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Abstract: Novel or unconventional technologies are critical to providing cost‑competitive natural
gas supplies to meet rising demands and provide more opportunities to develop low‑quality gas
fields with high contaminants, including high carbon dioxide (CO2) fields. High nitrogen concentra‑
tions that reduce the heating value of gaseous products are typically associated with high CO2 fields.
Consequently, removing nitrogen is essential for meeting customers’ requirements. The intensifi‑
cation approach with a rotating packed bed (RPB) demonstrated considerable potential to remove
nitrogen from natural gas under cryogenic conditions. Moreover, the process significantly reduces
the equipment size compared to the conventional distillation column, thus making it more economi‑
cal. The prediction model developed in this study employed artificial neural networks (ANN) based
on data from in‑house experiments due to a lack of available data. The ANN model is preferred
as it offers easy processing of large amounts of data, even for more complex processes, compared
to developing the first principal mathematical model, which requires numerous assumptions and
might be associated with lumped components in the kinetic model. Backpropagation algorithms
for ANN Lavenberg–Marquardt (LM), scaled conjugate gradient (SCG), and Bayesian regularisation
(BR)were also utilised. Resultantly, the LMproduced the bestmodel for predicting nitrogen removal
from natural gas compared to other ANNmodels with a layer size of nine, with a 99.56% regression
(R2) and 0.0128 mean standard error (MSE).

Keywords: artificial neural networks; carbon dioxide; nitrogen; liquefied natural gas

1. Introduction
In Malaysia, over 13 trillion standard cubic feet per day (Tscfd) of undeveloped gas

fields have been identified [1]. Commonly, high carbon dioxide (CO2) fields are associ‑
ated with high nitrogen concentrations, which makes the treatment of natural gas more
challenging. Nevertheless, removing CO2 to meet the 6.5‑mole percentage (mol%) or less
pipeline specification might result in greater nitrogen concentrations than what customers
require. Since nitrogen is inert, removing the gas maximises the calorific value of the
product gas while minimising any safety issues, particularly during liquefied natural gas
(LNG) shipping due to stratification and rollover of the product [2]. Consequently, most
LNG production plants limit nitrogen to a maximum of 1.0 mol% in their LNG outputs.
Nonetheless, removing or venting nitrogen into the atmosphere necessitates a small amount
of methane (typically under 1%), which could present a safety hazard as methane is a com‑
bustible gas. Methane is also a greenhouse gas that requires control during venting or
flaring [3].

In a study [2], it was found that only cryogenic technologies could remove nitrogen
to under 1.0 mol% and produce liquefied methane at large plant capacities. Meanwhile,
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non‑cryogenic technologies, such as absorption and adsorption, reportedly remove nitro‑
gen at higher product specifications for feed rates under 15 million standard cubic feet per
day (MMSCFD). Consequently, gas separation utilising membranes has been extensively
studied and applied. Nonetheless, unlike CO2 removal from natural gas, nitrogen removal
with membranes is reportedly minimal due to the inefficient methane and nitrogen sepa‑
ration to meet the under 1 mol% due to their similar kinetic sizes, 0.36 nm (nitrogen) and
0.38 nm (methane) [2,4].

A general nitrogen removal and liquefaction process employs a flash vessel to liquefy
natural gas with methane to meet the LNG nitrogen requirements. Nonetheless, utilis‑
ing the off‑gas from the flash vessel as fuel gas results in hydrocarbon and product losses.
Consequently, the cryogenic distillation conceptmaximises the hydrocarbon recovery from
the off‑gas. The tall distillation column and larger equipment required for the technique
render it unattractive to offshore and onshore plants with limited plant size. Thus, pro‑
cess intensification (PI) is more appealing given its potential to overcome the challenges
of maintaining dominance as the primary energy supplier while simultaneously attaining
environmentally friendly and sustainable evolutions in the industry [5].

