T. A large variation in the rates of synonymous substitution for RNA
viruses and its relationship to a diversity of viral infection and transmission modes. Mol. Biol. Evol. 2004, 21,
1074–1080. [CrossRef] [PubMed]

84. Carney, J.; Daly, J.M.; Nisalak, A.; Solomon, T. Recombination and positive selection identified in complete
genome sequences of Japanese encephalitis virus. Arch. Virol. 2012, 157, 75–83. [CrossRef] [PubMed]

85. Roehrig, J.T. Antigenic structure of flavivirus proteins. Adv. Virus Res. 2003, 59, 141–175. [PubMed]
86. Bennett, S.N.; Holmes, E.C.; Chirivella, M.; Rodriguez, D.M.; Beltran, M.; Vorndam, V. Molecular evolution

of dengue 2 virus in Puerto Rico: Positive selection in the viral envelope accompanies clade reintroduction.
J. Gen. Virol. 2006, 87, 885–893. [CrossRef] [PubMed]

87. Chwan-Chuen, K.; Day-Yu, C.; Li-Jung, C.; Gwong-Jen, J.C.; Ting-Hsiang, L.; Yin-Chang, W.; Jyh-Hsiung, H.
Comparative analysis of full genomic sequences among different genotypes of dengue virus type 3. Virol. J.
2008, 5, 63.

88. Sironi, M.; Forni, D.; Clerici, M.; Cagliani, R. Nonstructural Proteins Are Preferential Positive Selection
Targets in Zika Virus and Related Flaviviruses. PLoS Negl. Trop. Dis. 2016, 10, e0004978. [CrossRef] [PubMed]

89. Munoz-Jordan, J.L.; Sanchez-Burgos, G.G.; Laurent-Rolle, M.; Garcia-Sastre, A. Inhibition of interferon
signaling by dengue virus. Proc. Natl. Acad. Sci. USA 2003, 100, 14333–14338. [CrossRef] [PubMed]

90. Miller, S.; Sparacio, S.; Bartenschlager, R. Subcellular localization and membrane topology of the Dengue
virus type 2 Non-structural protein 4B. J. Biol. Chem. 2006, 281, 8854–8863. [CrossRef] [PubMed]

91. Maringer, K.; Fernandez-Sesma, A. Message in a bottle: Lessons learned from antagonism of STING
signalling during RNA virus infection. Cytokine Growth Factor Rev. 2014, 25, 669–679. [CrossRef] [PubMed]

92. Han, N.; Adams, J.; Chen, P.; Guo, Z.Y.; Zhong, X.F.; Fang, W. Comparison of genotypes I and III in
Japanese encephalitis virus reveals distinct differences in their genetic and host diversity. J. Virol. 2014, 88,
11469–11479. [CrossRef] [PubMed]

93. Luo, D.; Xu, T.; Hunke, C.; Gruber, G.; Vasudevan, S.G. Crystal structure of the NS3 protease-helicase from
dengue virus. J. Virol. 2008, 82, 173–183. [CrossRef] [PubMed]

94. Egloff, M.P.; Decroly, E.; Malet, H.; Selisko, B.; Benarroch, D. Structural and functional analysis of methylation
and 5′-RNA sequence requirements of short capped RNAs by the methyltransferase domain of dengue virus
NS5. J. Mol. Biol. 2007, 372, 723–736. [CrossRef] [PubMed]

95. Añez, G.; Grinev, A.; Chancey, C.; Ball, C.; Akolkar, N.; Land, K.J.; Winkelman, V.; Stramer, S.L.; Kramer, L.D.;
Rios, M. Evolutionary dynamics of West Nile virus in the United States, 1999–2011: Phylogeny, selection
pressure and evolutionary time-scale analysis. PLoS Negl. Trop. Dis. 2013, 7, e2245. [CrossRef] [PubMed]

96. Kraemer, M.U.; Sinka, M.E.; Duda, K.A.; Mylne, A.Q.; Shearer, F.M.; Barker, C.M.; Moore, C.G.;
Carvalho, R.G.; Coelho, G.E.; Van Bortel, W.; et al. The global distribution of the arbovirus vectors Aedes aegypti
and Ae. albopictus. Elife 2015, 4, e08347. [CrossRef] [PubMed]

97. Di Paola, N.; Freire, C.C.M.; Zanotto, P.M.A. Does adaptation to vertebrate codon usage relate to flavivirus
emergence potential? PLoS ONE 2018, 13, e0191652. [CrossRef] [PubMed]

