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Abstract: For the past two decades, norovirus pandemic variants have emerged every 3–5 years,
and dominate until they are replaced by alternate strains. However, this scenario changed in 2016
with the co-circulation of six prevalent viruses, three of which possessed the pandemic GII.4 Sydney
2012 capsid. An increased number of institutional gastroenteritis outbreaks were reported within the
Oceania region in mid-2017. This study identified emerging noroviruses circulating in Australia and
New Zealand in 2017 to assess the changing dynamics of the virus infection. RT-PCR-based methods,
next generation sequencing, and phylogenetic analyses were used to genotype noroviruses from both
clinical and wastewater samples. Antigenic changes were observed between the capsid of pandemic
Sydney 2012 variant and the two new Sydney recombinant viruses. The combination of these
antigenic changes and the acquisition of a new ORF1 through recombination could both facilitate
their ongoing persistence in the population. Overall, an increased prevalence of GII.P16/GII.4 Sydney
2012 viruses was observed in 2017, replacing the GII.P16/GII.2 recombinant that dominated in the
region at the end of 2016. This shift in strain dominance was also observed in wastewater samples,
demonstrating the reliability of wastewater as a molecular surveillance tool.

Keywords: norovirus; recombinant; molecular epidemiology; next generation sequencing; MiSeq;
clinical; wastewater; genetic diversity; Australia; New Zealand

1. Introduction

Acute gastroenteritis (AGE) is the second most common human infectious disease, and results
in 1.4 million deaths worldwide each year [1]. Norovirus is now the leading cause of viral AGE
in all age groups globally, and is estimated to cause 677 million cases each year, accounting for
~210,000 deaths [2]. Despite the self-limiting nature of the disease, severe and prolonged symptoms can
be observed in children, the elderly, and in immunocompromised individuals [3]. Norovirus is highly
transmissible due to (i) the low infectious dose [4], (ii) virus stability within the environment, and (iii)
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continued virus shedding after symptoms have resolved. Therefore, outbreaks of norovirus-associated
gastroenteritis frequently occur in semi-closed environments including hospitals, aged-care facilities,
childcare centers, and cruise ships.

Norovirus is a genus of genetically-diverse, single-stranded, RNA viruses within the Caliciviridae
family. Based on full-length amino acid capsid (VP1) sequences, norovirus can be tentatively divided
into seven genogroups (GI-GVII) and more than 40 genotypes [5–7]. The viruses GI, GII, and GIV are
associated with human infections; however, GII viruses are responsible for the majority of human
norovirus infections.

Recombination (antigenic shift) and antigenic drift are the two main mechanisms that drive
norovirus evolution [8]. Antigenic drift is caused by amino acid changes within the capsid protein
(VP1), primarily within the protruding domain (P2), which enables the virus to escape from population
host immunity [9]. The capsid of GII.4 noroviruses continuously undergo epochal evolution, resulting
in the emergence of new pandemic variants approximately every 3–5 years [3,10–13]. Recombination
usually occurs near the ORF1/ORF2 overlap, which enables the exchange of the entire structural
or non-structural regions [14], leading to the creation of novel viruses, some of which also have
pandemic potential [15].

For the past two decades, the pandemic GII.4 variants usually account for 60%–80% of all
norovirus infections, and dominate until another variant emerges [3]. However, a change in norovirus
molecular epidemiology has been observed over the past three years. In 2016, we saw a decline of
the pandemic Sydney 2012 variant, concomitant with the emergence of two novel GII.4 recombinant
viruses, both of which retained the Sydney 2012 capsid but acquired new non-structural regions
(GII.P4 New Orleans 2009/GII.4 Sydney 2012 and GII.P16/GII.4 Sydney 2012) [16]. The emergence
of GII.P4 New Orleans 2009/GII.4 Sydney 2012 was first detected in 2013, and was created through
a recombination event between the Sydney 2012 pandemic variant with its pandemic predecessor GII.4
New Orleans 2009 variant [17]. Following its identification, this recombinant virus was also identified
in Australia, New Zealand [16,18], Denmark [19], England [20], and South Africa [21]. The other novel
GII.4 recombinant, GII.P16/GII.4 Sydney 2012, was first identified in the Oceania region in mid-2015,
and was found circulating at a low prevalence in South Korea, Germany, and Japan in 2016 [16,22–24].
In mid-late 2016, an increase of a third novel recombinant, GII.P16/GII.2, was observed in Australia
and New Zealand [16]. This virus was also detected around the globe in 2016, including in Japan [25],
the United States [26], China (51% of outbreaks) [27], and Europe [24,28], where it was responsible for
14%–42% of all norovirus outbreaks.

