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Abstract: A rapid method that uses super-resolution magnetic array data is proposed to localize an
unknown number of magnets in a magnetic array. A magnetic data super-resolution (SR) neural
network was developed to improve the resolution of a magnetic sensor array. The approximate 3D
positions of multiple targets were then obtained based on the normalized source strength (NSS) and
magnetic gradient tensor (MGT) inversion. Finally, refined inversion of the position and magnetic
moment was performed using a trust region reflective algorithm (TRR). The effectiveness of the
proposed method was examined using experimental field data collected from a magnetic sensor array.
The experimental results showed that all the targets were successfully captured in multiple trials
with three to five targets with an average positioning error of less than 3 mm and an average time of
less than 300 ms.

Keywords: magnetic localization; multi-target localization; super resolution; trust region reflective

1. Introduction

Magnetic positioning techniques play a vital role in applications such as precision
industrial control, intrusion target detection, and medical intervention [1–8]. In industry,
magnetic positioning can improve the positioning accuracy of equipment such as automated
guided vehicles [1]. In the medical field, magnetic positioning techniques have been used
to track the motion of human organs such as fingers [3], tongues [4], and heart valves [5], as
well as medical devices such as wireless capsules [6,7] and interventional catheters [8]. The
two main types of magnetic sources generating magnetic fields are permanent magnets and
electromagnetic coils. Compared with electromagnetic localization methods [9], permanent
magnet-based methods do not require an external power supply, which makes it easier to
achieve passive, wireless, and less invasive localization schemes.

In the application of permanent-magnet localization, the technique of localizing a
single magnet using a stationary magnetic array is well established. The position and
orientation of the permanent magnets are generally estimated by building an optimization
model of the target parameters based on a dipole model, measuring the magnetic field
using an array of magnetic sensors, and using an optimization algorithm to minimize the
cost function [10]. In addition, studies have been conducted on target position inversion
tracking using recursive Bayesian estimation [11] or artificial neural networks [12,13].

Currently, researchers are focusing on the inverse problem of multiple magnets in a
magnetic array. The primary difficulty in multi-magnet localization is that the increased
number of magnets introduces more parameters to be solved. Clearly, a dimensional
explosion of the solution space leads to a long or even unsolvable solution time for this
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problem. Researchers have conducted numerous optimization studies on parameter-solving
methods. Song et al. [14] encapsulated two orthogonal permanent magnets in a wireless
capsule, applied particle swarm optimization and the Levenberg-Marquardt algorithm
(PSO-LM) to compute the 5D position of each magnet, and implemented a three-magnet
localization system. Yang et al. [15] tracked three cylindrical permanent magnets using
a hybrid algorithm consisting of the PSO, cloning, and LM algorithms. The average
positional accuracy of tracking the three magnets in real-time was 3.7 mm over the delimited
area. Cameron et al. [16] derived a gradient analytical formulation to track up to four
magnets simultaneously with high accuracy and low computational latency. Lv et al. [17]
implemented three-magnet localization based on individual memory whale optimization
and the Levenberg-Marquardt algorithms (IMWO-LM) to achieve a positional accuracy of
3.46 mm. In addition, some applications, such as intrusion target detection, lack important
information regarding the number of targets. Multi-magnet inversion in this application is
more difficult; however, there are few studies on the inversion of an unknown number of
multi-magnets. Chang et al. [18] located the position of an unknown number of multiple
magnetic dipoles by including the number of targets as part of the parameter optimization.
However, this method requires appropriate initialization conditions, and there is still room
for improvement in the accuracy of target number inversion. Overall, there are still three
problems with multi-magnet inversion in arrays: (1) conventional model inversion is
difficult when the number of targets is unknown; (2) a larger number of targets leads to
a higher dimension of the solution space, the conventional global search algorithms are
prone to falling into the local optimum, and the accuracy of the inversion decreases or even
fails to be inverted; and (3) the computation time of the iterative optimization inversion
method is positively correlated with the number of targets, which affects the real-time
performance of the array system.

