
Citation: Al-Dahidi, S.; Baraldi, P.;

Fresc, M.; Zio, E.; Montelatici, L.

Feature Selection by Binary

Differential Evolution for Predicting

the Energy Production of a Wind

Plant. Energies 2024, 17, 2424.

https://doi.org/10.3390/en17102424

Academic Editors: Mohammadreza

Aghaei and Aref Eskandari

Received: 30 January 2024

Revised: 2 May 2024

Accepted: 15 May 2024

Published: 18 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Feature Selection by Binary Differential Evolution for Predicting
the Energy Production of a Wind Plant
Sameer Al-Dahidi 1 , Piero Baraldi 2,* , Miriam Fresc 2, Enrico Zio 2,3 and Lorenzo Montelatici 4

1 Department of Mechanical and Maintenance Engineering, School of Applied Technical Sciences,
German Jordanian University, Amman 11180, Jordan; sameer.aldahidi@gju.edu.jo

2 Energy Department, Politecnico di Milano, Via Lambruschini 4, 20156 Milan, Italy;
miriam.fresc@polimi.it (M.F.); enrico.zio@polimi.it (E.Z.)

3 MINES-Paris, PSL University, CRC, 06904 Sophia Antipolis, France; enrico.zio@mines-paristech.fr
4 Research Development and Innovation, Edison Spa, 20121 Milan, Italy; lorenzo.montelatici@edison.it
* Correspondence: piero.baraldi@polimi.it; Tel.: +39-02-23996345

Abstract: We propose a method for selecting the optimal set of weather features for wind energy
prediction. This problem is tackled by developing a wrapper approach that employs binary differen-
tial evolution to search for the best feature subset, and an ensemble of artificial neural networks to
predict the energy production from a wind plant. The main novelties of the approach are the use of
features provided by different weather forecast providers and the use of an ensemble composed of a
reduced number of models for the wrapper search. Its effectiveness is verified using weather and
energy production data collected from a 34 MW real wind plant. The model is built using the selected
optimal subset of weather features and allows for (i) a 1% reduction in the mean absolute error
compared with a model that considers all available features and a 4.4% reduction compared with the
model currently employed by the plant owners, and (ii) a reduction in the number of selected features
by 85% and 50%, respectively. Reducing the number of features boosts the prediction accuracy. The
implication of this finding is significant as it allows plant owners to create profitable offers in the
energy market and efficiently manage their power unit commitment, maintenance scheduling, and
energy storage optimization.

Keywords: wind energy; prediction; feature selection; binary differential evolution; artificial neural
networks; ensemble

1. Introduction

The transition from conventional fossil-fueled power plants to renewable energy
sources (RESs), such as wind and solar, could bring with it service reliability issues that
must be carefully considered [1]. The aleatory and intermittent nature of RESs complicates
the matching of energy production to the load demand, which is fundamental for a reliable
energy supply to consumers [2]. For this reason, it is important to predict the electricity
production from RES plants, which can be performed based on weather data [3]. Accurate
predictions allow for the formulation of profitable offers in the energy market and the
efficient management of power unit commitment, load increment and decrement decisions,
maintenance scheduling, and energy storage optimization [4].

Approaches for predicting energy production can be categorized as physics-based
or data-driven [5]. Given the difficulty of developing accurate physics-based models that
receive, as input, the weather forecast and provide, as output, the prediction of the energy
production, artificial intelligence (AI) models built by considering historical weather data
and corresponding real productions have become popular [6].

The selection of the weather features to be used as AI-model inputs can significantly
influence the prediction accuracy. This problem, referred to as feature selection [7], is
becoming very relevant in the era of big data, given the abundance of available information

Energies 2024, 17, 2424. https://doi.org/10.3390/en17102424 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en17102424
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-7745-7784
https://orcid.org/0000-0003-4232-4161
https://orcid.org/0000-0002-7108-637X
https://doi.org/10.3390/en17102424
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en17102424?type=check_update&version=1


Energies 2024, 17, 2424 2 of 19

with different levels of relevance for solving the specific problem, as “We are drowning in
information and starving for knowledge” [8]. In the case of wind energy production, several
weather features made available by different weather forecast providers, including pressure,
temperature, and wind speed at different altitudes in various locations near the plant area,
are typically available [9].

Feature selection methods can be classified as filters, wrappers, or embedded [10,11].
Filter methods score individual features or feature subsets based on “proxy measures” of the
“relevance” of the features, computed considering general characteristics of the data [11].
Wrapper methods evaluate the goodness of a subset of features as the performance of
the specific prediction model, typically measured in terms of prediction accuracy [11]. In
wrapper methods, a search algorithm is used as a “wrapper” around the prediction model:
the search engine searches for the best solution, i.e., feature subset, among all the possible
feature subsets of the p available features by evaluating the performance of the associated
model. During the search for the optimal solution, the accuracy of the prediction model
obtained for each candidate solution is directly used as an evaluation function to compare
the different solutions selected by the search engine [12].

Filter methods are generally computationally more efficient than wrapper methods
because obtaining proxy measures from data is less time-consuming than developing and
evaluating the performance of prediction models. For example, a filter feature selection
approach based on the relief method was applied to wind velocity prediction in [13].
However, wrapper approaches achieve greater accuracy by tailoring the feature selection
to the specific prediction model employed [12,14]. In contrast, filter methods ignore the
selected features’ actual effects on the prediction accuracy of the model. A review of the
application of filter and wrapper feature selection methods to energy production prediction
is presented in Section 2. The main limitation of wrapper methods is that the AI models
typically used for energy prediction are computationally intensive to build, and, therefore,
they cannot be developed with multiple subsets of features, as required.

