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Abstract: The interferon-induced double-stranded (ds)RNA-dependent protein kinase 

(PKR) limits viral replication by an eIF2-mediated block of translation. Although many 

negative-strand RNA viruses activate PKR, the responsible RNAs have long remained 

elusive, as dsRNA, the canonical activator of PKR, has not been detected in cells infected 

with such viruses. In this review we focus on the activating RNA molecules of different 

virus families, in particular the negative-strand RNA viruses. We discuss the recently 

identified non-canonical activators 5’-triphosphate RNA and the vRNP of influenza virus 

and give an update on strategies of selected RNA and DNA viruses to prevent activation of 

PKR. 
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1. Introduction 

The presence and replication of viral nucleic acids in vertebrate cells triggers innate immune 

reactions, in particular the induction of type I interferon (IFN) genes and the activation of antiviral 

enzymes [1]. The double-stranded (ds) RNA-dependent protein kinase (PKR) is a key executor of this 

antiviral response along with other interferon-stimulated gene products such as the  
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2’,5’-oligoadenylate synthetases and the Mx proteins [2]. PKR is present in non-stimulated cells at 

basal levels that vary in regard to the tissue type and the degree of differentiation [3]. However, its 

expression level is upregulated by type I IFN, which allows a robust response to viral infections [4]. 

Human PKR is a latent serine/threonine kinase of 551 amino acids with two consecutive N-terminal 

dsRNA-binding motifs, a linker domain, and a C-terminal kinase domain [5]. Activation of PKR 

during viral infection is mediated by recognition of viral nucleic acids, which induces a structural 

rearrangement and brings two PKR monomers into close proximity [6]. This allows back-to-back 

dimerization with the kinase domain facing outwards, and the concomitant autophosphorylation of the 

critical threonine residues 446 and 451 in the activation loop [7–9]. Active PKR can then bind and 

phosphorylate its best studied natural target, the serine residue 51 of the alpha subunit of the 

eukaryotic translation initiation factor 2 (eIF2) [10–12]. In mammalian cells, eIF2-GTP delivers  

Met-tRNAi to the 40S ribosome. After GTP hydrolysis eIF2-GDP is released and regenerated to  

eIF2-GTP by the GTP-exchange factor eIF2B. The increased affinity of phosphorylated eIF2 for 

eIF2B leads to sequestration of this rate limiting factor and results in inhibition of translation  

initiation [13]. As viruses critically depend on the cellular translation machinery, the PKR mediated 

block of translation strongly impairs efficient viral reproduction and spread. In addition, PKR can act 

as signal transducer in the IB/NFB pathway and plays a role in the control of cellular processes such 

as apoptosis, cell growth and differentiation, and response to cellular stresses other than viral  

infection [14]. Accordingly, PKR can also be activated by the polyanionic molecule heparin [15] or the 

protein activator PACT [16]. Under non-stress conditions activation of PKR by PACT is prevented by 

interaction of PACT with TRBP (TAR RNA binding protein) [17]. 

PKR and the 2’,5’-oligoadenylate synthetases (OAS) were the first cellular proteins identified that 

respond to dsRNA produced during viral infection [18]. As such they can be referred to as pattern 

recognition receptors (PRRs), a term first used to account for recognition of pathogen associated 

molecular patterns (PAMPs) by Toll-like receptors (TLRs) and RIG-I-like receptors (RLRs) that 

initiate synthesis of type I interferons (IFN- and IFN-) [19,20]. Defining the molecular structure of 

viral PAMPs has extended our understanding of how PRRs discriminate between viral and ‘self’ RNA. 

Such work has, for instance, added endosomal guanosine- or uridine-rich ssRNA (activators of 

TLR7/TLR8) and intracellular RNA carrying a 5’-triphosphate group (activating RIG-I) to the list of 

viral PAMPs [19,21]. Considering that PKR is able to recognize viral RNA from a broad range of 

virus families, it is not surprising that the repertoire of PKR activating RNA molecules goes beyond 

the canonical dsRNA.  

In the following section we summarize the activating RNA molecules of different virus families, in 

particular the non-canonical activators established in recent studies such as 5’-triphosphate RNAs and 

vRNPs of influenza virus. We also give an update on the diverse viral strategies that prevent activation 

of PKR.  