Therefore, continuous surveillance of circulating norovirus strains at a population level is
essential for early identification of novel viruses which may have pandemic potential. In this study,
we compared the noroviruses which were circulating in Australia and New Zealand in 2017, assessed
the changing dynamics of epidemic variants, and identified emergent norovirus variants which arose
from recombination and antigenic variation. Molecular epidemiology of norovirus is commonly
conducted using clinical samples collected from symptomatic patients, which is not representative of
all circulating noroviruses in a population. Consequently, the second aim of this study was to compare
the norovirus GII genotype distribution between wastewater and clinical samples.

2. Materials and Methods

2.1. Collection of Clinical Specimens

All norovirus-positive clinical specimens were collected as part of routine diagnostic services
or norovirus surveillance between January and December 2017. Multiplex reverse transcription
polymerase chain reaction (RT-PCR) and norovirus lateral flow enzyme immunoassay (EIA) were
used during the routine diagnostic services for norovirus detection. The study was approved by the
University of New South Wales (UNSW) Human Research Ethics Advisory Panel (HREAP) (HC12221,
HC16826 and HC17459). For Australia, 243 specimens were collected via the New South Wales (NSW)
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Ministry of Health from gastroenteritis institutional outbreaks and sporadic cases. For New Zealand,
representative specimens from 238 separate norovirus outbreaks in 2017 were collected.

2.2. Collection of Wastewater Samples

Monthly influent samples (250 mL) were collected from Bondi and Malabar wastewater treatment
plants (WWTP) between January and December 2017. Melbourne samples were collected from
Werribee, western WWTP, between May and December 2017. All samples were stored at −80 ◦C on
the day of collection.

2.3. Viral Concentration and RNA Extraction

Stool suspensions (10–20% in water) were prepared from clinical specimens, followed by viral
RNA extraction, as described previously [13,29]. Ultracentrifugation was used to concentrate viruses
in wastewater samples prior to viral RNA extraction, as described in [16]. Frozen aliquots of MS2
bacteriophage, with a concentration of 2.6 × 106 ± 1.6 × 105 genome copies/20 µL, were used as
process control to validate RNA extraction and RT-PCR amplification [16].

2.4. Reverse Transcription PCR (RT-PCR) Amplification and Sequencing

For Australian clinical specimens, a norovirus GI and GII duplex RT-PCR was performed targeting
the 5′ end of capsid gene for norovirus genotyping [11], along with a norovirus GI or GII RT-PCR
targeting the ORF1/ORF2 overlap for the identification of potential recombinants [29,30]. For New
Zealand clinical specimens, RT-PCR was conducted targeting region B of the RdRp, region C of the
capsid, and across the ORF1/ORF2 overlap [29]. All RT-PCR products were Sanger sequenced and
genotyped using phylogenetic analysis [16].

For wastewater samples, the 5′ end of norovirus GII capsid was amplified, followed by a second
round PCR for the addition of universal sequencing adapters, following the manufacturer’s protocol
(Illumina, San Diego, CA, USA). PCR amplicons were purified using AMPure XP beads (Beckman
Coulter, Brea, CA, USA) prior to next generation sequencing (NGS) library preparation. NGS libraries
were prepared and sequenced on the Illumina MiSeq platform, as described previously [16]. Library
fragment sizes were evaluated on a Tape Station D1000 (Agilent Technologies, Santa Clara, CA, USA)
prior to sequencing. Full-length capsid genes of representative GII.4 were amplified, as described
previously [15], and Sanger sequenced.

2.5. Norovirus Phylogenetic Analysis

Partial polymerase (GI-171 bp, GII-172 bp) and partial capsid (GI-295 bp, GII-282 bp) sequences
were used for phylogenetic analyses to determine genotype of norovirus-positive samples and
confirmed using an online genotyping tool (http://www.rivm.nl/mpf/norovirus/typingtool).
MUSCLE was used to align the GI and GII sequences and phylogenetic trees were constructed
using the maximum likelihood method [31].