The PI utilises novel concepts and principles that improve chemical industry pro‑
cesses for sustainable product manufacturing. This method reportedly dramatically in‑
creasedmass and transfer, reduced volume, equipment size and footprint, and operational
and capital costs, allowed more sustainable material applications, simplified processes,
and offered safer operations [5–16]. In the late 1970s, Professor Colin Ramshaw introduced
PI to Imperial Chemical Industries (ICI). He employed a high gravitational force, Higee,
to improve the mass transfer in the separation stage, intensify the process, and reduce the
equipment size [7,8,16]. The technology utilised a novel rotating device to improve the
gravitational force by over 100 times. The advantages of the Higee technology include in‑
tensifiedmass transfer with a very thin liquid film that attracts polymerisation, absorption,
synthesis, conversion, and distillation [17].

High‑gravity or centrifugal technologies include spinning disk reactor [11,18–20],
static mixer [21–23], agitated slurry reactor [24], rotating zig‑zag bed [25–28], and rotat‑
ing packed bed (RPB). Guo et al. (2019) suggested over five RPB commercial applications
in the industry, including desulphurisation, denitrification, particulate removal, and emis‑
sion control. The approach offered equipment size, performance, and cost advantages over
conventional technologies [29]. Furthermore, Boodhoo and Harle (2013) discovered that
the RPB provided the highest mass and heat transfer compared to other PI technologies
with significant equipment size and footprint reductions that benefit pilots or commercial
applications [30]

Over the last few years, numerous experiments [31–34], simulations andmodelling [35–38],
and computational fluid dynamics (CFD)‑based hydrodynamic studies [39–42] were con‑
ducted to procure a better understanding of the mass transfer within the RPB in high grav‑
ity environments and to improve the technology. Nonetheless, a majority of the reports
were based on the absorption process and were operated under five bars and above zero
temperatures. Limited studies also focused on RPB distillation, which included vacuum
distillation and alcohol and heptane–hexane separations. No investigations have been con‑
ducted on nitrogen removal from natural gas using RPB distillation under cryogenic con‑
ditions and high pressures.

Reports focusing on RPB optimisation via process simulations and modelling, such
as CFD and mathematical modelling, are available. Nonetheless, CFD and mathematical
modelling are complex and require significant input conditions to obtain accurate predic‑
tion models. Consequently, the artificial neural network (ANN) model is preferred due to
its simplicity and ability to process massive amounts of data, even for more complex pro‑
cesses, compared to developing first principalmathematical models, which require numer‑
ous assumptions and might be associated with lumped components in kinetic models [43].
Furthermore, ANN does not require a more complex mathematical understanding to in‑
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terpret data procured for analysis; hence, it is more suitable for process optimisation in
several engineering fields [44–47].

The ANN is an example of machine learning that employs a nonlinear regression
algorithm approach. The model is designed based on the behaviours of the human brain,
thus requiring experience and training for more accurate prediction via interconnected
neurons. The ANN consists of an input component that receives external signals and data,
an output unit that outputs the system processing results, and a hidden segment that is
not observable outside the system, situated between the input and output pieces [48].

The ANN is widely employed in chemical engineering for thermodynamic applica‑
tion studies, process design, control, optimisation, safety, experimental data fitting, and
machine learning [46,47,49,50]. Moreover, research interest in machine learning in PI for
chemical and process engineering has increased exponentially by 26% from 2015 to 2020 [51].
For example, Popoola and Susu (2014) utilised ANN with multiple inputs and outputs to
determine the temperature cut‑off points of kerosene, diesel, and naphtha products [52].
The input in the study was employed to design a crude distillation column control.

Controlling the temperature of distillation columns is especially crucial in the industry.
The process is very dynamic due to incoming process feed condition uncertainties, hence re‑
quiring a more robust control to maintain the pressure and temperature and achieve a good
mass and energy balance to meet product specifications [49,53]. Wang and co‑workers ap‑
plied a neural network in the temperature proportional–integral–derivative (PID) controller
design of a distillation column, considering that neural networks possess better adaptive
and fault tolerance abilities [54]. Moreover, [47,49,55–57] reported a successful ANN im‑
plementation in distillation controls. Nevertheless, only a few applications are reported on
RPB related to ANN model research, while none are available on studies or applications
of ANN for cryogenic nitrogen removal utilising RPB.