2. Activation of PKR by Viral Ribonucleotides 

Historically, PKR was identified as the protein kinase responsible for translation inhibition in 

response to synthetic dsRNA polyinosinic acid: polycytidylic acid (poly(I:C)) or viral dsRNA derived 

from vaccinia virus or poliovirus infected cells [18]. Actual binding of PKR to dsRNA was first shown 
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by partial purification of PKR using poly(I:C)-Sepharose [22]. Later studies concluded that PKR 

requires a minimum of 33bp of perfect dsRNA for induction and around 80 bp and longer for optimal 

activation [23]. Binding of dsRNA shorter than 33 bp did not activate PKR, but rather inhibited 

activation by long dsRNA [23]. However, experimental data have accumulated indicating that the 

range of nucleic acids capable to activate PKR is considerably broader than was originally appreciated 

(Figure 1).  

Figure 1. Activation of PKR by different viral and synthetic RNAs. Latent PKR binds to 

(1) perfect dsRNA of viral or synthetic origin, (2) synthetic structured RNA with single 

stranded tails and a 5’triphosphate, (3) HIV-1 TAR RNA or (4) (possibly incomplete) 

influenza virus vRNP. This leads to dimerization and autophosphorylation of PKR. Active 

PKR then phosphorylates its substrate eIF2, which results in a block of translation. PKR 

consists of  two dsRNA-binding motifs (dsRBM1 + dsRBM2 in light green) and the  

N-terminal and C-terminal lobe of the kinase domain (dark green). 

 

2.1. Synthetic RNAs 

In order to characterize the structural features that comprise a PKR PAMP, many laboratories have 

for practical reasons used synthetic RNAs such as poly(I:C) instead of purified viral RNAs. Poly(I:C) 

is easy to work with; however, the stretches of dsRNA are heterogeneous in length and inosine is a 

relatively rare ribonucleotide in cells or viruses [24]. Other sources are chemically synthesised RNAs 

or RNAs transcribed by the RNA polymerases of the bacteriophages T7, T3 or SP6. These RNAs 

allow a precise analysis of the impact of length, structure and ribonucleotide modifications on PKR 
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activation. One has to keep in mind though, that in vitro transcribed RNAs contain a triphosphate 

group at their 5’end. Most cellular RNAs lack a 5’-triphosphate as it is processed to a 7-methyl 

guanosine cap for mRNA or monophosphate for tRNA and rRNA [25]. As many bacterial and viral 

RNAs contain a 5’-triphosphate group, this structure can serve as a marker of non-self RNA. 

Nallagatla and coworkers have shown that long duplex RNA, the canonical PKR activator, does not 

depend on 5’-triphosphates. However, this modification is critical for the activation of PKR by shorter 

RNAs with a 16 bp stem loop and 10 to 15 nt single-stranded tails as well as by a 47nt ssRNA with 

minimal secondary structure, i.e., two short stem-loops of 5 and 4 bp [26]. Another interesting finding 

is that internal nucleoside modifications, which are quite common in cellular RNAs, reduce the ability 

of RNAs to serve as PKR PAMPs, providing another means of discrimination between self and  

non-self RNAs [27]. 

In addition to PKR, intracellular RNA is also detected by RIG-I, a major sensor protein facilitating 

type I IFN upregulation in response to several virus families [21]. There are similarities and 

differences regarding the nature of the RNA detected by either protein. Whereas RIG-I mediated 

induction of IFN- genes is believed to depend on RNAs carrying a 5’triphosphate [28,29], the 

requirement for a 5’-triphosphate group to activate PKR seems to depend on the structure of the RNA 

as discussed earlier [26]. Another difference between RIG-I and PKR is that RIG-I is able to detect  

5’-triphosphate RNAs as short as 19 nt, whereas the minimal length for detection by PKR appears to 

be 30 bp for dsRNA or 47 nt for ss-dsRNA [23,26,29]. Initial studies indicating that RIG-I, in 

contrast to PKR, is activated by single-stranded RNA have been challenged by findings that stress the 

requirement for base-paired stretches in addition to the 5’-triphosphate [30–32]. These studies also add 

another caveat regarding the use of in vitro transcripts: T7 polymerase possesses a RNA-dependent 

RNA polymerase activity that can result in non-templated hairpin RNAs as byproducts of the 

transcription reaction, necessitating purification by denaturing polyacrylamide gel electrophoresis to 

isolate the intended RNA products [31–34].  