2.6. NGS Data Analysis

The software package Geneious, v 9.1.7 (Biomatters, Auckland, New Zealand) was used to
analyze MiSeq data. Raw data were filtered to retain sequencing reads between 200 to 400 nt in length.
Paired-end sequences were merged and mapped to a list of GII references (n = 88) using Geneious
mapper with medium sensitivity and default parameters. The proportion of each GII genotype was
calculated, as described in [16]. Subsequently, all GII.4 reads were mapped to GII.4 variant sequences
(n = 3) to determine the abundance of individual GII.4 variants in the population.

http://www.rivm.nl/mpf/norovirus/typingtool
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2.7. Analysis of Amino Acid Variation within GII.4 Capsid Sequences

Full length GII.4 capsid (VP1) protein sequences were aligned and compared with reference
sequences obtained from GenBank. Variable informative sites were analyzed and determined by the
website DIVEIN (http://indra.mullins.microbiol.washington.edu/DIVEIN/) [32]. Informative sites
are identified when the same amino acid mutation at the same position is shared by at least two strains.

2.8. Molecular Adaptation Analysis of the Norovirus GII.4 Capsid

To investigate the likelihood of positive selection within the GII.4 capsid, 42 representative
sequences were retrospectively selected between the period 2014 to 2017 and compared to reference
sequences obtained from NCBI. The web server (http://datamonkey.org/) [33] was used to identify
potential positive and negative selection within the capsid coding sequence. The three codon-based
methods used were Mixed Effect Model of Evolution (MEME), Fixed Effects Likelihood (FEL), and Fast,
Unconstrained Bayesian AppRoximation (FUBAR) [11]. The significance threshold was set to p value
of 0.07 for both MEME and FEL, and posterior possibility of 0.9 for FUBAR.

3. Results

3.1. Gastroenteritis Outbreak Increase in 2017

In August 2017, a sudden increase of gastroenteritis outbreaks was reported to the NSW Ministry
of Health, Australia, peaking in September 2017 (n = 175 outbreaks). This represented a 4.8-fold
and 2.7-fold increase compared to the average number of monthly outbreaks detected in 2015 and
2016, respectively (Figure 1A) [16]. Additionally, a rise in norovirus outbreaks was also observed in
New Zealand, with the peak occurring in October 2017 (n = 42 outbreaks) (Figure 1B). This was the
highest number of norovirus outbreaks recorded in New Zealand since the emergence of the Sydney
2012 pandemic strain (Figure 1B), and a 2.7-fold rise when compared to the previous two years [16].
Therefore, we aimed to determine if the increased norovirus outbreaks were caused by the emergence
of a novel norovirus.

2017
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Figure 1. The number of gastroenteritis and norovirus outbreaks reported in the Oceania region,
2017. (A) The monthly number of institutional gastroenteritis outbreaks reported to the NSW Ministry
of Health department in 2017 (highlighted in grey), and the number of norovirus-associated outbreaks
investigated in this study (highlighted in yellow); (B) The number of norovirus outbreaks reported to
New Zealand Ministry of Health in 2017. The outbreak settings are categorized as indicated by the
legend; (C) A total of 44 norovirus outbreaks were identified in NSW, Australia, throughout this study
period. The outbreak settings are represented by different colors in the legend.

3.2. Outbreak Settings

A total of 282 norovirus outbreaks (Australia = 44 and New Zealand = 238) were investigated
from samples collected during 2017. Of those, GI was identified as the etiological agent in 52 outbreaks
(18.4%), whilst GII was the causative agent in 228 outbreaks (80.9%). The remaining two outbreaks
identified in New Zealand were caused by a mix of GI and GII noroviruses. In Australia, most outbreaks

http://indra.mullins.microbiol.washington.edu/DIVEIN/
http://datamonkey.org/
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occurred in aged care facilities (45.4%), followed by hospitals (27.3%), accommodation facilities (9.1%),
cruise ships/airplanes (6.8%), and social events (4.5%), with the remaining detected in three other
settings (Figure 1C). Aged care facilities were also identified as the most common outbreak setting
in New Zealand (63.5%), followed by childcare centers (12.2%), hospitals (10.9%), commercial food
operators (5.0%), school/colleges (2.9%), and others (Figure 1B).

3.3. Circulating GI Noroviruses

GI represented 9.1% (n = 22/243) of all noroviruses sequenced in Australia and phylogenetic
analysis identified a total of five capsid genotypes (Figure 2). GI norovirus was found to be more
prevalent in New Zealand than Australia, where it was responsible for 21.4% (n = 51/238) of all
norovirus outbreaks, with six capsid genotypes identified (Figure 2). From the 73 GI noroviruses
isolated from Australia and New Zealand, ten GI strains were identified, of which GI.P3/GI.3
(30.1%, 22/73) was the most predominant, followed by GI.Pb/GI.6 (21.9%, 16/73) and GI.Pd/GI.3
(20.5%, 15/73) (Figure 3A).