A common way to address this problem is to fully exploit prior knowledge to reduce
the solution space range or compress the solution space dimension. Similar approaches
have emerged for some nonarray magnet localization applications, such as unexploded
ordnance (UXO) detection and underground deposit detection. In these applications,
magnetic sensors perform mobile measurements to acquire denser grid data than array
measurements. By analyzing the dense magnetic vector or tensor grid data in combination
with certain magnetic field eigenvalues, it is possible to quickly determine the position
of the target or directly determine all the magnet parameters. Li et al. [19] used the
magnetic gradient tensor Helbig integral to estimate the horizontal position of the target
and used the magnetic vector and tensor field data directly above the source to calculate
the depth of the source and magnitude of the dipole moment. This method improves
the localization accuracy by more than a factor of 5 over the classical method. Ding
et al. [20] used the tilt angle to determine the number of sources when processing magnetic
gradient tensor data, used the rotationally invariant normalized source strength (NSS)
to estimate the approximate horizontal coordinates of the sources, and ultimately used
the differential evolution (DE) algorithm to estimate the position and magnetic moment
of the sources. Li et al. [21] used an improved target area identification tilt angle and
self-adaptive fuzzy c-means (SAFCM) clustering algorithms to process grid measurement
data of magnetic gradient tensors, which can accurately identify the two-dimensional
(2D) region boundaries of objects with different burial depths. Zheng et al. [22] fused the
Eulerian method and DBSCAN algorithms to invert the UXO position for UXO detection,
which could accurately locate multiple targets on the subsurface. Because of the high-
density magnetic data obtained from mobile measurements, the above methods can quickly
obtain the parameter information of multiple targets, and the performance of some of
the methods is not affected by an increase in the number of targets. This makes it more
advantageous for multitarget localization, and the number of magnets that can be located
simultaneously far exceeds that of the array measurement methods. However, scanning
grid measurements exhibit poor real-time performance and are unsuitable for applications,
such as medical device positioning.
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To integrate the advantages of the high information density of mobile measurements
and real-time performance of array measurements, the spatial resolution of the array
measurement system needs to be improved. Improving the resolution by increasing the
sensor density increases the difficulty and cost of hardware implementation. Therefore, the
application of super-resolution algorithms to improve the resolution of magnetic sensor
arrays was considered. Super-resolution techniques have a wide range of applications in
the imaging field and can reconstruct low-resolution (LR) images into clear, high-resolution
(HR) images. Super-resolution methods can be divided into interpolation-, reconstruction-
, and learning-based methods. In recent years, deep learning has become the primary
method for image super-resolution. Networks such as SRCNN [23], which use three
convolutional layers, and networks such as EDSR [24], which include residual structures,
have significantly improved the quality of reconstructed images. Networks based on
attention mechanisms, such as SAN [25] and RCAN [26], have achieved better results.
Currently, NAFSR [27] and SwinIR [28] are the main state-of-the-art networks in the field
of image super-resolution. The former constructed a low-complexity convolutional neural
network without an activation function, whereas the latter constructed a neural network
with a transformer structure. Both achieved remarkable results in super-resolution tasks.
These neural-network-based super-resolution methods have also been used in a wide
range of applications ranging from astrophysics to seismic data analysis. However, their
application in the enhancement of magnetic array data has rarely been explored. In this
study, we apply these methods to magnetic array data enhancement.

In this paper, a multi-magnet localization method using super-resolution magnetic
array information is proposed. To address the problem of an unknown number of targets, a
deep super-resolution neural network without an activation function was used to enhance
the 8 × 8 sparse array data into 64 × 64 high-resolution data. The number of targets was
determined by calculating the high-resolution NSS. Normalized source intensities were
used to estimate rough horizontal positions. The target heights were then calculated based
on magnetic tensor inversion near the horizontal position. Obtaining the approximate
3D position of the target can significantly reduce the difficulty of solving the subsequent
optimization algorithm and prevent falling into a local optimum. To address the problem of
long computation time, a trust region reflective optimization algorithm with a rough initial
positioning value was used to achieve fast computation of the target parameters. This part
abandons the conventional heuristic optimization method, which improves computational
speed while guaranteeing inversion accuracy.

2. Methodology

In general, magnetic target inversion is used to estimate the location and magnetic
moments of magnetic anomalies in a region consisting of magnetic fields. When the
magnetisation intensity is fairly uniform and the distance between the source centre and
the observation point is more than three times the geometrical length of the target, the
magnetic source can be considered a magnetic dipole [10]. As shown in Figure 1, the
magnetic dipole source properties can be described in terms of six degrees of freedom,
divided into two categories, (a) three of which describe the position, usually expressed in
terms of horizontal position (x and y) and height (z), and (b) the other three describe the
magnetic moments, usually expressed in terms of the magnitude of the moments (M), the
inclination of the magnetisation (θ) and the magnetic declination of the magnetisation (φ).
Thus, the inversion of multiple magnets is to estimate the values of the six elements of the
multiple magnetic dipoles.
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The kth magnetic sensor measurement in the array is the superposition of the vector
magnetic field generated by N magnets at the sensor position. The triaxial magnetic field of
the sensor is given by Equation (1).
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where (mj, θj, φj) are the magnetic moment parameters of the j target, rj,k is the position
vector from the j target to the k magnetic sensor [13], and (xj, yj, zj) and (xk, yk, zk) are
the 3D coordinates of the jth target and the k sensor, respectively. The parameters to be
inverted are

(
xj, yj, zj, mj, θj, φj

)
, j = 1, 2, . . . , N. Obviously, the complexity of parameter

inversion rises as the number of magnets N increases.

2.1. Proposed Method

The method proposed in this study is applicable to the inversion of multi-magnet
parameters for array magnetic detection. The method consists of three steps, and its overall
concept is illustrated in Figure 2. First, the resolution of the magnetic array data is enhanced.
We developed a super-resolution method for magnetic field data based on an activation-free
function deep neural network that can obtain high-resolution magnetic vector data and
further compute magnetic tensor data. In the second step, super-resolution magnetic field
data are used to invert and obtain the 3D rough localization results. In this step, the number
and horizontal position of the targets are obtained using NSSs. The target point cloud
is inverted based on the magnetic tensor, and the target height is roughly determined
after clustering. In the third step, based on the approximate data obtained in the previous
step, a local optimization algorithm is used to quickly search for the precise location of
the target and the magnetic moment parameters. The algorithm using a super-resolution
magnetic gradient tensor and TRR optimization algorithm is subsequently referred to
as SRMGT-TRR.
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Figure 2. Method overview.

2.2. Magnetic Field Super-Resolution Neural Network

High-resolution magnetic field data can help achieve a more accurate target number
identification and rough target localization. The goal of super-resolution magnetic data
is to develop an end-to-end mapping function F that reconstructs the high-resolution
magnetic array data BHR

m from the input magnetic array data BLR
m . If the training dataset is{

BLR
m , BHR

m
}U

m=1, then the mapping function must address the following issues:

δ̂ = argmin
δ

1
U

U

∑
m=1

LossSR
(

Fδ

(
BLR

m

)
, BHR

m

)
(2)

where U is the total number of data records, δ is the weight value of the mapping function,
and Loss is the loss function, which measures the deviation between the reconstructed
array data and the original high-resolution data.