2.2. Viral RNAs 

Considering the diverse genome structures and replication strategies of different virus families, it is 

conceivable that the PAMPs generated during viral infection are similarly diverse. However, there are 

obstacles that complicate the identification of potential PKR activating RNAs within virus-infected 

cells. For one, most viruses express proteins or RNAs that inhibit PKR or its downstream effects (see 

below). This necessitates the use of naturally occurring virus mutants or recombinant viruses that lack 

this activity. The detection and/or isolation of the respective PAMPs pose another challenge. Although 

dsRNA can be detected by indirect immunofluorescence microscopy, the most widely used antibody 

only detects dsRNAs >40bp [35]. Furthermore, RNAs extracted from infected cells are not complexed 

with proteins, as they would have been in the cell, and could possibly fold into a different secondary 

structure, which might alter their activity as PAMPs. Despite these difficulties, progress has been made 

in defining viral PAMPs recognized by PKR. We give an overview of what is known so far about the 

origin and structure of these RNA molecules.  

Complex DNA viruses such as vaccinia virus, adenovirus, herpes simplex virus or cytomegalovirus 

transcribe open reading frames in opposite orientations, which can lead to formation of long duplex 
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RNAs. Evidence for these viral dsRNA came from experiments performing extraction and  

re-annealing of RNA from virus infected cells [36–38] and detection by indirect immunofluorescence 

microscopy using an antibody that detects dsRNA >40bp [39–41]. The latter method also confirmed 

the presence of dsRNA in cells infected with reovirus which has a dsRNA genome [42] and virus 

families with a positive-strand RNA genome such as Togaviridae (rubella virus, Semliki Forest virus, 

Sindbis virus [43,44]), Coronaviridae (SARS corona virus [39], Picornaviridae (encephalomyocarditis 

virus [39]), and Flaviviridae (Kunjin virus, poliovirus, tick-borne encephalitis virus, hepatitis C virus, 

dengue virus [45–48]). In the case of positive-strand RNA viruses the dsRNA might represent 

replication intermediates or long stretches of extensively base-paired secondary structure elements 

[49]. There is conflicting data regarding the IRES element of hepatitis C virus which has been 

suggested to either inhibit [50] or activate PKR [51]. Another well-studied RNA with secondary 

structure is the human immunodeficiency virus type 1 (HIV-1) trans-activation responsive (TAR) 

element at the 5’-termini of HIV-1 mRNAs. The TAR RNA consists of a stem-loop interrupted by 

three bulges and has been shown to bind to and activate PKR [51–55]. In vitro experiments suggest 

that dimerization of TAR RNA is necessary to provide a dsRNA molecule of sufficient length to 

engage two PKR molecules and induce dimerization and activation of PKR [56]. This mode of 

activation might be similar to the activation of PKR by self RNAs that contain highly structured 

regions, such as the mRNAs of IFN- and -tropomyosin; a mechanism that is used to regulate 

expression of these mRNAs [57,58]. 

For negative sense ssRNA viruses it has long been thought that dsRNAs activating cellular 

receptors represent replication intermediates [59]. For the families of the Orthomyxo- and 

Bornaviridae such a scenario is unlikely, since production of viral RNAs with opposite polarities is a 

nuclear event [60], whereas activation of PKR is believed to occur in the cytoplasm [61]. Although 

dsRNA has been extracted from influenza A virus infected cells [59], this might have been a result of 

the extraction procedure during which both cytoplasmic and nuclear ribonucleoproteins (RNPs) of 

opposite polarity are stripped of their nucleoproteins and, hence, can easily form long duplex RNAs. 

Indeed, a dsRNA-specific antibody did not detect significant levels of dsRNA in cells infected with the 

influenza A wild-type virus or a deletion virus (NS1) that lacks the PKR inhibitor NS1 [28,39]. It is 

possible that PKR is activated by PACT, which would not require dsRNA [16,39,62]. However, a 

recent study addressing the role of PACT in viral infection by using PACT knockout mice neither 

detected an alteration of dsRNA induced phosphorylation of eIF2 nor any influence on replication of 

the negative-strand RNA viruses VSV and Sendai virus [63].  

The availability of reverse genetic procedures has not only allowed the identification of viral 

inhibitors of PKR but also enabled a closer examination of the viral PAMPs of PKR in particular for 

influenza viruses. Recombinant influenza A and B viruses with a mutated or deleted gene for the 

nonstructural protein 1 (NS1) are strong activators of PKR [64–66] and of RIG-I controlled IFN- 

genes [67–72]. The first piece of evidence that defined the nature of the PKR PAMP in influenza 

infection came from studies by Hatada et al. who showed that PKR can be activated in vitro by 

purified influenza A virion RNA and a model vRNA [66]. Both RNA species carry a 5’-triphosphate 

group and engage in base-pairing between partially complementary 5’-terminal and 3’-terminal ends. 