3.4. Circulating GII Noroviruses

Norovirus GII was identified as the most predominant genogroup, responsible for 84.8%
(n = 408/481) of all cases/outbreaks investigated in 2017 from Australia and New Zealand (Figure 3B,C
and Figure 4). Based on the phylogenetic analyses (Figure 4), interestingly, the GII.4 capsid sequences
segregated into three different clusters, allowing differentiation of the GII.4 capsid containing viruses
(Figures 4B and 5). In January 2017, the recombinant GII.P16/GII.2 was dominant in New Zealand
(37.5%) and Australia (33.3%); however, its prevalence slowly declined, which was concomitant
with the increase of the recombinant GII.P16/GII.4 Sydney 2012 in the region (Figure 3B,C). In 2017,
the GII.P16/GII.4 Sydney 2012 recombinant was the dominant strain responsible for 56.8% (n = 138/243)
and 42.9% (n = 102/238) of all cases/outbreaks identified in both Australia and New Zealand,
respectively. In Australia, the prevalence of GII.P16/GII.4 Sydney 2012 reached to 75.0% of total
cases/outbreaks in May and then to 84.2% by August 2017 (Figure 3B), whilst in New Zealand,
the virus caused >60% of norovirus GII outbreaks between June and December (Figure 3B).

In Australia, the second most predominant GII norovirus identified was the pandemic Sydney
2012 variant (10.8%, n = 24/221) after the GII.P16/GII.4 Sydney 2012, followed by the recombinant
GII.P4 New Orleans 2009/GII.4 Sydney 2012 (6.8%, n = 15/221), GII.P16/GII.2 (6.3%, n = 14/221)
and GII.P7/GII.6 (5.0%, n = 11/221) (Figures 3B and 4). However, in New Zealand, GII.P16/GII.2
was found to be the second most predominant GII virus identified (9.1%, n = 17/187), after the
most dominant GII.P16/GII.4 Sydney 2012. This was followed by GII.Pe/GII.4 Sydney 2012, GII.P4
New Orleans 2009/GII.4 Sydney 2012 and GII.P7/GII.6, each accounted for 7.0% of GII outbreaks
(n = 13/187) (Figures 3C and 4).
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Figure 2. Phylogenetic analysis of polymerase (RdRp) and capsid (VP1) regions of GI noroviruses. Representative norovirus GI strains isolated in this study
(n = 29), from both NSW, Australia and New Zealand, are shown in this phylogenetic analysis. They are denoted with a colored bullet (•), where Australian samples
are represented in purple and New Zealand samples in orange. All samples are labelled with their geographical location and time of strain isolation. Reference strains
were obtained from the GenBank database, labelled with their genotype and accession number. (A) Maximum likelihood phylogeny derived from partial 3′ end of
polymerase gene (171 bp) of GI noroviruses. (B). Maximum phylogeny derived from partial 5′ end of capsid gene (295 bp) of GI noroviruses. Sequence alignments
were performed with MUSCLE algorithm. Maximum likelihood phylogenetic trees were produced using MEGA 5 software (https://www.megasoftware.net/) with
bootstrapping test of 1000 replicates, based on the Kimura 2-parameter model. The bootstrap percentage values are shown at each branch point for values ≥70%.
The number of substitutions per site is indicated by the scale bar.