In this study, we built a deep magnetic data super-resolution network without any
activation functions, as shown in Figure 3. This reduces the computational requirements
while maintaining optimal performance. The backbone of the network consists of non-
linear activation-free (NAF) blocks and PixelShuffle upsampling modules [27], which
enable a super-resolution performance that exceeds that of other methods while reducing
computational effort. The network employs a progressive upsampling architecture, in
which multiple modules are stacked to gradually increase the resolution of the magnetic
array data.
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Figure 3. Overall structure of the proposed magnetic super-resolution network.

The basic function of the NAF module is to extract input image features using a
stacked layer normalization module, convolution module, simple gate (SG) module, and
simple channel attention (CA) module. As shown in Figure 4, conventional CA is averaged
over each channel of the input feature map (C × H × W) to obtain a set of vectors. The two
input convolutions are then passed through an activation function to obtain a weight vector,
and the weights are multiplied by the input features to obtain new features weighted by
the channel dimensions. Owing to the correlation between the different measurement
axes of the magnetic sensor, the use of CA helps to extract the interaction information
between the data channels of the magnetic array. Simple CA (SCA) cancels the convolution
and activation functions in the middle 2 layers of the original CA and replaces them with
a 1 × 1 convolution operation. An SG divides the input of C × H × W into two equal
parts C/2 × H × W, multiplies them to obtain a new feature, and uses this to replace the
activation function. In [27], it was verified that this simplification has little or no effect on
network performance but effectively reduces the number of operations.
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(c) simple gate (SG). ⊙/∗: element-wise/channel-wise multiplication.

The SCA and SG mechanisms are shown in Equation (3).

SCA (X) = X ∗
(
W2max

(
0, W1 pool(X)

))
SimpleGate(X, Y) = X ⊙ Y

(3)

where SCA denotes the simplified channel attention, X denotes the feature map, and pool
denotes the global maximum pooling operation. W1 and W2 are learnable matrices. Finally,
* denotes per-channel product operation.

Upsampling was implemented using the PixelShuffle module. This upsamples a low-
resolution image to a high-resolution image by learning the mapping relationship between
low-resolution and high-resolution images. First, it learns a residual image by nonlinearly
transforming an input low-resolution image. The residual image is then summed pixel-
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by-pixel with the original low-resolution image to obtain the final high-resolution image.
Compared to conventional interpolation methods, PixelShuffle has better reconstruction
results and higher computational efficiency.

The current mainstream framework for super-resolution is the post-upsampling frame-
work, which is computationally small and can complete upsampling in one step. However,
the magnification of magnetic array data enhancement is generally high, and the post-
upsampling framework increases the learning difficulty of the upsampling factor. On the
other hand, the progressive upsampling framework gradually increases the resolution of
the array image, and the learning process is smoother. Therefore, the network designed
in this study adopted a progressive upsampling architecture. Each module takes the low-
resolution feature maps of the previous stage as input and outputs two high-resolution
feature maps. Each module first connects multiple NAF blocks in series for feature extrac-
tion, then inputs the extracted features and low-resolution maps from the initial input of
the module into the upsampling module, and outputs the high-resolution results.

2.3. 3D Rough Positioning

Conventional optimization algorithms yield satisfactory results when locating 1–3 targets
based on magnetic arrays. However, as the number of targets continues to increase, the
dimensions of the parameters to be solved expand, and a simple optimization algorithm
is difficult to handle. To constrain the solution range of the optimization algorithm, it is
necessary to obtain more a priori information based on enhanced magnetic field data.

2D magnetograms obtained from sensor arrays have made it possible to obtain the
rough horizontal positions of targets. However, the use of the peak of the total magnetic
field to identify the number and horizontal position of targets has two drawbacks: (a) the
peak of the total magnetic field and horizontal coordinates of the target do not necessarily
coincide, and (b) the three-fold decaying property of the magnetic field with distance causes
the magnetic fields generated by dipoles in close proximity to superimpose on each other.

As shown in Figure 5, after augmenting the array data into dense data, feature quan-
tities, such as the magnetic gradient tensor, can be calculated relatively accurately from
the 2D magnetic vector data. The magnetic gradient values are calculated using the four
nearest data points in the X and Y directions of the position to be calculated. The NSS,
which is unaffected by the direction of the dipole magnetic moment, can be calculated
based on the magnetic gradient tensor and other characteristics. The magnetic gradient
tensor [29] G is expressed as:

G =

gxx gxy gxz
gyx gyy gyz
gzx gzy gzz

 =

v1
v3
v2

λ1
λ3

λ2

v1
v3
v2

−1

(4)

where gij, i = x, y, z, j = x, y, z are the elements of the magnetic gradient tensor and λ1, λ2,
and λ3 represent the eigenvalues of G, and v1, v2,and v3 are the eigenvectors corresponding
to the eigenvalues. The NSS can be obtained by solving the eigenvalue operation of the
tensor matrix [21], as shown in Equation (5).

NSS =
√
−λ2

3 − λ1λ2 ∝
M
r4 , λ1 ≤ λ3 ≤ λ2 (5)
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The magnitude of the NSS is proportional to the magnetic moment modulus and
inversely proportional to the fourth power of distance. Therefore, the NSS is largest directly
above the target and decays more rapidly away from the target. This reduces the effects
arising from magnetic field overlap when the dipoles are closely spaced. The number of
magnetic dipoles and the horizontal position can be identified by smoothing the NSS to
find possible peaks and then using a soft threshold to filter reliable peaks. The threshold
in this paper is set to the mean value of the NSS data, and peak points greater than the
threshold are considered valid peak points.