As described above, these features comprise PKR PAMPs [26]. Furthermore, RNA isolated from 

influenza virions activated RIG-I in a 5’-triphosphate dependent manner [28]. However, in infected 
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cells vRNAs are complexed with nucleoprotein and the viral polymerase proteins forming 

ribonucleoproteins (vRNP) [60]. This raises the question whether the danger signals are concealed in 

such nucleoprotein complexes or whether vRNP is itself an activating ligand of PKR. Analysis of an 

influenza B virus expressing a non-functional NS1 protein provided the first evidence that influenza 

virus RNP indeed functions as a non-canonical activator of PKR in the cytosol [55]. The study showed 

that (i) PKR autophosphorylation in infected cells occurred concomitantly with the cytosolic 

appearance of vRNP, when a functional NS1 protein was absent, (ii) PKR activation was largely 

abolished when the nucleo-cytoplasmic export of vRNP was blocked by LMB treatment, and (iii) 

purified vRNP activated PKR in an in vitro kinase assay in a dsRNA-dependent manner. 

Mechanistically, the base-pairing between the 14–16 nt at the vRNA termini, which form a panhandle 

and/or a related corkscrew structure [73–75], could provide the dsRNA structure for activating PKR. 

This terminal structure may not be covered in all the vRNP complexes produced during virus infection. 

It was not possible to answer the dependency on the 5’-triphosphate conclusively, as the phosphatase 

used would not only hydrolyze the 5′-triphosphate, but would also remove the phosphate groups on 

activated PKR and ATP, and elimination of the phosphatase by phenol extraction would destroy the 

RNP structure. However, phosphatase treatment strongly reduced activation of PKR by synthetic 

influenza virus model vRNA containing the terminal 5′- and 3′- ends, indicating a contribution of the 

5′-triphosphate to this process [55]. This study is the first to show that a natural viral RNA/RNP with a 

5′-triphosphate group can trigger PKR activation. 

The findings described above raise the question whether other negative strand RNA viruses activate 

PKR in a similar way. One observation that favours this hypothesis is that the conserved ends of the 

genomic RNAs of several members of the Bunyaviridae also form a structured panhandle [76] and the 

level of phosphorylated eIF2α increased during infection with the prototypic Bunyamwera virus and 

the Rift Valley fever virus lacking the PKR inhibitor NSs [77–79]. Non-segmented negative-strand 

RNA viruses also activate PKR; for instance, the Ebola virus VP35 protein counteracts stimulation of 

PKR, indicating indirectly that members of the Filoviridae family can activate and thus try to inhibit 

activation of the kinase [80,81]. In addition, the replication and virulence of vesicular stomatitis virus, 

a member of the Rhabdoviridae, is strongly enhanced in PKR-deficient mice [82]. Interestingly, most 

genomic RNAs of single-stranded RNA viruses carry a 5′-triphosphate group. This was shown for 

Zaire Ebola virus (Filoviridae), Nipah virus and measles virus (Paramyxoviridae), Lassa virus 

(Arenaviridae), Rift Valley fever virus (Bunyaviridae), rabies virus and vesicular stomatitis virus 

(Rhabdoviridae) [29,83] and suggests that their vRNPs are potential PKR PAMPs. Some viruses such 

as Hantaan virus, Crimean Congo hemorrhagic fever virus (Bunyaviridae) and Borna disease virus 

carry a 5’-monophosphate, possibly to escape detection by host cell innate immune mechanisms [83]. 

It has to be taken into account though, that the genomic RNA of members of the order 

Mononegavirales is more tightly encapsidated by the nucleoprotein than the genomic RNA of 

influenza viruses [84–86]. Therefore, more experimental work is needed to determine the potential of 

vRNPs of negative-strand viruses other than influenza virus to trigger PKR activation. 

Another RNA that has been considered to be a potential PAMP is the 5’triphosphate containing 

leader RNA that is transcribed from the most promoter-proximal gene of the Paramyxo-, Rhabdo- and 

Filoviridae genome [87,88]. The leader RNA is not encapsidated until substantial amounts of 

nucleoprotein have accumulated and it has been implicated in activating RIG-I mediated IFN induction 
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by measles virus [89]. However, work by Bitko et al., indicated that the leader RNA of the respiratory 

syncycial virus and Sendai virus is shielded from RIG-I in a complex with the cellular La protein [90]. 

No studies have been conducted so far to test whether leader RNA might activate PKR. 