Embedded methods perform the feature selection task directly during the development
of the prediction model by computing properly defined metrics [15]. Computationally,
they perform better than wrappers because they provide integration between modeling
and feature selection [15]. This can be accomplished, for example, by considering a two-
objective function: maximization of the goodness-of-fit and minimization of the number of
variables [16]. Examples of embedded methods are least absolute shrinkage and selection
operator (LASSO) and elastic net, which build a linear model of the output based on
the least-squares method and shrink to zero the smallest regression coefficients [17], and
various decision-tree-based algorithms, e.g., classification and regression tree (CART) [18],
random forest (RF) [19], and XGBoost [20]. These methods are not considered in the context
of this work as they assume linearity of the prediction model, which is not realistic in the
context of wind energy production prediction.

In the present work, a novel wrapper approach for selecting the optimal set of weather
features to be used for wind energy prediction is proposed. Its definition requires the following:

(a) An algorithm that efficiently searches candidate subsets of weather features (search
engine);

(b) A prediction model;
(c) An evaluation function that measures the accuracy of the prediction models.

With respect to (a), the binary differential evolution (BDE) algorithm [21] is employed
due to its simplicity and effectiveness in exploring the decision space. Its superiority to
other evolutionary algorithms (EAs) in feature selection problems has been shown [22].

With respect to (b), ensembles of artificial neural networks (ANNs) for wind energy
prediction provide more accurate and robust results than the individual models of the
ensemble [23]. Specific to the same dataset used in this work, the mean absolute error
(MAE) of an ensemble of echo state networks (ESNs) was 7.1–9.1% lower than that of
the best single baseline model [24]. Similarly, reference [23] reports improvements of
9.2%, 8.7%, and 9.2% for the MAE, root mean square error (RMSE), and weighted mean
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absolute error (WMAE) when using an ensemble of ANNs rather than the best single
baseline model. The reason is that the diverse models of the ensemble enhance overall
performance by complementing each other’s errors and leveraging their strengths in
different zones of the learning space while also overcoming their respective limitations [25].
In practice, developing an ensemble of prediction models entails addressing two issues:
(i) the definition of the base models and (ii) the aggregation of their predictions. In this
work, ANNs are used as base models, and their outcomes are aggregated using the median
operator, which has been shown to be more robust than other statistical indicators, such as
the mean, with respect to possible outlier predictions by individual models [26]. Diversity
among the base models is obtained by using a bootstrap aggregating (BAGGING) algorithm,
which trains each model using a different subsample of the training set [27].

With respect to (c), the performance metric used in this work for evaluating the
accuracy of the prediction model is the WMAE [23]. WMAE provides an estimate of
the average prediction error normalized with respect to the actual energy production,
which allows for a comparison of the prediction accuracy when the production capacities
change [23].

The original contributions of this work are three-fold:

1. The development of a wrapper feature selection approach based on the novel combi-
nation of BDE and an ensemble of ANNs. Since the computational efforts needed to
develop an ensemble of ANNs is proportional to the number of individual models of
the ensemble, the wrapper feature selection is performed using an ensemble made of
a number of ANNs smaller than that of the final prediction model;

2. The utilization of weather features obtained from various providers as potential
inputs for the prediction model, which is shown to be able to significantly boost the
prediction accuracy.

The effectiveness of the proposed wrapper feature selection approach is verified by
considering real data from a 34 MW wind power plant. The set of weather features includes
the pressure, temperature, and wind speed at different altitudes taken at various locations
near the plant area and obtained from two weather forecast providers.

The remaining part of this paper is organized as follows: In Section 2, the motivation
for selecting the relevant features is stated, and the available feature selection techniques for
wind energy prediction are recalled. Section 3 presents the proposed BDE-based wrapper
feature selection approach for wind energy prediction. Section 4 illustrates the real case
study of a 34 MW wind plant. Section 5 presents the results of the application to the real
case study and compares the performance of the proposed approach with that of a model
that considers the whole set of available weather features and the model currently used
by the wind plant owners. Some conclusions and future recommendations are given in
Section 6.

2. The Motivation for Feature Selection

The main motivations for feature selection are as detailed in [28]: (a) irrelevant features
unnecessarily increase the complexity of the prediction problem; (b) noisy features can
degrade the prediction accuracy and increase the risk of data overfitting; (c) the elimination
of unimportant inputs allows for a reduction in the resources needed for collecting, storing,
and processing the data; and (d) the physical interpretability of the prediction can benefit
from a small number of features.

Several feature selection methods have been successfully applied in different fields,
such as text learning, pattern recognition, genetics, and statistics [29]. The selection or not
of a feature is typically encoded in terms of a binary variable that takes the value of 1 or
0, respectively. Therefore, when p features are available, the size of the search space is
2p. Since an exhaustive search that evaluates all the possible feature subsets is commonly
impractical, an efficient search engine is needed.

Both filter and wrapper methods perform a search for the optimal feature subset
in the space of all possible feature combinations. For this, they require a strategy to
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be defined for the search. Three sequential search strategies can be distinguished [30]:
(i) the forward selection (FS) strategy starts with a model composed of just one feature
and sequentially (by adding one feature at a time) selects the feature that most improves
the prediction model; (ii) the backward elimination (BE) strategy starts with a model
formed by all the p features and sequentially removes the feature that has the smallest
impact on the model performance; (iii) a hybrid form of these greedy algorithms, called
hybrid stepwise-selection or bi-directional selection, which performs both forward and
backward selections at each step and selects the best option of the two [31]. However, the
sequential search strategies are characterized by a major drawback; the order of parameter
entry (or deletion) affects the selected model [32]. To overcome this issue, the use of
EA-based approaches [33], such as genetic algorithms (GAs) [34], the BDE algorithm [21],
particle swarm optimization (PSO) [35], the coral reef optimization (CRO) algorithm [36],
or a combination of these techniques, have been shown to be effective even if they are
computationally more demanding. In practice, the main advantages of EAs are (i) their
fast convergence to a near-global optimum, (ii) their superior global searching capability in
complicated search spaces, and (iii) their applicability even when gradient information is
not readily achievable.