However, the height information of the target cannot be obtained from the NSS,
and a magnetic tensor must be used to obtain the height of the target. Nara et al. [30]
derived the relationship among the dipole position, magnetic field vector, and magnetic
gradient tensor. Gxx Gxy Gxz

Gyx Gyy Gyz
Gzx Gzy Gzz

rx − rx0
ry − ry0
rz − rz0

 = −3

Bx − Bx0
By − By0
Bz − Bz0

 (6)

where
(
rx, ry, rz

)
is the measurement point position;

(
rx0, ry0, rz0

)
is the dipole position;(

Bx, By, Bz
)

is the magnetic field vector; and
(

Bx0, By0, Bz0
)

is the background field. In
Equation (6), the background field, magnetic field vector, magnetic gradient tensor, and sen-
sor position are considered known quantities, and only the magnetic dipole coordinates are
unknown. The background field can also be obtained by premeasurement. The expression
for the dipole position is as follows:rx0

ry0
rz0

 =

rx
ry
rz

+ 3

Gxx Gxy Gxz
Gyx Gyy Gyz
Gzx Gzy Gzz

−1Bx − Bx0
By − By0
Bz − Bz0

 (7)

With the horizontal position of the target deduced, 5 × 5 measurement grid data
points were selected near each target position for rough position inversion. A 3D coordinate
position point cloud was obtained from the magnetic tensor inversion of these grid points,
and the k-means clustering algorithm was applied to calculate the cluster centres of the
point cloud clusters to obtain a rough estimate of the height of each target.

2.4. Precise Positioning Based on TRR Optimization Algorithms

After roughly estimating the positions of multiple targets, an optimization algorithm
was used to further invert the exact parameters of the multiple targets. In conventional
magnetic target localization methods, owing to the large search range of target parameters,
heuristic optimization algorithms are generally combined with optimization methods such
as LM to achieve a balance between optimization capability and solution speed. In contrast,
the multistep inversion method adopted in this study can provide a rough estimation of
the multi-objective parameters, which replaces the function of the conventional heuristic
optimization algorithm. Therefore, the subsequent precise localization part can use a faster
local optimization method to invert the parameters.

The problem of parameter estimation for multiple dipoles can be formulated as follows:

X∗ = argmin
X

E(X)

X = [x1, y1, z1, M1, θ1, φ1, . . . , xN , yN , zN , MN , θN , φN ]
(8)

X is the parameter of N targets, the objective function E is the sum of the three-
component errors between the measured and theoretical values of the magnetometer, P is
the total number of sensors. B′

k,x, B′
k,y, B′

k,z are the measured values of the triaxial magnetic
field of the k sensor, and Bk,x, Bk,y, Bk,z are theoretically estimated values.

E = ∑P
k=1

[(
B′

k,x − Bk,x

)2
+

(
B′

k,y − Bk,y

)2
+

(
B′

k,z − Bk,z

)2
]

(9)
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The trust region reflective (TRR) algorithm was used for the nonlinear least-squares
problems. Compared with the traditional linear search algorithm, the TRR algorithm has
the advantages of robustness and fast convergence.

The TRR algorithm divides the entire solution domain into several trust region sub-
problems by introducing a trust region. In each iteration process, according to the minimum
value condition, a trial step s is obtained. The solution or the radius of the trust domain
is updated through the iterative process until the error function satisfies the tolerance
convergence condition E(X) < tol.

The trust domain algorithm deprecises an n-dimensional trust region Ni around the
current iteration position xi. A neighbourhood of Ni is deprecised by the current step size
si, solution xi and the radius of the trust domain ri described in Equation (10).

Ni = {si ∈ Pi | ∥ si − xi ∥≤ ri} (10)

Within this trust region, a simpler model function is used to ψ(x) to approximate
the objective function f (x). This model function generally uses a second-order Taylor
expansion form of the objective function. Other iterative algorithms are then used to solve
the minima (subproblem) of the model function in this trust domain ψ(x) as shown in
Equation (11).

minsi∈Ni

{
·ψi(si) = gT

i si +
1
2

sT
i Hisi

}
(11)

where si is the vector form of the step size, and gi is the gradient of f (x), and Hi is the
Hessian matrix of f (x).

The computational flowchart for determining the parameter X is shown in Figure 6.
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To speed up the convergence of the algorithm, the E(xi) the direction of the gradient
of ▽E(xi), denoted as vector p1, and the Gauss–Newton search direction, denoted as p2 to
generate the solution plane Pi. p2 can be obtained by solving Equation (12).

Hi p2 = −gi (12)
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The ratio ri of the amount of change in the target function f (x) to the amount of
change in the model function ψ(x) is used to evaluate the appropriateness of the current
step size of the model function in the current domain of trust [31]. The ratio ri is deprecised
as in Equation (13) shown.

ri =
∆ fi
∆ψi

∆ψi = ψi(0)− ψi(d)
∆ fi = f (xi)− f (xi + d)

(13)

If ri is close to 1, indicating that the model function is very close to the objective
function, then the current solution is xi is updated to xi + si. Otherwise, the current so-
lution should be kept unchanged and the trust domain radius should be reduced. If the
error function is less than the tolerance limit after iteration, stop iteration and output the
parameter estimation results.