Finally, some members of the Paramyxoviridae actually produce long duplex RNAs under 

conditions where synthesis of genomic and antigenomic RNA is not tightly regulated. Takeuchi et al. 

showed that, in contrast to wild-type Sendai virus infected cells, significant amounts of dsRNA were 

detected by indirect immunofluorescence microscopy in cells infected with a mutant virus expressing 

an inactive C protein [91]. Their findings indicate that the C protein prevents excessive RNA 

synthesis, thus preventing the production of dsRNA and activation of PKR. Similarly, infection with a 

measles virus lacking the C protein led to activation of PKR and phosphorylation of eIF2. The  

C-deficient virus showed a restricted growth phenotype, which was partially restored by depletion of 

PKR, whereas the PKR status had no impact on wild-type virus replication [92]. Although the dsRNA 

content in cells infected with the C knockout virus has not been analysed, the measles virus C protein 

has been implicated in regulating RNA synthesis as well [93]. Gainey et al. showed a similar strategy 

for the SV5 virus, although in this case the P/V proteins are instrumental in limiting activation of PKR 

[94]. In case of the Newcastle disease virus, the Ulster strain has been shown to produce dsRNA in 

amounts detectable by the dsRNA antibody and induced phosphorylation of PKR and eIF2 [91]. 

Interestingly, wild-type measles and Sendai viruses cannot prevent PKR activation by the Vaccinia 

virus E3L, that lacks the PKR inhibitor E3L, or the Newcastle disease virus (Ulster strain), 

respectively [91,92]. These observations suggest that at least some paramyxoviruses do not require a 

PKR inhibitor, as they tightly regulate the replication process and thus keep viral RNA at a level that 

can be complexed by nucleocapsid proteins and masked from PKR.  

Table 1. Viral RNA structures that potentially activate PKR. 

Virus (genome) dsRNA 
detected 
in IFA 

Origin of PKR activating 
RNA 

Reference 

VacV, AdV, HSV-1, HCMV, 
MCMV (DNA) 

+ overlapping converging 
transcription  

[36–41] 

HIV-1 (RNA/DNA) n. a.  TAR RNA/possibly as dimer [52–54,56] 
ReoV (dsRNA) + dsRNA genome [39,42,49] 
Rubella V., SFV, SINV, SARS CoV, 
EMCV, Kunjin V., PolioV, TBEV, 
HCV, DENV. (+ssRNA) 

+ replication intermediates or 
base-paired secondary 
structure elements 

[39,43–48] 

Influenza V. (-ssRNA, segm.) - vRNP/complementary 3’ and 
5’ termini of vRNA (flu B 
virus) 

[28,39,55] 

LaCrosse V. (-ssRNA, segm.) - panhandle structure of vRNA? [39,76] 
SenV (-ssRNA, non-segm.) - ? [91] 
SenV C protein mutant, NDV Ulster 
strain (-ssRNA, non-segm.) 

+ replication intermediates [91] 
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3. Viral Countermeasures 

Many virus families have evolved gene products targeting PKR, illustrating the importance of this 

kinase to antiviral defense. The inhibitory mechanisms are manifold and include sequestration of viral 

dsRNA by a viral protein, prevention of PKR activation through direct interaction with viral proteins 

or viral decoy RNA, regulation of eIF2α phosphorylation through a viral pseudosubstrate or 

recruitment of a cellular phosphatase, or PKR degradation (summarized in [95–98]). Here, we focus on 

new mechanistic aspects of PKR inhibition by the influenza virus NS1 protein and additional PKR 

inhibitory proteins expressed by Rift Valley Fever virus, Ebola virus and cytomegalovirus, which were 

described only recently (Table 2). 

3.1. Influenza A and B viruses 

It is well known that the influenza A and B virus NS1 proteins (A/NS1 and B/NS1, respectively) 

function as PKR antagonists since mutant viruses with defects in the NS1 gene, but not wild-type 

virus, are potent PKR activators [64–66]. This inhibition of PKR is critical for virus production, as 

mutant viruses with loss-of-inhibition mutations in the NS1 gene are severely attenuated in PKR+/+ but 

not in PKR-/- mice and embryonic fibroblasts [55,64]. The NS1 proteins of both virus types are 

multifunctional proteins consisting of 202–237 and 281 amino acids (aa), respectively. Both NS1 

proteins also downregulate the RIG-I mediated activation of type I IFN genes [28,65,67,68,70,71]. For 

the A/NS1 protein this activity was recently shown to involve inhibition of TRIM25-mediated RIG-I 

ubiqitination [99]. The A/NS1 protein was also shown to inhibit the maturation and export of cellular 

pre-mRNAs, to enhance translation, to inhibit the 2′,5′-oligoadenylate synthetase (OAS) and to 