Saha (2009) developed a prediction model with ANN radial basis function to predict
the volumetric gas side mass transfer coefficient based on experimental data from previ‑
ous studies [58]. The report discovered an improvement of up to 15%with better accuracy
than the empirical equations employing experimental data [58]. In another study, Lashkar‑
bolooki et al. (2012) investigated pressure reductions in RPB equipment. The pressure
gradient in an RPB is critical to allow counter‑current contacts between the gas and liq‑
uid, particularly within the rotor or packing, to achieve a better mass transfer. The study
employed an ANN model comprising 14 hidden layers and observed an excellent agree‑
ment between the model and experiments, with a 5.27% AARD, 3.0 × 10−5 mean square
error (MSE), and 0.9985 regression (R2) [59]. Some reports focused on investigating con‑
taminant removal efficiency from process gas using RPB technology for CO2 capture [60],
adsorption [61], dust removal [62], and ozonation [63].

The present study aimed to develop ANN prediction models for nitrogen removal
from natural gas based on in‑house experimental data with various process parameters as
inputs to meet the nitrogen removal efficiency output product. This study employed three
artificial neural network training algorithms, with ANN models utilised for a given mul‑
tilayer perceptron (MLP) feedforward neural network: the Lavenberg–Marquardt (LM),
Bayesian regularisation (BR), and scaled conjugate gradient (SCG). The LM and BR train‑
ing algorithms were based on the backpropagation algorithm. The swift convergence of
LM is its primary benefit [64], whereas BR offers less probability of it being overfitted [65].

2. Results and Discussion
2.1. The Influences of High Gravity Factor on Removal Efficiency

A high gravity factor is essential in an RPB, which generates a high centrifugal accel‑
eration to facilitate an effective mass transfer. The high gravity factor is determined based
on the RPB radius and its rotational speed (see Equation (1)). The centrifugal acceleration
resulting from high gravity is a key factor distinguishing RPB from conventional packed
columns. Only eight studies have been conducted on ANN for RPB to date. All of the
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reports utilised a high gravity factor or rotational speed as their ANNmodelling input for
various applications and achieved over 94% R2 and under 1% MSE (see Table 1).

β =
2ω2(r2

1+r1r2 + r2
2
)

3(r1 + r2)g
(1)

where r1 and r2 are the inner and outer radii of the rotor (m), respectively, andω denotes
the angular velocity in the RPB (rad/s).

The high gravity factor in the current study was altered between 10 and 90, while
the parameters were maintained throughout the experiment to investigate the effects of
high gravity on nitrogen removal efficiency. As shown in Figure 1, an improved nitrogen
removal efficiency was observed due to the increased high gravity factor. These findings
could result from better contact between the gas and liquid at higher centrifugal acceler‑
ations, thereby contributing to better contaminant removal [66]. Similar effects were re‑
ported for other contaminant removal applications, such as hydrogen sulphide (H2S) [67],
oxygen [38,68], and volatile organic compounds (VOC) [69,70].

Figure 2 illustrates the effects of the rotational speed and operating pressure on the
nitrogen removal efficiency. Increasing the rotational speed enhanced the nitrogen re‑
moval efficiency, which decreased when the rotational speed reached 800 rpm. The dimin‑
ished performance might be due to the reduced contact time between the gas and liquid.
Conversely, at 200 rpm, the nitrogen removal performance began to decrease with increas‑
ing operating pressure. Nonetheless, the removal efficiency improved when the rotational
speed was increased to 500 rpm and demonstrated a more stable condition, even at oper‑
ating pressure variations. The results of this study are comparable to the findings on the
prediction of vacuum distillation performance in the RPB reported by Li et al. (2017) [35].
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Table 1. The RPB modelling with ANN.