98. Behura, S.K.; Severson, D.W. Codon usage bias: Causative factors, quantification methods and genome wide
patterns: With emphasis on insect genomes. Biol. Rev. 2013, 88, 49–61. [CrossRef] [PubMed]

99. Behura, S.K.; Severson, D.W. Bicluster pattern of codon context usages between flavivirus and vector mosquito
Aedes aegypti: Relevance to infection and transcriptional response of mosquito genes. Mol. Genet. Genom.
2014, 289, 885–894. [CrossRef] [PubMed]

http://dx.doi.org/10.1128/JVI.00293-15
http://www.ncbi.nlm.nih.gov/pubmed/25762738
http://dx.doi.org/10.3390/v8020049
http://www.ncbi.nlm.nih.gov/pubmed/26907325
http://dx.doi.org/10.1038/nrmicro2614
http://www.ncbi.nlm.nih.gov/pubmed/21725337
http://dx.doi.org/10.7717/peerj.2326
http://www.ncbi.nlm.nih.gov/pubmed/27635316
http://dx.doi.org/10.1007/s00705-015-2642-5
http://www.ncbi.nlm.nih.gov/pubmed/26475154
http://dx.doi.org/10.1093/molbev/msh109
http://www.ncbi.nlm.nih.gov/pubmed/15014142
http://dx.doi.org/10.1007/s00705-011-1143-4
http://www.ncbi.nlm.nih.gov/pubmed/22033595
http://www.ncbi.nlm.nih.gov/pubmed/14696329
http://dx.doi.org/10.1099/vir.0.81309-0
http://www.ncbi.nlm.nih.gov/pubmed/16528038
http://dx.doi.org/10.1371/journal.pntd.0004978
http://www.ncbi.nlm.nih.gov/pubmed/27588756
http://dx.doi.org/10.1073/pnas.2335168100
http://www.ncbi.nlm.nih.gov/pubmed/14612562
http://dx.doi.org/10.1074/jbc.M512697200
http://www.ncbi.nlm.nih.gov/pubmed/16436383
http://dx.doi.org/10.1016/j.cytogfr.2014.08.004
http://www.ncbi.nlm.nih.gov/pubmed/25212897
http://dx.doi.org/10.1128/JVI.02050-14
http://www.ncbi.nlm.nih.gov/pubmed/25056890
http://dx.doi.org/10.1128/JVI.01788-07
http://www.ncbi.nlm.nih.gov/pubmed/17942558
http://dx.doi.org/10.1016/j.jmb.2007.07.005
http://www.ncbi.nlm.nih.gov/pubmed/17686489
http://dx.doi.org/10.1371/journal.pntd.0002245
http://www.ncbi.nlm.nih.gov/pubmed/23738027
http://dx.doi.org/10.7554/eLife.08347
http://www.ncbi.nlm.nih.gov/pubmed/26126267
http://dx.doi.org/10.1371/journal.pone.0191652
http://www.ncbi.nlm.nih.gov/pubmed/29385205
http://dx.doi.org/10.1111/j.1469-185X.2012.00242.x
http://www.ncbi.nlm.nih.gov/pubmed/22889422
http://dx.doi.org/10.1007/s00438-014-0857-x
http://www.ncbi.nlm.nih.gov/pubmed/24838953


Viruses 2018, 10, 193 26 of 26

100. Coffey, L.L.; Forrester, N.; Tsetsarkin, K.; Vasilakis, N.; Weaver, S.C. Factors shaping the adaptive landscape
for arborviruses: Implications for the emergence of disease. Future Microbiol. 2013, 8, 155–176. [CrossRef]
[PubMed]

101. Coffey, L.L.; Vasilakis, N.; Brault, A.C.; Powers, A.M.; Tripet, F.; Weaver, S.C. Arbovirus evolution in vivo is
constrained by host alternation. Proc. Natl. Acad. Sci. USA 2008, 105, 6970–6975. [CrossRef] [PubMed]

102. Adams, A.P.; Travassos da Rosa, A.P.; Nunes, M.R.; Xiao, S.Y.; Tesh, R.B. Pathogenesis of Modoc virus
(Flaviviridae; Flavivirus) in persistently infected hamsters. Am. J. Trop. Med. Hyg. 2013, 88, 455–460. [CrossRef]
[PubMed]

103. Constantine, D.G.; Woodall, D.F. Latent Infection of Rio Bravo Virus in Salivary Glands of Bats. Public Health Rep.
1964, 79, 1033–1039. [CrossRef] [PubMed]