3. Results and Discussion

In this study, we employed a maximum of five NdFeB cylindrical magnets (N35) as
magnetic sources, each possessing a total magnetic moment intensity spanning from 0.01 to
0.05 A·m2. Enhancing precision in determining the true positions of these magnetic sources,
we devised a standardized experimental plate positioned atop the magnetometer array.
This plate featured a marked scale for reference. Precise tuning of the distance between
the magnetometer array and the experimental plate was achieved through a selection of
hexagonal copper post units of varying lengths. A two-tiered platform was built above the
sensor array to simulate different heights.

As shown in Figure 7, 64 magnetometers (MMC8593A) are distributed on a
350 mm × 350 mm printed circuit board. The chip can measure magnetic fields of up
to 8 G with a noise level of 0.4 mG RMS. The magnetic flux density measured by the
magnetometers was captured by the STM32 board before being transferred to a computer,
and the algorithm calculated the 6D parameters of each magnetic target. The parameter
settings of the magnetic positioning system and the positioning results are displayed on
the graphical user interface of the computer. The following experiments were conducted
without shielding from the electromagnetic field.
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3.1. Super-Resolution Network Training and Testing

The training data used for the super-resolution neural network was a dataset created
through simulation. We used low-resolution data as the network input and high-resolution
data as the network output. Low-resolution (LR) data were obtained from an 8 × 8 sensor
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array with a distance of 5 cm between the sensors. High-resolution (HR) data were obtained
using a 64 × 64 sensor array with a spacing of 0.556 cm. Magnetic moments M in the data
set ranged from 0.01 to 0.05 A·m2. One to six magnetic dipoles were placed in a vertical
range of 3 to 10 cm above the sensor array. The dipoles varied in size and orientation. The
far-field equations for the magnetic dipoles were used to calculate the vector magnetic field
generated at the corresponding sensor location, and Gaussian white noise with a standard
deviation of 40 nT was added to the low-resolution data. The final dataset comprised
6 × 104 records. Of these, 5 × 104 formed the training set, and the remaining 10,000 were
the test set. Here, the training set containing 5 × 104 pieces of data is divided into five
disjoint data subsets, and then one of the data subsets (1 × 104 pieces) is sequentially used
as the validation set, and the rest of the data subsets are used as the training set to train
the model, and finally, the model with the smallest test error is selected as the final model.
The specific dataset parameters are shown in Table 1. For each record, the sensor array
provided magnetic field data along the three axes. Thus, the network input consisted of
three channels of 8 × 8 low-resolution data, and the output consisted of three channels of
64 × 64 high-resolution data.

Table 1. Parameter ranges for generated data.

Parameter Value Range Parameter Value Range

Target number [1, 6] θ/◦ [−90, 90]
x/m [0, 0.35] φ/◦ [−180, 180]
y/m [0, 0.35] M/A·m2 [0.01, 0.05]
z/m [0.03, 0.1] Training set 5 × 104

Validating set 1 × 104 Testing set 1 × 104

As shown in Equation (14), both the input and labelled data are normalized using the
inverse-tangent method.

Bnormalized = atan(k · B) · 2/π (14)

where the units of the magnetic field data are Tesla (T) and the coefficient k is 2× 10−5. The
normalization process rearranges magnetic field anomalies spanning multiple orders of
magnitude into a more homogeneous distribution in the interval (−1, 1).

The network was implemented in PyTorch-Lightning 1.6.0 and Python 3.9 for training
and inference, respectively. All the experiments were performed on a Windows 10 PC
with an AMD Core 3900X CPU, 96 G RAM, and Nvidia GeForce RTX 3090 GPU (Nvidia
CUDA 11.7).

In the training phase of this network, the network was optimized for the training
process using the Adam optimizer for a total of 2 × 105 iterations, where the initial learning
rate was set to lr = 0.001, β1 = 0.9, and β2 = 0.9, with only L1 loss. We also tuned the models
using 5-fold cross-validation, fully trained the best-performing models in the validation set,
and saved them for subsequent testing and comparison.

In this study, we compared the proposed method with five SR reconstruction algo-
rithms: Bicubic, EDSR [24], SAN [25], RCAN [26], and SwinIR [28]. The parameter settings
for these networks refer to those proposed in the original study. In the NAFSR, each chunk
contains 16 NAF blocks, and the number of convolutional channels within each NAF block
is 64. We employ three metrics to assess the credibility of the inversion outcomes: structural
similarity (SSIM), peak signal-to-noise ratio (PSNR), and mean absolute error (MAE). SSIM
assesses the similarity of magnetograms in terms of magnitude and structure. PSNR, a
prevalent objective evaluation index, quantifies error in pixel correspondence. Meanwhile,
MAE represents the average absolute prediction error, offering a nuanced portrayal of
accuracy. Table 2 presents the results..
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Table 2. Comparison of reconstruction results from different algorithms under the ×8 dataset.

Algorithms
PSNR (dB)/SSIM/MAE (nT)

X Y Z

BiCubic 19.88/0.521/65.0 19.88/0.519/64.9 19.67/0.559/84.2
EDSR 38.99/0.987/12.1 39.14/0.988/15.5 39.81/0.990/21.2
SAN 36.74/0.989/39.2 36.69/0.989/40.6 37.41/0.991/58.9

RCAN 38.79/0.992/44.3 38.91/0.992/35.9 39.09/0.993/33.2
SwinIR 39.87/0.995/29.5 39.85/0.989/26.3 40.41/0.994/62.3
NAFSR 41.56/0.996/8.1 42.90/0.995/6.4 43.37/0.996/20.6

Table 2 shows that the PSNR of the NAFSR was at least 1.69 dB higher than that of
the other methods, and the MAE of the three axial directions was at least 4.56 nT lower.
This indicates that the method used in this study has a clear advantage for the ×8 dataset.
Considering the difference between magnetic field data and natural images, the above
metrics were calculated using magnetic field data output values rather than image pixel
values. Therefore, the corresponding calculated results may differ from typical values in
conventional image processing fields.