With respect to the prediction algorithm to be used within the feature selection wrapper
approach for the development of the prediction model, AI-based algorithms such as ANNs,
extreme learning machines (ELMs), Gaussian processes (GPs), nearest neighbor searches
(NNs), support vector regression (SVR), and RF are typically used [37,38].

Feature Selection for Wind Energy Predictions

Considering the feature selection problem in the context of predicting the energy
production of wind plants, Abdoos [39] proposed a hybrid approach, which combines
variational mode decomposition (VMD) for the decomposition of the wind-power time
series into different modes, Gram–Schmidt orthogonalization (GSO) for the elimination
of redundant features, and ELMs for the prediction of the short-term wind power. Osório
et al. [40] proposed a hybrid approach that combines evolutionary and adaptive techniques
to forecast short-term wind power. The proposed approach integrates mutual information
(MI) to select the most representative features from among the available wind power
data, wavelet transform (WT) to break down the wind-power time series into components
with reduced noise and an adaptive neuro-fuzzy inference system (ANFIS) to accurately
estimate the wind power and whose hyperparameters are set using evolutionary PSO
(EPSO). Jursa [41] proposed an approach for selecting features from among weather data
obtained from a numerical weather prediction (NWP) model and measured the power data
collected from various wind farms. Specifically, PSO was used as search engine and ANNs
as prediction models. The work was extended in [42] using DE as search engine. Kou
et al. [43] proposed an online adaptive ensemble model whose base models are multiple
time-dependent warped Gaussian processes (WGPs) for the probabilistic prediction of
wind power production. The input feature set and the length of time window for the
historical wind speed data were dynamically selected by resorting to a sequential forward
greedy search.

Differential evolution (DE) is one of the state-of-the-art methods for optimization [44,45].
The algorithm has been recently modified to improve its capability for finding the optimal
solution and for reducing the computational burden in different application domains, such
as for the optimization of the operational parameters of an aluminum friction–stir welding
process of dissimilar materials (AA6061-T6 and AA5083-H112) [46], for the identification
of parameters of photovoltaic models [47], and for the optimal positioning of flexible
alternating-current transmission system controllers for reactive power management [48].
In this work, we focus on binary DE (BDE), a variation of DE specifically designed for
problems with binary decision spaces. Note that despite the extensive research conducted
in this field, wrapper feature selection approaches that combine a BDE algorithm as the
search engine and an ensemble of ANN models as the prediction model have not yet been
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developed for wind energy production prediction. In practice, employing an ensemble
of ANN models is advantageous as it tends to yield more accurate predictions compared
with individual models, as has been observed in various engineering applications [49,50].
Therefore, this research aims to improve the accuracy of wind energy production prediction
by developing a wrapper feature selection approach combining BDE and an ensemble
of models.

3. The Proposed Feature Selection Method

The proposed feature selection method is illustrated in Figure 1. It combines the BDE
algorithm as the search engine (Section 3.1) and an ensemble of ANNs as the prediction
model (Section 3.2). The weather features are collected by two different weather forecast
providers, namely A and B, which predict weather features of different typologies and on
different time scales.
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Figure 1. The proposed BDE-based wrapper approach for wind energy prediction.

3.1. Binary Differential Evolution (BDE) for Feature Selection

Given the relatively small number of weather forecasting features, i.e., p < 100,
which is typical of problems related to the prediction of wind energy production, we use a
probabilistic search algorithm based on BDE [21,45].

BDE belongs to the family of evolutionary (or genetic) algorithms [21,45], which
are optimization methods aimed at finding the global optimum of a set of real objective
functions of one or more decision variables [22]. More specifically, BDE is a population-
based optimization method, working iteratively through a wrapper algorithm [51].

In BDE, the search for the optimal solution is started by initializing a population
of candidate solutions (artificial chromosomes, NP) (Figure 2) [52]. New solutions are
established by randomly varying existing ones through mutation (with a scaling factor
denoted as SF) and/or crossover (or recombination) (with a crossover rate denoted as Cr)
while verifying the performance of the prediction model via a fitness function [53]. Based
on that, solutions are ranked, and those that will be maintained in the next generation
are selected. The selected potential solutions are subjected to random variations, and the
process will be iteratively repeated.
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Specifically, in feature selection problems, each candidate solution (an artificial chro-
mosome) is typically represented as a vector of p binary bits/genes, which encodes the
presence (1) or absence (0) of the features [54]. The BDE starts with an initial g-th population
of candidate solutions. The candidate solutions are iteratively manipulated while verifying
the predefined fitness function. The iterations continue until a predefined termination
criterion is reached (e.g., a maximum number of iterations, Gmax) (refer to Appendix A for
more details).

3.2. Ensemble of ANNs for Wind Energy Prediction

Ensembles of models have been used to improve the prediction accuracy and robust-
ness of a single prediction model in various fields of application [55,56]. Particularly, in the
field of wind energy prediction, the effectiveness of an ensemble of ANNs compared with
individual ANN models was shown in [23].