https://www.megasoftware.net/
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Figure 3. Monthly distribution of norovirus genotypes identified in the Oceania Region in 2017. (A) The number of GI norovirus genotypes identified in the
Oceania region (Australia and New Zealand) during the study period. A total of 73 samples were collected and identified as GI norovirus, 52 cases were linked to
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220 GII cases were identified in this study, where 44 were linked to outbreaks and the remaining were considered sporadic cases (n = 176). (C) All samples collected
from New Zealand were of outbreak samples and a total of 184 GII outbreaks were investigated in 2017. The monthly genotype distribution of GII noroviruses
are shown.
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Figure 4. Phylogenetic analysis of polymerase (RdRp) and capsid (VP1) regions of GII norovirus. Representative norovirus GII strains isolated in this study
(n = 92) from both NSW, Australia and New Zealand, are shown in this phylogenetic analysis. They are denoted with a colored bullet (•), where Australian samples
are represented in purple and New Zealand samples in orange. All samples are labelled with their geographical location and time of strain isolation. Due to the
number of sequences grouped within GII.P16 and GII.4, the sequences within those clusters were compressed and represented by the black triangles. Reference strains
were obtained from the GenBank database, labelled with their genotype and accession number. (A) Maximum likelihood phylogeny derived from partial 3′ end of
polymerase gene (172 bp) of GII noroviruses. (B). Maximum phylogeny derived from partial 5′ end of capsid gene (282 bp) of GII noroviruses. Sequence alignments
were performed with MUSCLE algorithm. Maximum likelihood phylogenetic trees were produced using MEGA 5 software with bootstrapping test of 1000 replicates,
based on the Kimura 2-parameter model. The bootstrap percentage values are shown at each branch point for values ≥70%. The number of substitutions per site is
indicated by the scale bar.
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Figure 5. Phylogenetic analysis of GII.4 full length capsid sequences. Representative full-length
GII.4 capsid sequences were selected between 2013 to 2017 and compared to prototype GII.4 pandemic
variants and GII.4 recombinant viruses. Sample sequences are denoted by the sample location, sample
ID and date of collection. Prototype sequences of each GII.4 pandemic variant and GII.4 recombinant
viruses are indicated in bold. Reference sequences were obtained from GenBank, labelled with its
accession number and country of isolation. The GII.Pe/GII.4 Sydney 2012 sequences are denoted with
a red triangle, GII.P4 New Orleans 2009/GII.4 Sydney 2012 with a yellow circle, the GII.P16/GII.4
Sydney 2012 sequences with a green diamond and the prototype GII.4 New Orleans 2009 is denoted by
a purple square. The asterisks (*) denote sequences obtained from the Bruggink et al. 2018 study [34].
Sequence alignments were performed with MUSCLE algorithm. Maximum likelihood phylogenetic
trees were produced using MEGA 5 software with bootstrapping test of 1000 replicates, based on the
Kimura 2-parameter model. The bootstrap percentage values are shown at each branch point for values
≥70%. The scale bar indicates the number of substitutions per site.
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3.5. Antigenic Variation within the GII.4 Capsids

The multiple recombination events of the Sydney 2012 pandemic variant is unusual, and has
facilitated viruses with this capsid to persist around the globe. Full-length GII.4 amino acid capsid
consensus sequences of the three Sydney 2012 viruses were examined to identify antigenic variation and
evidence of positive selection, especially within putative antigenic sites (epitopes A–E) and histo-blood
group antigen (HBGA) binding pocket. Representative capsid sequences of GII.Pe/GII.4 Sydney 2012
(n = 20), GII.P4 New Orleans 2009/GII.4 Sydney 2012 (n = 13) and GII.P16/GII.4 Sydney 2012 (n = 9),
were used to generate consensus sequences. Compared to the original pandemic Sydney capsid,
the consensus sequences of the contemporary Sydney 2012 viruses varied at a number of residues
(Figure 6). Firstly, the consensus sequence of GII.Pe/GII.4 Sydney 2012 varied at seven residues,
including residues 297, 372, and 373 in epitope A, residue 310 in the NERK motif, and residues
located in the P2 domain (309) and P1 domain (414 and 540) (Figure 6). Secondly, the GII.P4 New
Orleans 2009/GII.4 Sydney 2012 capsid consensus sequence varied at 11 residues, in which six were
located within the main antigenic epitopes; epitope A (297, 372 and 373), B (333), C (340) and D (393).
The remaining changes were observed in P1 domain (residue 229, 460, 494, 539) and NERK motif (310)
(Figure 6). Finally, the GII.P16/GII.4 Sydney 2012 recombinant strain varied at ten residues located
in; epitope A (373), epitope B (333), epitope D (393), NERK motif (310), shell domain (119, 145, 174),
P1 domain (539, 540) and P2 domain (377) (Figure 6). Of all variable sites identified, residue 373 was
found to be under positive selection by all three codon-based methods (MEME, FEL and FUBAR).