In addition, a subjective analysis of the dataset (Figure 8) also revealed the superior
performance of the proposed method. Comparing the red magnetic anomaly areas of the
results of different algorithms, other SR algorithms usually produce blurred magnetograms
due to underutilisation of features, whereas the method in this study produces magne-
tograms with more accurate and detailed textures. This qualitative improvement over other
SR methods is also supported by the superior objective metrics.
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Figure 8. Subjective comparison of reconstruction results of different algorithms on ×8 dataset. The
different colors represent the magnitude of the total magnetic induction. The red box shows the
shape of the magnetic anomaly reconstructed by different algorithms.

The magnetograms obtained after super-resolution enhancement still have some
residual errors compared to the real high-resolution magnetograms. This error may have
been caused by two factors. The first is the fitting bias of the neural network itself. Second,
the Gaussian white noise added to the input training data introduces errors. Because the
magnitude of magnetic anomalies in this task is generally in the order of thousands of nT,
the residual bias in the super-resolution results has little effect on subsequent localization.
Overall, the network performed the super-resolution task well for the sparse magnetic data.
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3.2. Multi-Targets Inversion in Field Tests

Simultaneous inversion tests for the five targets were performed using a magnetic
sensor array, as shown in Figure 7. The prearranged positions and magnitudes of the
magnetic moments of magnetic sources one to five are listed at the top of Table 3. The true
magnetic moments of the targets were estimated by placing the targets to be measured
individually on top of the array, and the data were acquired using the PSO-LM algorithm
to calculate the magnetic moments of the individual targets.

Table 3. Prearranged locations, estimated locations, and moments of the magnetic sources.

No. x/m y/m z/m θ/◦ φ/◦ M/A·m2

Prearranged

1 0.05 0.30 0.05 - - 0.015
2 0.15 0.25 0.05 - - 0.02
3 0.30 0.25 0.05 - - 0.02
4 0.10 0.10 0.05 - - 0.02
5 0.25 0.10 0.05 - - 0.015

Estimated

1 0.051 0.301 0.052 −87.41 −180.00 0.017
2 0.151 0.251 0.049 87.30 42.91 0.021
3 0.301 0.251 0.049 87.89 −21.17 0.021
4 0.100 0.101 0.050 84.91 30.10 0.021
5 0.249 0.101 0.049 88.92 −180.00 0.017

The total field of the measured magnetic anomalies is shown in Figure 9a. Only four
magnetic anomalies were observed. The magnetic anomalies produced by the two sources
in the upper-right corner are superimposed. The NSS after super-resolution enhancement
is shown in Figure 9b. Five magnetic anomalies are clearly observed in Figure 9b. By
searching for the local maxima of the NSS, the horizontal coordinates of the sources can
be obtained and labelled, as shown in Figure 9b. The approximately estimated horizontal
coordinates are a little far from the real coordinates, but they can significantly constrain the
search range for the next optimization algorithm.
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Figure 9. (a) Measured magnitude of magnetic anomaly caused by magnetic sources. (b) Calculated
NSS using the SR magnetic vector data and estimated horizontal location.

Several measurement points were selected at the predicted horizontal position of each
target to calculate the tensor estimates. The positional point cloud of each target was then
obtained based on the Nara method inversion, as shown in Figure 10a. The location of the
centre of the point cloud obtained by Kmeans clustering is marked using boxes. The height
of each target corresponding to the centre of the point cloud was the estimated height of
the target. Thus, an approximate 3D estimated position of each target was obtained. From
Figure 10a, it can be observed that there is a deviation in the rough estimation of the height
direction for some targets.
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The exact magnetic source position and magnetic moment parameters were estimated
using the TRR algorithm based on the roughly estimated 3D data. The initial position values
of the TRR algorithm were used to roughly estimate the 3D position. The magnetic moment
parameters M, θ, and φ were randomly initialized in the range of [0.01, 0.05] A·m2, [−90◦,
90◦], and [−180◦, 180◦], respectively. The position search range is ±0.02 m around the
roughly estimated position, and the magnetic moment parameter search range is the whole
feasible domain. The results of the final exact inversion are presented in the lower part of
Table 3. Figure 10 illustrates the distribution of the final estimated target and true positions.
In this example, both the estimated magnetic source position and magnetic moment were
closer to the true values. The positions of five magnetic sources were recovered using the
proposed method with an estimation error of less than 3 mm in each axial direction. The
method was also successful in estimating the magnitude of the magnetic moments, with
a deviation of approximately 5% in the estimation of the moments for the three targets
with larger moments and approximately 13% in the estimation of the moments for the two
targets with smaller moments.

The horizontal positioning error in this positioning test is related to the super-resolution
reconstruction error of the magnetic vector. The peak position indicated by super-resolution
magnetic data sometimes does not exactly correspond to the true horizontal position. The
positioning error in the vertical direction is also related to the magnetic field reconstruction
error. This error also affects the accuracy of the magnetic tensor calculation, because the
magnetic tensor is calculated from the super-resolution magnetic vector. However, overall,
the rough positioning results of the target were close to the true position, which significantly
reduced the search range of the 3D position.