activate the phosphatidylinositol 3-kinase (PI3K) [100–108] (summarized in [109]). In contrast, it is a 

specific function of the influenza B virus NS1 protein to inhibit the conjugation of the antiviral ISG15 

gene product to cellular targets [110] and to modify the nuclear speckle compartment [111]. Although 

the overall sequence identity is below 25%, both NS1 proteins carry a similarly structured N-terminal 

dsRNA binding domain located at positions 1–73 (type A) and 1–93 (type B) [112]. Both NS1 proteins 

bind to the same RNAs in vitro including synthetic dsRNA, U6 RNA, and poly(A)-RNA [113] and a 

model vRNA with base-paired 3’-terminal and 5’-terminal ends [114].  

The longstanding hypothesis has been that NS1 proteins prevent PKR activation by sequestering 

dsRNA. However, recent data indicate that this model needs to be revised. Work in our laboratory 

showed that the influenza B virus NS1 protein and PKR form an immunoprecipitable complex in 

infected cells that was sensitive to treatment with dsRNA-specific RNase and required a functional 

NS1 dsRNA-binding domain [55]. As described in Section 2.2, influenza vRNPs provide the major 

stimulus for PKR activation, possibly through the partially base-paired region at their vRNA termini. 

Interestingly, vRNA was detected in PKR-NS1 immunoprecipitates from infected cell lysate [55]. This 

raises the possibility that B/NS1 protein blocks activation of PKR by cytosolic vRNP through the 

formation of a heterotrimeric complex. It cannot be ruled out, though, that binding of B/NS1 to PKR in 

infected cells is mediated by a yet undetermined viral or host-derived nucleic acid. However, this study 

established that the key activity of the B/NS1 dsRNA binding domain is to silence PKR, as virulence 

and virus production of virus mutants expressing dsRNA-binding deficient NS1 proteins were restored 

to wild-type levels in PKR-/- mice and fibroblasts [55].  
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For the influenza A virus NS1 protein there is inconsistent data concerning the mode of PKR 

inhibition. Early studies suggested an important role of the A/NS1 protein’s dsRNA-binding activity. 

DsRNA binding-deficient NS1 mutant protein of the A/PR/8/34 strain did not inhibit PKR activation 

and eIF2 phosphorylation by dsRNA and model vRNAs in in vitro assays [66,115]. Furthermore, 

A/Udorn/72 viruses expressing NS1 proteins (K62N or A132T) that are dsRNA binding-deficient as 

part of their ts phenotype activated PKR in infected cells at the non-permissive temperature [66]. 

However, a later study concluded that dsRNA-binding by the NS1 protein is not essential for 

inhibition of PKR [116]. Cells infected with a recombinant A/Udorn/72 virus expressing a dsRNA 

binding-deficient NS1 protein (NS1-R38A) did not show phosphorylation of PKR and the NS1-R38A 

mutant protein also inhibited PKR activation by dsRNA and PACT in vitro [116]. Instead, the 

inhibition of PKR was shown to correlate with an interaction of NS1 and PKR that was abolished by 

mutation of the NS1 residues 123/124 or 126/127 [117]. Additionally, work by Tan & Katze 

demonstrated that the residues 7 to 48 located in the dsRNA-binding domain of the A/Udorn/72 NS1 

protein are essential for the PKR interaction [118]. Taken together, these results indicate that both the 

dsRNA-binding domain and the region between amino acid residues 123 and 127 contribute to this 

interaction. Regarding the role of the influenza A virus NS1 protein in counteracting the antiviral 

response, it was suggested that the main function of the dsRNA-binding domain was to target the 

antiviral 2′-5′-OAS/RNaseL system. Another strategy to inhibit PKR during influenza virus infection 

has been thought to involve activation of the cellular protein p58IPK [119]. P58IPK is activated at the 

post-transcriptional level, interacts with PKR and reduces PKR-mediated eIF2 phosphorylation, 

thereby increasing viral mRNA translation [119,120]. Although such an activity is expected to support 

viral replication on the cellular level, a recent study revealed that gene knockout of p58IPK leads to 

increased lung pathology, immune cell apoptosis, PKR activation and mortality in influenza A virus 

infected mice [121]. Therefore, activation of p58IPK may rather be seen as a control mechanism to limit 

an excessive PKR response and prolong host survival than as a strategy of influenza virus to inhibit 

PKR. 

Table 2. Discussed viral gene products that inhibit PKR activation. 