Author Applications
ANNModelling

Input Parameters Output
Parameter Results

Wang et al., 2022
[63]

Degradation of
bisphenol A (BPA)
ozonation

‑ Concentration
‑ pH
‑ Flowrate
‑ Gravity factor

BPA degradation
efficiency

R2 = 0.9827
MSE = 0.0003305

Li, 2021
[70]

Volatile organic
compound removal

‑ Gravity factor
‑ Reynold
‑ Concentration
‑ Henry’s constant

VOC removal
efficiency

R2 = 0.9697
MSE = 0.0364

Wei et al., 2018
[71]

Biosorption process
absorption using
agricultural waste

‑ Gravity factor
‑ Reynold
‑ Contact time
‑ Particle size
‑ Concentration

Biosorption time R2 = 0.996
MSE = 0.0000904

Li et al., 2017
[62]

Dust removal via
absorption process

‑ Reynold (gas, liquid,
rotational)

‑ Particle size
Separation efficiency R2 = 0.9952

MSE = 0.00013

Li et al., 2016
[72]

Wastewater
treatment using
adsorption process

‑ Gravity factor
‑ Reynold number
‑ Contact time
‑ Concentration

Adsorption efficiency R2 = 0.9965
MSE = 0.00016

Zhao et al., 2014
[60]

CO2 capture in RPB
using absorption
process

‑ Reynold
‑ Schmidt
‑ Grashof
‑ Diffusion and mass

transfer

CO2 capture
efficiency

R2 = 0.9457
MSE = 0.0012

Lashkarbolooki
et al., 2012
[59]

Prediction of
pressure drop

‑ Reynold (gas, liquid,
and rotational) Pressure drops R2 = 0.9985

MSE = 0.00003

Saha,2009
[58]

Mass transfer
coefficient prediction

‑ Liquid velocity
‑ Gas velocity
‑ rotational

MTC Not reported
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Singh et al. (1992) proposed the area transfer unit–number of transfer unit (ATU‑NTU)
concept to explain the changes in fluid loading along the annular packing radius of an
RPB [73]. The NTU is one of the most critical parameters to consider when assessing sep‑
aration targets for distillation. Generally, determining the number of transfer units (NTU)
involves evaluating the integrals in the equation describing the rectification and stripping
sections, as shown in Equations (5)–(7). An increased NTU is anticipated if the perfor‑
mance target is set too low or if a thorough contaminant removal is attempted, which could
result in an extremely tall column for conventional distillation. On the other hand, high
centrifugal acceleration during separation leads to shorter residence times and process in‑
tensification, thereby requiring smaller equipment.

Figure 3 depicts ATU variations at different rotating speeds. According to the results,
lower ATU values were documented at high operating speeds; hence, a shorter column
was required to meet the product specifications. These observations are consistent with
the findings reported by Qammar et al. (2018) on ethanol–water separation via total reflux
distillation [34].
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π
(
r2
o − r2

i

)
= (ATUG)(NTUG) (2)

ATUG =
G

ρGhKGa
(3)

NTUG =
∫ y1

y2

dy
y∗ − y

(4)

2.2. Comparisons between the ANNModels
The neural network architecture correlates with the inputs, hidden layer numbers,

and neuron transfer functions [74]. The hidden layers in the current study were varied
between 5 and 15 to determine the LM, SCG, and BR prediction models with the highest
accuracy. At layer nine, the LMmodel recorded higher R2 and lowerMSE values of 99.56%
and 0.0128, respectively (see Figure 4). Nevertheless, increasing the hidden layer to more
than nine led to more prominent MSE figures and a slightly reduced R2.