An ensemble of models comprises multiple prediction models (called base models)
whose prediction outcomes are aggregated into a final prediction outcome (Figure 3).
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In practice, the development of an ensemble of prediction models requires the follow-
ing [57]:

1. The generation of N diverse base models for leveraging their strengths and overcom-
ing their drawbacks;
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2. The establishment of a strategy for aggregating the base models’ outcomes, P̂i, i =
1, . . . , N, into a final outcome, P̂M.

In this work, feedforward ANNs are used as base models, and the diversity among
the N base models is obtained by using the BAGGING technique [27,57]. In practice, the
training set of each individual model was obtained by randomly sampling with replacement
the number of patterns equal to that of the original training set.

To reduce the computational efforts needed to use ensembles of models, an ensemble
made by a limited number of Nreduced ANNs is used during the BDE search. Specifically,
Nreduced < N ANNs of the ensemble are selected so as to provide the smallest prediction
error on a validation set made up of Nval patterns that are different from those used to
train the models. Since the diversity of the models is guaranteed by the presence of Nreduced
ANNs and the best-performing ANNs are selected, the performance of the ensemble is
guaranteed while the computational burden is reduced.

The accuracy of the predictions is evaluated using the WMAE as the performance
metric (Equation (1)), which corresponds to the relative prediction error [27]:

WMAEm =
∑

Nm
test

j=1

∣∣∣P̂j − Pj
∣∣∣

∑
Nm

test
j=1 Pj

(1)

where WMAEm is the WMAE computed considering the data corresponding to one month;
Pj and P̂j are the true and predicted energy production of the j-th test pattern, respectively;
Ntest is the total number of input/output patterns of the test dataset; and Nm

test is the number
of input/output patterns of the m-th month of the test dataset.

Given the seasonality of energy production from wind plants, the metric is computed
as an average of the WMAE over 12 consecutive months (Equation (2)):

WMAEyear =
∑12

m=1 WMAEm

12
(2)

The individual model outcomes are aggregated by calculating their median value
to obtain the ensemble prediction [23] (Figure 3). The median operator is preferable to
other statistical indicators, such as the mean, because it is more robust. This is due to the
potential presence of individual models that provide predictions with significant errors on
certain test patterns [27].

4. Case Study

We consider the problem of selecting the best subset of weather forecast features to
predict the energy production of a 34 MW wind plant [23]. The available p = 71 weather
features, collected from two weather forecast providers, here denoted as A and B, are
hereafter described (Table 1):

Table 1. Weather features provided by the two weather forecast providers.

Provider S D T P WG RH Height Location Typology

Provider A √ √ √ √ 10 and 100 m 4 different
locations

Hourly
Provider B

√ √
10, 50, and 100 m Tri-hourly

√
indicates the weather feature is available by the Provider.

• Twenty-four (24) weather features, xA
k , k = 1, . . . , 24, forecasted every three hours by

weather data provider A, corresponding to the wind speed (S) in the direction (D)
from west to east (u) and from north to south (v); the temperatures (T) and pressures
(P) at different heights and in different locations around the aerogenerators;

• Forty-four (44) weather features, xB
k , k = 1, . . . , 44, forecasted every hour by weather

data provider B, corresponding to the wind speed and wind gust (WG), i.e., a sudden,
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brief increase in the wind, in two directions (u and v components); the temperature (T),
pressure (P), and relative humidity (RH) at various heights and in various locations
different from those of provider A;

• Three (3) time features related to the calendar and the time of the prediction, xTime
k ,

k = 1, 2, 3, which are considered to account for the periodicity and seasonality of the
energy production. They are the week number, the hour at which the prediction refers
to, and its delay with respect to the time at which the production is predicted.

As reported in Table 1, the two weather forecast providers whose meteorological data
have been used offer a large variety of weather features covering different locations and
heights and referring to different time horizons of prediction. The large number of weather
features (p = 71) renders the feature selection task challenging because of the size of the
search space. Furthermore, the partially redundant information content of some of the
features complicates the search, which leads to the need to select those that allow the best
performance to be obtained while eliminating the others. The proposed feature selection
method is shown to be able to properly address these challenges by exploiting the capability
of BDE to explore large feature spaces and that of a wrapper approach to select the most
effective features in the case of partially redundant feature information content.

The available weather data and the corresponding hourly plant energy production
refer to the period from January 2011 to December 2014. Alignment between the tri-hourly
data of provider A and the hourly data of provider B was performed by considering only
the tri-hourly timestamps. A forecast horizon of up to 4 days was used to train the ANN
prediction models. The prediction performance was assessed for up to 1 day, which is the
horizon of interest of the plant owners.

Among the available 24 weather features provided by provider A and the 3 time fea-
tures, company experts selected, by trial-and-error, 19 features, which cannot be revealed for
confidentiality reasons and will be referred to as “Benchmark 2” and used for comparison.

5. Results

Section 5.1 presents a statistical analysis of the correlation among the features, which
was conducted to facilitate the interpretation of the results of the feature selection. Section 5.2
discusses the results achieved by applying the BDE algorithm, and Section 5.3 discusses the
prediction performance obtained by the ensemble of ANNs.

5.1. Data Analysis

The correlation between the whole set of available p = 71 weather features was
investigated by applying the spectral clustering algorithm [58]. The aim was to identify
groups of largely correlated features characterized by similar behaviors. The similarity
among couples of features was evaluated by computing the pointwise difference with
reference to an “approximately zero” fuzzy set defined by a bell-shaped function, which
maps the pointwise difference to a similarity value. The parameter σ of the bell-shaped
function was set to 9, in accordance with [59]. The following clusters of similar features
were identified:

• Three clusters were made up of a single feature corresponding to the time (hour, delay
and week of the prediction). As expected, these features have small correlations with
all the others;

• A cluster consisting of 24 features corresponding to the horizontal wind speed at
four different locations and two different heights provided by provider A and the
horizontal wind speed and gust at four different locations and three different heights
provided by provider B;

• A cluster consisting of 24 features containing the vertical wind speed at different
locations and heights provided by both providers A and B;

• A cluster consisting of eight features containing the temperature measured at four
different locations provided by both providers A and B;
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• A cluster made up of eight features containing the pressure measured at four different
locations provided by both providers A and B;

• A cluster made up of four features containing the relative humidity measured at four
different locations provided by provider B.