104. Blitvich, B.; Firth, A. Insect-Specific Flaviviruses: A Systematic Review of Their Discovery, Host Range, Mode
of Transmission, Superinfection Exclusion Potential and Genomic Organization. Viruses 2015, 7, 1927–1959.
[CrossRef] [PubMed]

105. Beasley, D.W.C.; McAuley, A.J.; Bente, D.A. Yellow fever virus: Genetic and phenotypic diversity and
implications for detection, prevention and therapy. Antivir. Res 2015, 115, 48–70. [CrossRef] [PubMed]

106. Kumar, M.; Belcaid, M.; Nerurkar, V.R. Identification of host genes leading to West Nile virus encephalitis in
mice brain using RNA-SEQ analysis. Sci. Rep. 2016, 6, 26350. [CrossRef] [PubMed]

107. Ramos da Silva, S.; Gao, S.J. Zika virus: An update on epidemiology, pathology, molecular biology, and animal
model. J. Med. Virol. 2016, 88, 1291–1296. [CrossRef] [PubMed]

108. Taylor, T.L.; Dimitrov, K.M.; Afonso, C.L. Genome-wide analysis reveals class and gene specific codon usage
adaptation in avian paramyxoviruses 1. Infect. Genet. Evol. 2017, 58, 28–37. [CrossRef] [PubMed]

109. Canfield, S.G.; Stebbins, M.J.; Morales, B.S.; Asai, S.W.; Vatine, G.D.; Svendsen, C.N.; Palecek, S.P.; Shusta, E.V.
An Isogenic Blood-Brain Barrier Model Comprising Brain Endothelial Cells, Astrocytes and Neurons Derived
from Human Induced Pluripotent Stem Cells. J. Neurochem. 2016, 140, 874–888. [CrossRef] [PubMed]

110. Yan, Y.; Shin, S.; Jha, B.S.; Liu, Q.; Sheng, J.; Li, F.; Zhan, M.; Davis, J.; Bharti, K.; Zeng, X.; et al. Efficient
and rapid derivation of primitive neural stem cells and generation of brain subtype neurons from human
pluripotent stem cells. Stem Cells Transl. Med. 2013, 2, 862–870. [CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.2217/fmb.12.139
http://www.ncbi.nlm.nih.gov/pubmed/23374123
http://dx.doi.org/10.1073/pnas.0712130105
http://www.ncbi.nlm.nih.gov/pubmed/18458341
http://dx.doi.org/10.4269/ajtmh.12-0110
http://www.ncbi.nlm.nih.gov/pubmed/23358636
http://dx.doi.org/10.2307/4592318
http://www.ncbi.nlm.nih.gov/pubmed/14234343
http://dx.doi.org/10.3390/v7041927
http://www.ncbi.nlm.nih.gov/pubmed/25866904
http://dx.doi.org/10.1016/j.antiviral.2014.12.010
http://www.ncbi.nlm.nih.gov/pubmed/25545072
http://dx.doi.org/10.1038/srep26350
http://www.ncbi.nlm.nih.gov/pubmed/27211830
http://dx.doi.org/10.1002/jmv.24563
http://www.ncbi.nlm.nih.gov/pubmed/27124623
http://dx.doi.org/10.1016/j.meegid.2017.02.004
http://www.ncbi.nlm.nih.gov/pubmed/28189889
http://dx.doi.org/10.1111/jnc.13923
http://www.ncbi.nlm.nih.gov/pubmed/27935037
http://dx.doi.org/10.5966/sctm.2013-0080
http://www.ncbi.nlm.nih.gov/pubmed/24113065
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Primers Design 
	Virus stock preparation and RNA extraction 
	RT-PCR and Sequencing 
	Sequence Properties Analysis 
	Prediction of N-Glycosylation Sites 
	Prediction of Conserved Structural RNA Domains in 5' and 3' UTRs 
	Phylogenetic Tree Inference 
	Recombination Detection 
	Evaluation of Selection Patterns on ORFs 
	Bayesian Analysis 
	Codon Adaptation Indexes to Human House-Keeping Genes 

	Results 
	Genetic Diversity 
	Genetic Motifs and Informative Sites on BAGV Genome 
	Predicted N-Glycosylated Amino Acid Sites 
	Predicted Structural RNA Domains on UTRs of BAGV Genome 
	Maximum Likelihood Tree 
	Evidence of Recombination Events 
	Positive Selection Pressures 
	Phylodynamics of Bagaza Virus 
	Codon Adaptation Indexes of Viral Coding Genes 

	Discussion 
	References