The SCG model employed in the present study produced MSE values under 0.2%.
Nonetheless, the 5–10 hidden layers in the model documented a good R2 trend and a
slightly diminished R2 during validation and assessment with an increasing number of
hidden layers (see Figure 5). Figure 6 demonstrates the relatively consistent R2 and MSE
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for training and validation of the BRmodel but documented some reduction during evalua‑
tions. At nine layers, the R2 andMSE of the BRmodel were 98.89 and 0.0493%, respectively,
which were slightly better than those of the SCG by 0.0072%.

The modelling results in this study revealed that increasing the number of layers re‑
sulted in higher MSE and lower R2 values, especially for the LM model. These findings
could be due to overfitting. The R2 results were better when fewer hidden layers (6–10) were
utilised. The LMmodel architecturewith nine hidden layerswas the optimal structure, which
also produced a superior prediction than the SCG and BR models. Nonetheless, the accuracy
of the model might be compromised if the number of hidden layers is too low, thus reducing
the probability of meeting the target figures. Consequently, training, evaluating, and vali‑
dating the models to ascertain the optimal number of hidden layers are necessary. Figure 7
illustrates the outcomes of the LM model based on the predicted model and experimental
data. Based on the results, R2 yielded 96.66% of the 15% test data; therefore, it can be utilised
to predict nitrogen removal from natural gas in the future.
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3. Methodology
3.1. Experimental Setup

The primary components of the RPB utilised in the experimental setup for the cryo‑
genic distillation‑RPB (CD‑RPB) process to remove nitrogen fromnatural gas in the current
study (see Figure 8). Natural gas with a nitrogen concentration of up to 20mol%was intro‑
duced to the CD‑RPB via a liquid inlet post‑chilled to ~−120 ◦C. A liquid distributor was
designed for the inlet liquid to procure the spray effect, forming tiny droplets and a thin
liquid film on the surface of the packing inside the CD‑RPB.

The inlet and reflux liquids from the reflux vessel and vapour flow from the reboiler
utilised in this study were contacted in a counter‑current manner, thereby providing im‑
proved mass transfer and nitrogen removal efficiency. The rich nitrogen was discharged
as a gas phase, whereas the main product, LNG, was obtained as the bottom product at
−161 ◦C. In the present study, the CD‑RPB motor was installed at the bottom of the pres‑
sure vessel. The rotational speed was varied from 100 to 1000 rpm during the experiments.

The RPB was equipped with stationary housing, liquid distributors, inner and outer
diameters, packing or rotor, and a motor. The low‑temperature and high‑pressure evalu‑
ations (12–15 bars) employed in this study resulted in a quite complex cryogenic experi‑
mental setup. Consequently, other auxiliary equipmentwas crucial to support theCD‑RPB
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setup and assessment. Equation (5) was employed to determine the nitrogen removal effi‑
ciency (ռ).

ռ =
Ci −Co

Ci
× 100% (5)

where ռ is the nitrogen removal efficiency, Ci denotes the inlet concentration, and Co rep‑
resents the outlet concentration.

The setup used in this study was intended to process 840 kg of feed gas per day.
A methane and nitrogen gas mixture was employed as the feed gas. The gas mixture was
fed into the mol‑sieve vessel to remove up to 1.0 part per million (ppm) moisture. A Shaw
metre inline analyserwas installed tomonitor the quality of the gas, ensuring that itmet the
water specifications. The data were critical for low‑temperature processes to avoid down‑
stream processes of hydrate formation before sending the gas to the chiller and CD‑RPB.
Subsequently, distillation separated the nitrogen frommethane based on its relative volatil‑
ity. The rich nitrogen was then removed as the top product, while the bottom yield was
LNG. The products were analysed using gas chromatography (GC) with a direct online
sampling line connection. Furthermore, the evaluation setup included base layer process
control, such as chiller temperature control and CD‑RPB pressure control, to maintain the
stability of the process.
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3.2. Model Development with Neural Networks
The ANNmodel in this study possessed a minimum of three layers: input, hidden, and

output. Figure 9 demonstrates the complex interconnection between the layers to produce the
outputs [46,66]. The most complex architecture in the ANNwas the ‘black box’, which is the
hidden layer connecting the input and output variables. The structure is known as the ‘black
box’ due to the still unknown technical explanation within the hidden layer.