The analysis has shown that the groups of correlated features are homogeneous from
the point of view of the measured signals. In particular, groups of the u components of the
wind speed, the v components of the wind speed, the temperature, the pressure, and the
relative humidity are recognized. Each feature of a group is highly correlated with features
of the same group and not correlated with features of other groups.

The analysis highlights the fact that the two providers provide redundant weather
features. Therefore, it is expected that a reduction in the number of features to be provided
as input for the prediction models may allow more accurate results to be obtained.

5.2. BDE Optimization for Feature Selection

The prediction model used within the BDE optimization is an ensemble of Nreduced =
10 ANNs trained using the 2011–2012 data. The best-performing models were selected
among N = 500 models evaluated on Nval patterns of a validation dataset, which were
different from those used to train the models. The choice to consider N = 500 ANNs
was derived by the solution currently adopted by the wind plant operator. Increasing the
number of base models could improve the prediction accuracy, but up to a certain limit;
beyond that limit, the performance gain becomes negligible, but the complexity of the
model and computational resources associated to it would greatly increase. Undoubtedly,
a good compromise solution between prediction accuracy and model complexity has been
adopted by the plant operator.

With regard to the BDE search, the most critical hyperparameters affecting the ro-
bustness of the results are the number of chromosomes (NP), the maximum number of
generations (Gmax), the crossover rate (Cr), and the scale factor (SF). In this work, the values
of these parameters have been set by trial-and-error considering the ranges suggested
in [60,61]. The prediction performance for the 2013 data was evaluated using Equation (1).
Table 2 reports the setting of the hyperparameters used in this work.

Table 2. BDE hyperparameters.

NP Gmax Cr SF Fitness

100 1900 0.65 0.7 WMAEm Equation (1)

The set of features obtained from the BDE optimization is formed by p∗ = 10 features,
whose detailed list is not reported here for confidentiality reasons. The selected features
were forecast by both providers at various locations and at different altitudes. It is interest-
ing to mention that the BDE selection confirms the choice made by the company expert of
using only time and wind speed features for energy production prediction. Time features
facilitate the identification of temporal patterns related to daily and seasonal trends in the
wind behavior. Features related to wind speed are selected since the power generated by
wind turbines is directly proportional to the cube of the wind speed [62]. Also, some of the
wind gust features at different locations provided by provider B have been selected, since
they allow short-term variations in wind speed to be anticipated.

The proposed approach has been developed in MATLAB® (version 2019) and the com-
putational time needed on a high-speed computational cluster (with 20 nodes and 129.085 GB
memory) is equal to 16 h. The computational demand is mainly due to the necessity of
training an ensemble of ANNs for each chromosome of each generation. Note, however, that
the feature selection is performed offline before the development of the ensemble prediction
model for energy forecasting. The obtained result confirms the feasibility of using the method
for predicting the energy production of the wind plant considered.
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5.3. Prediction Performance

The final prediction model is an ensemble of N = 500 ANNs that receives as input the
optimal feature set identified by the proposed feature selection approach. Its performance
has been computed considering two different partitions of the data in the training and
test sets:

• Partition 1: data collected in the years 2011–2012 were used as the training set and data
collected in the year 2013 were used as the test set to assess the prediction performance;

• Partition 2: data collected in the years 2012–2013 were used as the training set and data
collected in the year 2014 were used as the test set to assess the prediction performance.
Note that the verification of the performance on data for the year 2014 required the
retraining of the ANNs with data taken from the previous two years. The plant owners
followed this procedure to consider possible modifications of the plant behavior due
to component replacement, deterioration, and maintenance activities.

The prediction performance is assessed by resorting to the mean absolute error (MAE)
in addition to the WMAE (Equation (1)). It corresponds to the average absolute error
(Equation (3)):

MAE =
∑Ntest

j=1

∣∣∣P̂j − Pj
∣∣∣

Ntest
(3)

where Pj and P̂j are the true and predicted energy production of the j-th test pattern,
respectively, and Ntest is the total number of input/output patterns of the test set.

It is worth mentioning that the WMAE metric (Equation (1)) differs from the MAE
metric (Equation (3)) due to the presence of the total monthly production at the denominator.
Therefore, if two months are characterized by the same MAE but different energy productions
are considered, a larger WMAE is associated with the one with the lower production.

Figure 4 shows the WMAE (Figure 4a) and MAE (Figure 4b) performances of the
N = 500 ANNs ensemble obtained using as input the selected features (proposed), all the
available 71 features (i.e., Benchmark 1), and the features currently used by the company
(i.e., Benchmark 2).