The PSO-LM and WO-LM algorithms are widely used in applications where multiple
magnetic targets are located. Therefore, the proposed SRMGT-TRR algorithm is compared
with the PSO-LM algorithm and an improved IMWO-LM algorithm.The population size
and the maximum number of iterations for the PSO algorithm are set to 100 and 50,
respectively.The acceleration constants (c1, c2) are set to 1.49. The number of search agents
and the maximum number of iterations for the IMWOA are set to 100 and 50, respectively.
In practical experiments, if the global search range is used, it is difficult for the above two
heuristics to achieve localization of 4–5 targets. Therefore, when using the heuristic methods
for inversion, the approximate range of targets was roughly delineated according to the
size of magnetic anomalies at different measurement points, which was ±0.05 m near the
suspected coordinates in the horizontal direction and 0.02–0.1 m in the vertical direction.

The magnetic field values generated by ten sets of targets with different positions
and magnetic moment parameters were collected using an 8 × 8 magnetic sensor array.
As shown in Table 4, three groups had three targets, three groups had four targets, and
four groups had five targets. The test samples included different magnetic moments
and heights.
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Table 4. List of 10-parameter groups.

No.
3D Position (cm) & Total Magnetic Moment (A·m2)

Target 1 Target 2 Target 3 Target 4 Target 5

1 (10, 25, 5), 0.02 (25, 25, 5), 0.02 (18, 12, 5), 0.02 / /
2 (15, 22, 5), 0.02 (18, 12, 5), 0.02 (29, 22, 5), 0.02 / /
3 (10, 20, 5), 0.02 (20, 10, 5), 0.02 (25, 20, 5), 0.01 / /
4 (10, 30, 5), 0.02 (20, 25, 5), 0.02 (15, 15, 5), 0.02 (25, 10, 5), 0.02 /
5 (10, 25, 5), 0.02 (25, 25, 5), 0.02 (15, 10, 5), 0.02 (30 10, 5), 0.02 /
6 (10, 25, 5), 0.02 (25, 25, 5), 0.01 (15, 10, 5), 0.02 (30, 10, 5), 0.01 /
7 (10, 25, 5), 0.02 (20, 25, 5), 0.02 (30, 25, 5), 0.02 (20, 15, 5), 0.02 (20, 5, 5), 0.02
8 (5, 20, 5), 0.02 (20, 26, 5), 0.02 (20, 20, 5), 0.02 (15, 10, 5), 0.02 (30, 15, 5), 0.02
9 (5, 30, 5), 0.015 (15, 25, 5), 0.02 (30, 25, 5), 0.02 (10, 10, 5), 0.02 (25, 10, 5), 0.015

10 (5, 30, 5), 0.015 (15, 25, 5), 0.02 (30, 25, 7), 0.02 (10, 10, 7), 0.02 (25, 10, 7), 0.015

The five targets in group 10 are distributed at two heights of 5 cm and 7 cm. The rough
and precise localisation results for this group are shown in Figure 11a,b, with an average
localisation error of 2.4 mm. the final precise localisation results show that the method is
able to accurately target different planes.
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Figure 11. (a) rough estimated position and real position of the 10th group. (b) precise estimated
position using TRR and real position of 10th group. The spherical dots in the figure represent rough
localisation point clouds, which are colored differently near different targets.

Each algorithm was run 100 times for each test sample to determine the average
localization error, magnetic moment inversion error, and running time. Calculations were
performed using the computer on which the super-resolution neural network was trained.
The positioning accuracy and runtime results of the experiments with ten sets of targets are
shown in Figures 12 and 13, respectively.

As shown in Figure 12, the 3D positioning accuracies of the proposed SRMGT-TRR,
PSO-LM, and IMWO-LM algorithms were different in the 10 groups with 100 positioning
times. The average positioning errors (Table 5) of the PSO-LM algorithm, IMWO-LM algo-
rithm and proposed SRMGT-TRR algorithm in multiple positioning were 8.64 mm, 5.13 mm,
and 1.83 mm, respectively, and the average magnetic moment inversion errors were 9.70%,
8.23%, and 6.29%, respectively. The size of the test board here is 350 mm × 350 mm. When
the number of targets increased, the average positioning errors of the three algorithms
increased by different degrees. Compared to the PSO-LM and IMWO-LM algorithms, the
proposed SRMGT-TRR method exhibited better performance in multitarget localization
and magnetic moment inversion accuracy.

Additionally, we compared the execution times of the proposed SRMGT-TRR, PSO-
LM, and IMWO-LM algorithms. As shown in Figure 13, the average running times of the
three algorithms are marked using diamonds, squares, and circles, and each data point
represents the average time of 100 localizations. The average time required by the SRMGT-
TRR algorithm proposed in this study was 0.294 s, whereas the average times required by
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the PSO-LM and IMWO-LM algorithms were 1.009 and 0.861 s, respectively. The PSO-LM
and IMWO-LM algorithms are slower because of the presence of a random selection process
with an uncertain time. In the proposed SRMGT-TRR algorithm, the average time of the
inference process of the super-resolution neural network was 49 ms, the average time of
rough localization was 30 ms, and the average time of precise localization was 215 ms. The
computation time of the proposed SRMGT-TRR algorithm was significantly shorter than
that of the other two methods. Therefore, the proposed SRMGT-TRR algorithm meets the
requirements for real-time effective localization of multiple magnetic targets.
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Table 5. Estimated error of position and magnetic moment and running time of three algorithms.