Epitope A
Epitope C

Epitope D

Epitope E

A

B
A B C A A A D

Genotype (polymerase/capsid) 119 145 174 229 297 309 310 333 340 359 368 372 373 377 393 414 460 494 539 540
GII.4 New Orleans 2009 I I S V R N S V T S A D N T S H Y S A L
GII.Pe/GII.4 Sydney 2012 V V P V R N D V T A E D R A G H Y S A V

1 V V P V H S N V T A E N H A G P Y S A LGII.Pe/GII.4 Sydney 2012 
GII.P4 NO 2009/GII.4 Sydney 2012 2 V V P I H N N M A A E S N A S H H P V V
GII.P16/GII.4 Sydney 2012 3 I I S V R N N M T A E D H A S H Y S V V

P1 P1Shell P2

Figure 6. Capsid residue variation and antigenic variation within the full-length capsid of GII.4
recombinant viruses. Full-length capsid sequence of novel GII.4 recombinant viruses were collected
between July 2014 and December 2017. Consensus sequences of contemporary GII.Pe/GII.4 Sydney
20121 (n = 20), GII.4 New Orleans 2009/GII.4 Sydney 20122 (n = 13) and GII.P16/GII.4 Sydney 20123

(n = 9) were generated and compared to pandemic variants (New Orleans 2009 and Sydney 2012) for the
identification of antigenic variations, especially within the P2 protruding domain. (A) Characterized
blockade antibody epitopes are highlighted in the different colors; epitope A (red), epitope C (yellow),
epitope D (green) and epitope E (purple). The residues within P2 domain, especially those within
epitope A, which differed from the pandemic Sydney 2012 variant. The red dotted line shows symmetry.
(B) Antigenic variations observed between full length capsid sequences of pandemic Sydney variant
and the new Sydney 2012 recombinants. Labelled boxes above the antigenic sites indicate sites within
known blockade epitopes A–D that are important determinants of viral antigenicity. The A–D epitopes
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identified in GII.4 capsid are colored; epitope A (red), epitope B (orange), epitope C (yellow) and
epitope D (green). The numbers across the top panel indicate the amino acid position within the VP1
sequence, hypervariable sites with ≥3 amino acids substitutions across all sequences are shaded in
grey. Residues that vary from the GII.4 New Orleans 2009 sequence over time are indicated by shades
of blue. The bottom panel indicates the positions of the shell, P1 and P2 domains within the VP1 capsid
protein. The prototype of each pandemic/recombinant variants are indicated in the lightest shade
of orange.

3.6. Norovirus GII Genotype Distribution in Wastewater Samples

The use of wastewater samples for viral surveillance can enhance the surveillance of norovirus at
a population scale [16,35]. Partial GII norovirus capsid regions were amplified from monthly samples
collected from three WWTP sites from Sydney and Melbourne and sequenced on the Illumina MiSeq
platform. A total of 4,892,127 reads were generated from 32 wastewater samples, with an average of
152,879 reads per sample. Across the three sites, 16 capsid genotypes were identified; the dominant
capsid genotypes included GII.4 (52.6%), GII.2 (24.5%), GII.3 (9.8%), GII.17 (5.8%) and GII.13 (5.5%)
(Figure 7).
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Figure 7. Norovirus GII genotype distribution in wastewater samples collected from Sydney and
Melbourne, 2017. The norovirus GII capsid genotypic distribution was determined in wastewater
samples by amplicon sequencing using NGS technology. After amplification of the capsid region,
a second round PCR was performed for the addition of adapters prior NGS library preparation.
Libraries were sequenced on the MiSeq platform and an average of 152,879 reads were generated for
each sample. Geneious was used for merging and mapping of the reads to the norovirus GII reference
sequences. (A) The monthly genotype distribution of norovirus GII viruses in wastewater samples
collected from Bondi WWTP in Sydney, Australia. (B) Norovirus GII genotypic diversity was examined
in wastewater samples collected monthly from Malabar WWTP in Sydney, Australia. (C) The monthly
norovirus GII genotype diversity was also examined in Melbourne, all samples were collected from
western wastewater treatment plant. Samples were not collected between January and April 2017.
Norovirus GII capsid genotype and GII.4 recombinants are labelled in different colors as indicated by
the legend.