Energies 2024, 17, x FOR PEER REVIEW 10 of 19 
 

 

5.3. Prediction Performance 
The final prediction model is an ensemble of 𝑁 = 500 ANNs that receives as input 

the optimal feature set identified by the proposed feature selection approach. Its perfor-
mance has been computed considering two different partitions of the data in the training 
and test sets: 
• Partition 1: data collected in the years 2011–2012 were used as the training set and 

data collected in the year 2013 were used as the test set to assess the prediction per-
formance; 

• Partition 2: data collected in the years 2012–2013 were used as the training set and 
data collected in the year 2014 were used as the test set to assess the prediction per-
formance. Note that the verification of the performance on data for the year 2014 re-
quired the retraining of the ANNs with data taken from the previous two years. The 
plant owners followed this procedure to consider possible modifications of the plant 
behavior due to component replacement, deterioration, and maintenance activities. 
The prediction performance is assessed by resorting to the mean absolute error (𝑀𝐴𝐸) 

in addition to the 𝑊𝑀𝐴𝐸  (Equation (1)). It corresponds to the average absolute error 
(Equation (3)): 

𝑀𝐴𝐸 =  ∑ ห𝑃෠௝ − 𝑃௝หே೟೐ೞ೟௝ୀଵ 𝑁௧௘௦௧  (3) 

where 𝑃௝ and 𝑃෠௝ are the true and predicted energy production of the 𝑗-th test pattern, 
respectively, and 𝑁௧௘௦௧ is the total number of input/output patterns of the test set. 

It is worth mentioning that the 𝑊𝑀𝐴𝐸 metric (Equation (1)) differs from the 𝑀𝐴𝐸 
metric (Equation (3)) due to the presence of the total monthly production at the denomi-
nator. Therefore, if two months are characterized by the same 𝑀𝐴𝐸 but different energy 
productions are considered, a larger 𝑊𝑀𝐴𝐸 is associated with the one with the lower 
production. 

Figure 4 shows the 𝑊𝑀𝐴𝐸  (Figure 4a) and 𝑀𝐴𝐸  (Figure 4b) performances of the 𝑁 = 500 ANNs ensemble obtained using as input the selected features (proposed), all the 
available 71 features (i.e., Benchmark 1), and the features currently used by the company 
(i.e., Benchmark 2). 

  

(a) (b) 

Figure 4. The (a) WMAE and (b) MAE for the test years 2013 and 2014. 

W
M

AE

Benchmark 1 Benchmark 2 Proposed
0.46

0.465

0.47

0.475

0.48

0.485

M
AE

Benchmark 1 Benchmark 2 Proposed

3.24

3.26

3.28

3.30

3.32

3.34

3.36

3.38

3.40

3.42

3.44

Figure 4. The (a) WMAE and (b) MAE for the test years 2013 and 2014.



Energies 2024, 17, 2424 11 of 19

The accuracy of Benchmark 2 is less satisfactory than that obtained by the other two
models, which include features forecast by both providers. Overall, the 10 features selected by
the proposed method allow for the development of the most accurate ANN ensemble model.

To effectively evaluate the enhancements obtained by the proposed approach with
respect to the two-performance metrics, we define the performance gain (PGMETRIC) asso-
ciated with each performance metric (Equation (4)):

PGMETRIC =

( METRICBenchmark − METRICProposed

METRICBenchmark

)
× 100% (4)

where METRICBenchmark is the performance metric obtained by considering the whole
set of available weather features (Benchmark 1) or the weather features selected by the
plant owners’ experts (Benchmark 2), whereas METRICProposed is the performance metric
obtained using the selected weather features of the proposed approach.

Table 3 reports the performance gains of the WMAE and MAE obtained by the
proposed approach with respect to the approach that considers the whole set of 71 available
weather features (Benchmark 1) and the approach that considers the 19 features selected
by the plant owners’ experts (Benchmark 2) for the 2013 and 2014 test sets. Positive
values of the PGMETRIC indicate the superiority of the proposed approach to the use of the
benchmarks. One can recognize the following:

• Considering the WMAE, the proposed approach outperforms Benchmark 1 by 0.06%
and 1.18% for the 2013 and 2014 predictions, respectively. When considering the MAE,
it performs 0.46% and 1.55% better for the 2013 and 2014 predictions, respectively. The
obtained improvement in the prediction accuracy has been considered significant by
the owners of the wind plants for the economic efficiency of their operation. Also,
the results confirm that not all features are necessary for wind energy prediction, as
some features contain redundant or irrelevant information that can negatively affect
the training of the NNs. This is evident in Benchmark 1, where the use of all features
causes the NNs to slightly overfit the training data, hindering their generalization to
new data.

• Considering the WMAE, the proposed approach outperforms Benchmark 2 by 4.16%
and 3.29% for the 2013 and 2014 predictions, respectively. When considering the MAE,
it outperforms Benchmark 2 by 4.69% and 4.06% for the 2013 and 2014 predictions, re-
spectively. This result demonstrates that the proposed wrapper approach outperforms
human experts in the feature selection task.

Table 3. Performance gains obtained by using the proposed feature selection with respect to the two
benchmarks for the 2013 and 2014 test datasets.

With Respect to Benchmark 1 (71 F) With Respect to Benchmark 2 (19F)

PGWMAE (%) PGMAE (%) PGWMAE (%) PGMAE (%)

2013 0.06 0.46 4.16 4.69
2014 1.18 1.55 3.29 4.06

Mean ~0.62 ~1.01 ~3.73 ~4.38

Figure 5 shows the actual energy production (green), the energy production predic-
tions obtained by the approach adopted by the plant owners (red), and the proposed
approach (black) of consecutive tri-hourly time steps during different days in December
2013 (Figure 5a) and December 2014 (Figure 5b). One can recognize the capability of the
model to predict the minima and maxima of energy production based on the selected
feature set. In contrast, the model based on the feature set selected by the plant owners
failed in this task (e.g., at t = 16 h in Figure 5b).
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5.4. Comparison with Other State-of-the-Art Feature Selection Techniques