Viral product Virus Mode of inhibition 
NS1 influenza A virus direct interaction with PKR 
NS1 influenza B virus dsRNA-mediated interaction with PKR 
NSs Rift Valley Fever virus proteasome-mediated degradation of PKR 
VP35 Ebola Virus unknown 
pTRS1/pIRS1 human CMV relocalization of PKR, interaction with PKR 
m142/m143 murine CMV relocalization of PKR, direct interaction with PKR 

3.2. Rift Valley fever virus 

Recent studies suggested that the NSs protein of Rift Valley fever virus (RVFV), a member of the 

Bunyaviridae genus Phlebovirus, induces the proteasome-mediated degradation of PKR in order to 

escape from this antiviral response [77,78]. PKR was active and eIF2 was phosphorylated in cells 

infected with an RVFV lacking functional NSs [77,78]. Interestingly, eIF2 phosphorylation was 
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greatly enhanced by actinomycin D or -amanitin treatment that was used to mimic the transcriptional 

inhibition of cellular genes conferred by the NSs protein [78]. Furthermore, it has been shown that it is 

an autonomous function of the NSs protein to induce PKR degradation [78]. Experiments in PKR-/- 

mice and fibroblasts confirmed that the kinase plays a major role in limiting virus production and 

pathogenicity of RVFVs lacking the NSs gene or expressing a non-functional truncated NSs protein 

[77,78]. However, in the experiments performed by Habjan et al. PKR deficiency could not completely 

ablate the antiviral effect of IFN and the NSs-deficient virus killed PKR-/- mice with slower kinetics 

than wt mice, indicating that other antiviral proteins such as the Mx protein and the OAS/RNaseL 

pathway help inhibit RVFV replication [77]. The NSs protein also prevents transcriptional induction of 

the type I interferon genes, an activity exerted by the NSs protein of all members of the Bunyaviridae 

tested so far [122–126]. In contrast, degradation of PKR seems to be unique to RVFV as a recombinant 

RVFV expressing NSs protein of the sandfly fever Sicilian virus (genus Phlebovirus) or the LaCrosse 

virus (genus Orthobunyavirus) lacked this activity [77]. Furthermore, PKR is activated by the 

Bunyamwera virus (genus Orthobunyavirus), and the virus is moderately sensitive to the antiviral 

action of PKR, regardless of the presence or absence of NSs [79]. Hence, the RVFV-specific capacity 

to block the PKR antiviral response likely contributes to the high pathogenicity of RVFV. Generation 

of recombinant RVFV expressing mutant NSs protein will help to determine the NSs domains 

responsible for the degradation of PKR and define the role of cellular proteins in this process. 

Poliovirus is the only other virus known to induce degradation of PKR [127]. Although poliovirus 

RNA and proteins are required, cellular rather than the viral proteases seem to be involved in the 

degradation [128]. However, the precise mechanism has not been determined yet. 

3.3. Ebola virus 

The Ebola virus VP35 protein serves as an antagonist of PKR activation [80,81]. Furthermore, 

VP35 abrogates type I IFN induction by inhibiting activation of IRF3 and IRF7 through inhibition of 

the IRF3 kinases TBK1/IKK and modulation of the sumoylation machinery [129–132] and plays an 

essential role as a polymerase cofactor and a structural component in virus assembly [133,134]. VP35 

contains an N-terminal coiled-coil domain required for its oligomerization [135] and a C-terminal 

dsRNA-binding region [136,137]. Oligomerization is critical for VP35 activity as mutation or deletion 

of the coiled-coil domain destroyed the capacity to inhibit PKR and prevent IRF3 activation [80,135]. 

The latter activity was restored by providing a heterologous oligomerization domain [135]. DsRNA-

binding is facilitated by basic amino acid residues R305, K309 and R312 in the C-terminal IRF3 

inhibitory domain, which is required for the IFN-antagonist activity of VP35 [136,137]. Thus, a 

recombinant Ebola virus expressing dsRNA binding-deficient VP35 with the mutation R312A was a 

strong inducer of the innate immune response and was severely attenuated in mice [138,139]. On the 

contrary, mutation of more than one of the basic residues R305, K309 and R312 was needed to 

abrogate VP35’s PKR antagonistic activity, indicating that dsRNA-binding is not essential for this 

function [80,81]. This raised the question whether VP35 directly interacts with PKR. However, pull-

down experiments failed to detect such an interaction [80]. Taken together, these results indicate that 

the mechanism of PKR inhibition does not depend on RNA-binding or direct interaction with PKR. 

Instead, the requirement for the IRF3-inhibitory domain of VP35 points to a possible involvement of 
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cellular proteins that contribute to the inhibition of PKR. Generation of a recombinant Ebola virus 

expressing a VP35 with both R312A and K309A mutations would certainly aid the identification of 

these potential cellular interaction partners or signaling events.  