Position Error (mm) Magnetic Moment Error (%) Running Time (s)

PSO-LM 8.64 9.70 1.009
IMWO-LM 5.13 8.23 0.861

SRMGT-TRR 1.83 6.29 0.294

In this experiment, the running times of PSO-LM and IMWO-LM were longer than
those in [14,17]. In addition to the effects of equipment configuration and hyperparameter
settings, the more important reason is that the arrays in this study are of 8 × 8 size, whereas
in [14,17], the size is 3 × 3. A large array must calculate the magnetic-field values of
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more measurement points when calculating the magnetic field, which leads to different
computing times. However, the average computation time of the method proposed in this
paper is still lower than 300 ms for large arrays, which proves that it still has the ability for
real-time inversion when the array size is extended.

3.3. Rough Positioning Performance Evaluation

The rough localisation step determines the number of targets and the rough location
of targets by searching for NSS peaks. The results of this step have a strong influence on
the precise localisation. Therefore, the performance of this step in determining the number
of targets and rough localisation is evaluated through several simulation experiments. The
rough localisation algorithm processes the 6000 test sets generated based on the simulation
parameters in Table 2 and outputs the predicted number of targets and target rough
locations. The number of targets range from one to six. This is to evaluate the performance
of the algorithm for larger number of targets.

By comparing with the set target correct parameters, the quantity prediction accuracy
and the rough estimated position deviation can be obtained, as shown in Figure 14. The
positional error is only calculated for those with correct quantity estimates.
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Figure 14. Accuracy of target number estimation and rough positioning error.

When the number of targets is less than or equal to four, the accuracy of target number
prediction is higher than 90%, and the average rough positioning error is not more than
11mm, but when the number of targets is six, the accuracy of target number prediction
is less than 85%, and the rough positioning error reaches 12 mm. the rough positioning
result is poorer when the number of targets is more than five, which is a limitation in
practical applications.

There are two reasons why rough localisation performance decreases when the number
of targets increases. One is that the output of the super-resolution neural network may
deteriorate when the number of targets increases. The second is that the magnetic fields
generated when multiple targets are close to each other interfere with each other, resulting
in some of the peaks being difficult to identify or incorrectly identified.

3.4. End-to-End Inversion Performance Evaluation

Multiple end-to-end repetitive tests are performed on the three localisation algorithms
to evaluate the localisation accuracy, runtime and localisation success of the different
methods. Since it is difficult to obtain large quantities of data from real experiments, the
results are obtained through simulation experiments. Similar to the rough positioning
performance evaluation, end-to-end inversion calculations are performed using 6000 test
data for one to six targets. In this case, the number of entries for each target quantity is
1000. In order for PSO-LM and IMWO-LM to converge properly for conditions larger than
three targets, the same rough initial values are provided to limit the search range. The
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positioning errors and running times of different algorithms at a different number of targets
are statistically obtained as shown in Figure 15.
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Figure 15. (a) End-to-end positioning error and (b) running time of the proposed SRMGT-TRR
algorithm, IMWO-LM algorithm, and PSO-LM algorithm.

The average localisation error of SRMGT-TRR method is less than 3 mm for different
number of targets, which is better than the other two algorithms. The computation times of
the three methods are close to each other in the single target case. However, the average
positioning time of SRMGT-TRR is much smaller than the other two methods when the
number of targets is large. In the case of one to five targets, the average positioning time is
less than 300 ms.

In practical applications, the localisation success rate is also an important indicator of
system performance. In this paper, the localisation success rate is defined as the ratio of
the number of samples whose localisation results are less than 2 cm away from the true
position to the total number of samples. The positioning success rate of different algorithms
is shown in Figure 16.
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Figure 16. Success rate of the proposed SRMGT-TRR algorithm, IMWO-LM algorithm, and
PSO-LM algorithm.

The results of multiple repeated experiments show that the end-to-end localisation
success rate of different algorithms is inversely proportional to the number of targets.
The SRMGT-TRR method proposed in this paper has a higher localisation success rate
compared to the other methods.The localisation success rate of SRMGT-TRR is more than
85% for the number of targets from one to five. The success rates of all three methods are
close to 100% for single-target localisation. When the number of targets is more than 5, the
end-to-end localisation success rate of different algorithms is less than 80%. Therefore, the
methods proposed in this paper have a high success rate when dealing with 1 to 5 targets,
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and the algorithm performance needs to be continued to be optimised for a larger number
of targets.

In summary, super-resolution data enhancement and rough localization steps in
the proposed method are more critical than precise localization. The quality of data
enhancement determines the accuracy of rough localization. The rough localization results
determine the quality of precise localization. The next step is to optimize the generalisation
ability of the super-resolution network such that it can adapt to more complex magnetic
environments. It is also necessary to investigate how to obtain more precise 3D positions by
the inversion of super-resolution magnetic tensor data and directly invert reliable magnetic
moments.

4. Conclusions

In this study, an innovative method for the rapid localization of an unknown number
of multiple magnets based on magnetic sensor arrays was proposed. A super-resolution
neural network was used to augment sparse magnetic array data into dense data. The
number of targets and rough 3D positions were determined based on the NSS and magnetic
tensor inversion of the dense data. Combining the rough position results, the TRR algorithm
was applied to achieve a precise inversion of the multi-target parameters. Experiments
based on 8 × 8 arrays demonstrate that the proposed method locates three to five targets
with an average error of less than 3 mm and an average time of less than 300 ms. This
indicates that the proposed method can quickly and accurately invert multiple targets and
meets the requirements for real-time effective localization of multiple magnetic targets. It is
expected that this method can achieve superior localisation results in situations where the
number of targets is known and unknown, such as medical interventions and intrusion
target detection.
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