Table 4 reports a list of works regarding feature selection in the context of predicting
the energy production of wind plants. The performance of the feature selection methods
is evaluated considering their gain in accuracy compared to the persistence forecasting
method, which assumes that the wind energy production at the next time step is equal
to the current energy production [40]. The gain, as defined by Equation (4), is computed
considering various accuracy measures so as to facilitate the comparison across the feature
selection methods applied in different case studies. For instance, the proposed wrapper
feature selection approach applied to the 2013 and 2014 data achieves a performance gain
of 59% and 60% when considering the MAE and of 50% and 51% when considering the
WMAE, respectively, with respect to the persistence forecasting technique (i.e., when
used as a benchmark in Equation (4)). The proposed approach is superior to the other
wrapper approaches [41–43]. The filter approach proposed in [40], based on the use
of the entropy measure, significantly outperforms all wrapper approaches in terms of
the gain computed by the NMAE and Normalized RMSE (NRMSE). This unexpected
finding [12,14] warrants further investigation, since the comparison whose results are
reported in Table 4 is performed on different case studies. Future work will include directly
applying the proposed feature selection method and that of [40] for the same case study.

Table 4. Comparison of the performance of the proposed feature selection approach with other
state-of-the-art techniques in the context of wind energy prediction.

Work Approach Algorithms Evaluation
Function

Performance Gain (%)

NMAE NRMSE MAPE

Osório et al.
[40] Filter MI–WT–EPSO–

ANFIS MI (entropy) 83% 80% Not Available

Jursa [41] Wrapper PSO–ANN/NNs NBIAS * and
NRMSE Not Available 14.5% Not Available

Jursa and
Rohrig [42] Wrapper PSO/DE–

ANN/NNs NRMSE Not Available 10.75% Not Available
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Table 4. Cont.

Work Approach Algorithms Evaluation
Function

Performance Gain (%)

NMAE NRMSE MAPE

Kou et al. [43] Wrapper
Sequential forward

greedy
search–OMWGP

MAPE Not Available Not Available 3–30% **

This work Wrapper
BDE–Ensemble of a
reduced number of

ANNs
WMAE 59% and 60%

***
50% and 51%

***
60% and 58%

***

* NBIAS: Normalized bias. ** Depending on the forecast horizon *** Computed for 2013 and 2014 data, respectively.

6. Conclusions

A feature selection method has been developed to identify the optimal set of weather
variables for energy production prediction in wind plants. We have considered the case in
which the prediction model is an ensemble of artificial neural networks (ANNs), which
provides more satisfactory prediction accuracy than individual ANN models. The proposed
feature selection method is based on a wrapper approach that uses a binary differential
evolution (BDE) algorithm to search for the optimal feature subset for an ensemble of a
smaller number of ANNs than the ensemble model actually used.

The proposed feature selection method has been applied to weather and energy
production data collected from a 34 MW wind plant. The weather features are obtained
from two weather forecast providers, whose features are different in terms of their timing
and feature typology. The results show that the ensemble model developed with the
selected features improves the prediction performance of the model currently used by the
plant owners while using a smaller number of features than the currently adopted model.

Future work will include the comparison of the proposed method with other state-of-
the-art feature selection methods for the same case study. Also, the possibility of using other
data-driven techniques as prediction models will be investigated. Specifically, recurrent
neural networks, such as echo state networks and long short-term memory networks, will
be considered due to their proven effectiveness in dealing with stochastic time-series data.
Finally, future work will consider the use of advanced evolutionary algorithms to reduce
the computational burden required by fleets of wind plants and the transfer learning of the
knowledge gained from the feature selection at one plant to other plants of the fleet.
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ANFIS Adaptive Neuro-Fuzzy Inference System
BE Backward Elimination
BAGGING Bootstrapping AGGregatING
BDE Binary Differential Evolution
CRO Coral Reef Optimization
CART Classification And Regression Tree
EPSO Evolutionary PSO
ELMs Extreme Learning Machines
EAs Evolutionary Algorithms
FS Forward Selection
GAs Genetic Algorithms
GSO Gram–Schmidt Orthogonalization
GBM Gradient Boosting Machine
GPs Gaussian Processes
LASSO Least Absolute Shrinkage and Selection Operator
MI Mutual Information
NWP Numerical Weather Prediction
NSDBE Non-Dominated Sorting Binary Differential Evolution
NNs Nearest Neighbor search
PCA Principal Component Analysis
PSO Particle Swarm Optimization
RF Random Forest
RESs Renewable Energy Sources
SVR Support Vector Regression
VMD Variational Mode Decomposition
WGPs Warped GPs
WT Wavelet Transform
WMAE Weighted Mean Absolute Error
MAE Mean Absolute Error
RH Relative Humidity
T Temperature
P Pressure
WG Wind Gust
S Wind Speed
D Wind Direction
xA

k Forecasted weather features provided by provider A, k = 1, . . . , 24
xB

k Forecasted weather features provided by provider B, k = 1, . . . , 44

xTime
k

Time features related to the periodicity and seasonality of the weather,
k = 1, 2, 3

k Generic forecasted weather feature
u Wind speed in the direction from west to east
v Wind speed in the direction from north to south
σ Bell-shaped function parameter
N Number of ensemble models
Nreduced Number of models of the reduced ensemble
i Generic model of the ensemble, i = 1, . . . , N
Nval Total number of input/output patterns of the validation dataset
Ntest Total number of input/output patterns of the test dataset
j Generic test pattern, j = 1, . . . , Ntest

Nm
test

Total number of input/output patterns in the m-th month of the test
dataset, m = 1, . . . , 12

m Generic month, m = 1, . . . , 12
Pj True energy production of the j-th test pattern
P̂j Predicted energy production of the j-th test pattern



Energies 2024, 17, 2424 15 of 19

P̂i
Energy production predicted by the i-th ANN model of the ensemble,
i = 1, . . . , N