GII.2 was found to be the predominant capsid genotype at the Bondi and Malabar WWTPs
in January (33.1% and 39.1% of reads, respectively) and February (37.4% and 36.4%, respectively).
However, a steady decline of GII.2 was observed for the remainder of the year at both sites,
accompanied by an increase of GII.4 viruses around March 2017 (Figure 7A,B). Subtle but distinct
differences can be found between the three GII.4 Sydney capsid sequences, which enabled the inference
of polymerase genotype. At the Bondi WWTP, an increase in GII.P16/GII.4 Sydney 2012 recombinant
was observed; 25.6% in February, 41.3% in May, 41.9% in July, and reached its highest levels in
November 2017 (50.7%) (Figure 7A). At the Malabar WWTP, an average of 23.8% of GII.P16/GII.4
reads were seen in the first three months of 2017, then 39.1% in July, 43.3% in September, and 36.8%
in December (Figure 7B). This virus was the most predominant GII strain from July to December,
and accounted for an average of 37.5% of the monthly genotype distribution for 2017 in Sydney
(Figure 7A,B).

For the Melbourne WWTP, GII.4 was the dominant capsid genotype between May and December
2017 (average of 60.9% of monthly reads) (Figure 7C). Surprisingly, the recombinant GII.P16/GII.4
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Sydney 2012 was not the predominant strain in Melbourne, with a monthly average of 19.1% of reads
across 2017. Of the three GII.4 recombinants, GII.P4 New Orleans 2009/GII.4 Sydney 2012 was the
most prevalent virus in wastewater samples, constituting 34.1% of reads in May, 45.5% in August,
and 25.7% in November. GII.2 viruses were identified as another dominant genotype throughout the
study period in Melbourne, accounting for a monthly average of 19.1% (Figure 7C).

4. Discussion

A total of six pandemic norovirus variants have emerged in the past two decades, all of which
may be classified within the GII.4 lineage [11], with the most recent emerging in 2012, namely Sydney
2012 (GII.Pe/GII.4 Sydney 2012) [15,36]. Recently Sydney 2012 has undergone recombination with
both its predecessor pandemic strain (New Orleans 2009) and a GII.P16 virus to create two new strains
(GII.P4 New Orleans 2009/GII.4 Sydney 2012 and GII.P16/GII.4 Sydney 2012), with reported potential
to evade population immunity and cause outbreaks [16,26,28,37,38].

In the winter months of 2017, an increase in gastroenteritis outbreaks was observed in Australia
and New Zealand when compared to the previous two years (Figure 1). This increase is consistent
with the study by Bruggink et al., 2018 in Victoria, Australia, where the number of outbreaks in
2017 doubled in July (n = 22) compared to May 2017 (n = 11) [34]. Overall, this data suggested the
continued dominance of GII.P16/GII.2 or the emergence of a novel norovirus. Therefore, we genotyped
circulating noroviruses within the Oceania region in 2017. The prevalence of GII.P16/GII.2 diminished
in early 2017, and was replaced by GII.P16/GII.4 Sydney 2012, which was the dominant virus in
both Australia (57.0%) and New Zealand (43.2%) for the remainder of the year. This replacement
suggests that a GII.4 capsid is one essential requirement for norovirus persistence within the population.
A previous study by Parra et al. showed non-GII.4 viruses were genetically more static [39], and only
minor divergence was observed within the GII.2 capsid sequence over 40 years [40]. This lack of
variance in GII.2 antigenic domains could explain their short-lived duration. In contrast, GII.4 viruses
have the highest rate of evolution (5.4 × 10−3 nucleotide substitutions/site/year) compared to other
genotypes, signifying their ability to facilitate the emergence of new variants, and as shown in this
study, their ability to replace GII.2 as a dominant strain [39,41].

The GII.P16/GII.4 Sydney 2012 recombinant retained the original Sydney 2012 capsid, albeit with
slight modifications. Based on the increased circulation of this strain, the change in the non-structural
region may also have contributed to immune escape and conferred higher virological fitness [38,42].
This is supported by the cocirculation and increased prevalence of GII.P16/GII.4 Sydney 2012
and GII.P16/GII.2 viruses in 2016/17, both of which possess the GII.P16 polymerase [16]. Indeed
GII.P16/GII.2 could represent the “stepping stone” precursor to GII.P16/GII.4 Sydney 2012 virus.
This hypothesis is supported by Tohma et al., who showed the polymerase of GII.P16/GII.4 Sydney
2012 was derived from the GII.P16/GII.2 virus [40]. In addition, alterations within the non-structural
genes may allow viral persistence through escape of the cytotoxic T lymphocyte response of the
host, which has been demonstrated for both hepatitis C virus and human immunodeficiency virus
infections [43,44], although this is not well studied for norovirus.