3.4. Cytomegalovirus 

Human cytomegalovirus (HCMV) encodes two related proteins, pTRS1 and pIRS1, which bind 

dsRNA and block activation of PKR [140–142]. Neither one of the proteins by itself is essential for 

viral replication, indicating a functional redundancy, although deletion of pTRS1 results in a modest 

decrease in viral titers probably due to its role in virus assembly [143,144]. However, deletion of both 

genes in HCMV[I/T] resulted in a severe replication defect, inhibition of cellular and viral protein 

synthesis and phosphorylation of eIF2 [41]. In contrast to PKR, the OAS/RNaseL pathway is not 

activated in HCMV[I/T] infected cells [41], although pIRS1 and pTRS1 have been shown to 

prevent activation of RNaseL in cells infected with a Vaccinia virus that lacks the E3L protein 

(VVE3L), an inhibitor of PKR and OAS/RNaseL [141]. Mechanistically, both the N-terminal non-

canonical dsRNA-binding domain and the C-terminal region of pTRS1 and pIRS1 are necessary for 

counteracting the antiviral action of PKR [142,145]. Interestingly, both pTRS1 and pIRS1 interact 

with PKR and this requires the C-terminus of either protein [145]. Whether dsRNA contributes to this 

interaction has not yet been established. Hakki et al. further showed that PKR accumulates in the 

nucleus of HCMV infected cells and in VVE3L infected cells coexpressing pTRS1, indicating that 

this is an autonomous function of pTRS1 [145]. It has to be noted, though, that in HCMV infection 

PKR is not totally depleted from the cytoplasm, in contrast to the VVE3L-infected, pTRS1 

expressing cells. Taken together, the results suggest that the interaction of pTRS1 and pIRS1 with 

dsRNA and PKR prevents activation of PKR at least in part by confining PKR to the nucleus away 

from its activator, dsRNA, and from its target, eIF2. 

The murine cytomegalovirus (MCMV) m142 and m143 genes belong to the same gene family as the 

HCMV genes IRS1 and TRS1 [146,147]. The m142 and m143 proteins also act as PKR inhibitors, but, 

in contrast to pTRS1/pIRS1, both proteins are needed for inhibition. Deletion of either protein results 

in PKR and eIF2 phosphorylation, translational shutdown and decreased replication [148]. 

Furthermore, replication of an m142/m142-deficient MCMV was restored in PKR-/- MEFs, but not in 

RNaseL-/- cells, confirming PKR as the main target of m142/m143 [40]. Consistent with this result, 

neither MCMV nor the m142/m143 deletion virus activated the OAS/RNaseL pathway [40]. In the 

course of determining the mechanism of PKR inhibition, both proteins were shown to interact with one 

another forming a heterotetramer and to function together to bind dsRNA [149,150]. Both proteins 

together also interacted with PKR independent of dsRNA [40,149]. As described for HMCV, PKR 

accumulated in the nucleus and also in insoluble fractions in the cytoplasm of infected cells, 

suggesting that this relocalization might sequester PKR to compartments where it cannot exert its 

antiviral action [149]. It will be interesting to assess the impact of dsRNA-binding and protein 

interaction on relocalization of PKR and how this relocalization relates to the PKR antagonist activity 

of m142/m142. 
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4. Conclusions 

Many RNA and DNA virus families have acquired one or more gene product(s) that reduce the 

induction of the latent kinase PKR or phosphorylation of its substrate eIF2 by very diverse 

mechanisms. Research in the past decade has revealed that the capacity to antagonize this cellular 

defence is an important aspect of the virulence and/or host specificity of these viral pathogens. There is 

recent evidence for rapid evolution of PKR genes in primates and positive selection at specific amino 

acid sites, supporting the view that this kinase evolves under the constant pressure of antagonistic viral 

gene functions [151,152]. Although a lot of information has accumulated on PKR, a number of 

questions remain concerning the biology of this conserved kinase. These include the precise sequence 

of events leading from the latent, monomeric, form to the fully phosphorylated dimer, whether allelic 

differences in PKR are associated with different susceptibility to certain viruses, and the precise roles 

of several of its cellular interaction partners. A particular technical challenge concerns the 

characterization of structures within natural viral nucleic acids, which trigger PKR activation inside 

cells. Clearly, research directed to close these gaps in our knowledge will provide valuable insights 

into the ongoing arms race between viral pathogens and their hosts. 
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