P̂M
Energy production predicted by the ensemble as the median of the N
individual models

p Number of weather features
p∗ Optimal number of weather features
g Generic generation of the BDE search, g = 1, . . . , Gmax
Gmax Maximum number of generations
b Generic chromosome’s bit/gene, b = 1, . . . , p
c Generic chromosome, c = 1, . . . , NP
NP Number of chromosomes

zg
c ,

∼
z

g
c

Target c-th chromosome at the g-th generation and its mapped
continuous version

zg
c,b,

∼
z

g
c,b

Generic b-th bit/gene of the c-th chromosome at the g-th generation
and its mapped continuous version

randc,b Random number sampled from a uniform distribution in [0, 1]
∼
v

g
c , vg

c
Donor or mutant chromosome associated with

∼
z

g
c and its binary

transform, respectively
∼
v

g
c,b, vg

c,b
Generic b-th bit/gene of the c-th donor or mutant chromosome at the g-
th generation and its binary transform, respectively

r1, r2, r3 Three random integers
OL Opposite learning
xg

p,k OL parameter at each g-th generation
ug

c c-th trial chromosome at the g-th generation

ug
c,b

Generic b-th bit/gene of the c-th trial chromosome at the g-th
generation

irand Random integer number
Cr Crossover rate
SF Scale factor ∈ [0, 2]
fitness Fitness function used within the BDE search
PGMETRIC Performance gain of a performance metric METRIC
METRICBenchmark Performance metric obtained by the benchmark approach
METRICProposed Performance metric obtained by the proposed approach

Appendix A

The detailed steps of the employed BDE algorithm are hereafter reported for completeness.
The generic b-th bit (gene), zg

c,b, b = 1, . . . , p, of the c-th chromosome (also called the
target chromosome) zg

c , c = 1, . . . , NP, at the g-th generation, g = 1, . . . , Gmax, is mapped
into a continuous variable,

∼
z

g
c,b ∈ [0, 1] using the mapping operator (Equation (A1)):

∼
z

g
c,b =

{
0.5 ∗ randc,b i f zg

c,b = 0

0.5 + 0.5 ∗ randc,b i f zg
c,b = 0

(A1)

where randc,b is a random number sampled from a uniform distribution in [0, 1]. Then, the

generic c-th chromosome,
∼
z

g
c , c = 1, . . . , NP, where NP is the number of chromosomes,

will undergo the following genetic operations:

1. Mutation. Three chromosomes of the mutant population are selected by sampling
three integer indices, r1, r2, and r3, from a discrete uniform distribution in [1, NP].
Then, a random vector (called a donor or mutant chromosome),

∼
v

g
c , is generated,

c ̸= {r1, r2, r3} (Equation (A2)):

∼
v

g
c =

∼
z

g
r1
+ SF

(∼
z

g
r2
− ∼

z
g
r3

)
(A2)
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where SF is a scaling factor that belongs to the interval [0, 2] [51].

Once the random vector is generated, each b-th bit/gene, b = 1, . . . , p, is scaled by
applying a sigmoid function to assure that the mutation operator falls in the range of [0, 1]
(Equation (A3)):

∼
v

g
c,b =

1

1 + e
∼
v

g
c,b

(A3)

Finally, the inverse operator is applied to transform the
∼
v

g
c into the binary variables

vg
c,b of the donor (or mutant) chromosome vg

c (Equation (A4)):

vg
c,b =

{
0 i f

∼
v

g
c,b ≤ 0.5

1 i f
∼
v

g
c,b > 0.5

(A4)

2. Crossover (or Recombination). This step entails generating a trial chromosome, ug
c ,

by exchanging the bits/genes between the target and donor chromosomes, zg
c and

vg
c , respectively. This is achieved by resorting to the binomial crossover operator

(Equation (A5)):

ug
c,b =

{
vg

c,b i f randc,b ≤ Cr or i = irand

pg
c,b i f randc,b > Cr or i ̸= irand

(A5)

where irand is a random integer number sampled from a uniform discrete distribu-
tion in [1, . . . , NP], and Cr is the crossover rate, i.e., the probability that two binary
vectors (i.e., solution candidates) will experience a crossover operation during the
evolutionary process.

3. Opposite Learning. To introduce unexplored candidates, a swapping of the genes is
sometimes performed (all the 0 bits become 1 and vice versa), depending on the value
of the opposite learning (OL) parameter, which is sampled randomly in [0, 1] from
uniform distributions for each chromosome of each g-th generation (Equation (A6)):

xg
p,k =

{
1 − xg

p,k i f rand ≤ OL
xG

p,k otherwise
(A6)

4. Replacement. Many alternatives can be followed for the creation of the new popula-
tion. Here, the non-dominated sorting binary differential evolution (NSDBE) strategy
is used, as it is able to find more widespread solutions than other methods (e.g.,
multi-objective tabu search, vector-evaluated genetic algorithm) [63]. At the generic
g-th generation, the population of 2 ∗ NP chromosomes comprising all ug

p and xg
p

candidates is ranked using a fast, non-dominated sorting algorithm that identifies
non-dominated solutions, after having evaluated the finesses of all the 2 × NP chro-
mosomes. For a single-objective search problem like the one at hand, the selection
consists of taking the first NP chromosomes with higher fitness.

The function used to evaluate the chromosomes (fitness) is the weighted mean absolute
error (WMAE), which, in the case of interest for this work, measures the wind production
predictions’ accuracy relative to the real total monthly production values (Equation (1) in
Section 3.2). The set of features, p∗, with the smallest fitness function constitutes the inputs
of the final prediction model.
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