No definitive pandemic variant has emerged since 2012; instead, two new recombinants have
maintained a GII.4 Sydney 2012 capsid [17,23]. This suggests that antigenic drift, where point mutations
occurred within the capsid P2 domain, may have contributed to immune escape [8]. Therefore,
consensus GII.4 capsid sequences collected in Oceania between 2014 and 2017 were used to identify
potential sites of antigenic drift and positive selection within Sydney 2012 capsids. Of the blockade
epitopes (A–E), epitope A is believed to be one of the most important determinants of antigenic
change [45] and associated with the loss of blockade antibody binding, as well as the emergence of
new GII.4 variants [45,46]. In this study, significant positive selection was detected at residue 373 of
epitope A in all three recombinant GII.4 Sydney 2012 strains, consistent with previous findings [11,42].

Epitope D contains the histo-blood group antigen (HBGA) carbohydrate binding sites [9,47],
and changes in residue 393 showed loss of human monoclonal antibody binding and modulation in
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Lewis A and B binding [9,45,46], and therefore, affect attachment and entry of the virus. Within epitope
D, amino acid reversion to sequence found in the New Orleans 2009 capsid at residue 393 (epitope D),
was identified in both the GII.P4 New Orleans 2009/GII.4 Sydney 2012 and GII.P16/GII.4 Sydney 2012
recombinant viruses. Additionally, residues 119, 145, and 174 within shell domain of GII.P16/GII.4
Sydney 2012 also reverted to residues found in the previous pandemic variant, New Orleans 2009.
Even though antigenic reversion is commonly identified in viruses [48–51], the benefits are not well
understood. However, previous studies have proposed that reversion is a result of immune escape [52],
and it can limit the antigenic repertoire [53].

Additional antigenic changes were also observed after 2014, with all three strains with the Sydney
2012 capsid possessing an asparagine (N) amino acid at residue 310, as opposed to the aspartic acid
(D) found in the original in Sydney 2012 variant. Residue 310 is located within the NERK motif,
which regulates capsid structural conformation, and thus antigenic changes may result in less or
inaccessible epitopes [42]. This persistence of Sydney 2012 capsid was probably enhanced by the
sudden emergence of multiple recombinant noroviruses, with different ORF1 regions, but all containing
the Sydney 2012 capsid. This acquisition of a novel non-structural region together with the observed
capsid amino acid changes likely increased the epidemiological fitness of the recombinant viruses
through immune escape. Therefore, the combination of both recombination and antigenic variation
influenced the continued circulation of the GII.4 Sydney capsid.

Consistent with our clinical data, a high abundance of GII.P16/GII.4 Sydney 2012 was detected in
wastewater collected from Sydney and a switch in strain predominance was observed in March (Bondi)
and April (Malabar), where GII.P16/GII.4 Sydney 2012 capsid replaced the previously dominant
GII.2 capsid genotype. In contrast to Sydney wastewater, no change in capsid genotype dominance
was observed in Melbourne WWTP, and GII.4 viruses persisted as the dominant capsid genotype
throughout the study period. This could be due to the lack of sampling in the early months of 2017,
where the switch was observed in Bondi and Malabar WWTP. Furthermore, the recombinant GII.P4
New Orleans 2009/GII.4 Sydney 2012 was identified as the dominant GII virus in Melbourne WWTP.
This result correlated with the study performed by Bruggink et al. in Victoria, Australia, in which
GII.P4 New Orleans 2009/GII.4 Sydney 2012 was shown to be responsible for 69% of all outbreaks
investigated between January and September 2017 [34], demonstrating the usefulness of wastewater
samples for norovirus surveillance.

Molecular epidemiological surveillance of norovirus is essential to identify new circulating
recombinants and emerging strains at a population level, particularly when outbreak activity escalates.
Moreover, knowledge of circulating noroviruses is useful for effective vaccine design. Norovirus
surveillance in Australia and New Zealand, 2017, showed an increase of GII.P16/GII.4 Sydney 2012
viruses, concomitant with the decrease of the 2016 prevalent strain GII.P16/GII.2. Our study highlights
the importance of norovirus recombination, together with antigenic capsid changes for the emergence
of new epidemic strains. With the use of NGS technologies, the switch in GII norovirus dominance
was also observed in wastewater at a population level in Sydney, and the dominant New Orleans
2009/GII.4 Sydney 2012 strain also was identified in Melbourne. This highlights the reliability of
wastewater as a norovirus surveillance tool.
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