The number of hidden layers depends on the architecture of theANNmodel to achieve
an acceptable r‑square (R2) and lower means square error (MSE), as described in
Equations (6) and (7). The input variables employed in the current study were the pro‑
cess parameters that were adjusted and controlled during the experiments to obtain the
targeted values. The parameters and specifications of the model utilised in this study are
summarised in Table 2.
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Table 2. The parameters and specifications of the models.

Parameters Model Specifications

Model
• Levenberg–Marquardt (LM)
• Bayesian Regularization (BR)
• Scaled Conjugate Gradient (SCG)

Samples’ distribution [63]
• Training: 75%
• Test: 15%
• Validation: 15%

Number of inputs 4

Number of outputs 1

Hidden layer transfer function Sigmoid

Output layer transfer function Linear

Number of data sets 45

The obtained MSE and regression values, R, reflected the quality of the results in
the present study. The average squared variations between the outputs generated by the
MATLAB function and the targets (true, measured data corresponding to the inputs pro‑
vided to the MATLAB functions) are denoted by the MSE. Consequently, since smaller fig‑
ures were preferred, the algorithm with minimal MSE was considered the most suitable.
The MSE was calculated using Equation (6). R correlated the obtained ANN outputs and
the targets. An R value of 1 corresponded to a close association, while a value of 0 rep‑
resented a random link. The R value was obtained by utilising Equation (7). The t value
represented the arithmetic mean of the target values.

MSE =
1
N∑N

i=1 (ei)
2 =

1
N∑N

i=1(ti − ai)2 (6)

R2 = 1 − ∑N
i=1(ti − ai)2

∑N
i=1 (

−
ti − ti)

2 (7)

where N represents the sample numbers (input–output pairs) utilised for training the net‑
work, and t denotes the target value.

Figure 10 depicts the conceptual structure and the ANNmodelling approach utilised
in this study. The data collection process was initiated with experimental procedures and
continued with data screening and input categorisation. The input data were then fed into
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the ANN models for training, validations, and testing. Data from the experiment were
employed for all consistent ANN models. Inconsistencies were observed when variables,
such as R2 and MSE, were recorded on the hidden layers.
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All the ANN models in the current study followed an identical set of instructions.
After data collection and examination, severalmodelswere considered to determinewhich
provided the best and most accurate predictions. A MATLAB (R2022a) equipped with a
version 8.3 toolbox was employed to perform the evaluations.

4. Conclusions
This study established three types of ANNmodels for nitrogen removal from natural

gas utilising an RPB based on experimental data. The high gravity factor is a critical con‑
dition in RPB applications as it promotes vapour–liquid contact and enhances fluid mass
transfers during contaminant removal. Consequently, the high gravity factor in the current
study was varied from 30 to 90 to maintain a nitrogen removal efficiency above 97%.

Other process inputs, such as pressure, temperature, and concentration, are also es‑
sential for producing a good prediction model to remove nitrogen from natural gas under
cryogenic operating conditions. The LMmodel performed ideally with nine hidden layers,
with 99.56% R2 and 0.0128 MSE compared to the SCG and BY models. Nevertheless, all
models produced over 90% R2 at different hidden layers.

The increased number of layers almost consistently reduced the R2 and enhanced the
MSE across all three ANN models. These findings might be due to data overfitting to
meet the output. Nonetheless, the correlation inside the hidden layers remained unknown,
hence considered a ‘black box.’ The results of this study suggested that the LMmodel was
the best model for predicting nitrogen removal efficiency when employing an RPB under
cryogenic conditions. Furthermore, reliance on the experimental setup and requirements
was minimised. Consequently, the predicted model was reliable and applicable to process
optimisations, techno‑economic studies, and technology upscaling for commercialisation.
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