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Abstract: The aging intensity (AI), defined as the ratio of the instantaneous hazard rate and a
baseline hazard rate, is a useful tool for the describing reliability properties of a random variable
corresponding to a lifetime. In this work, the concept of AI is introduced in step-stress accelerated
life testing (SSALT) experiments, providing new insights to the model and enabling the further
clarification of the differences between the two commonly employed cumulative exposure (CE) and
tampered failure rate (TFR) models. New AI-based estimators for the parameters of a SSALT model
are proposed and compared to the MLEs in terms of examples and a simulation study.

Keywords: cumulative exposure; cumulative Kulback–Leibler divergence; exponential distribution;
kernel density estimation; Kulback–Leibler divergence; maximum likelihood estimation; Weibull
distribution; tampered failure rate

1. Introduction

Conducting tests under normal operating conditions (NOCs) for obtaining information
on the lifetimes of highly reliable products is unrealistic, since they require a very long
duration, which is usually not possible or economical. For this, accelerated life testing
(ALT) experiments are designed and applied to obtain information about the data in a
reasonable time frame. With ALT, the test units are exposed to a specific failure-relevant
stress (e.g., temperature, pressure, or use rate) and operate in an environment with stronger
testing conditions than NOCs. The increased stress reduces the time to failure and produces
more observations during the conducted life test. The data collected with an ALT test
and the corresponding inferential results have to be eventually extrapolated to NOCs to
estimate the lifetime distribution of interest. For some references and the introduction of
ALT, see Nelson [1], Meeker and Escobar [2], and Bagdonavicius and Nikulin [3]. The most
commonly used, in-practice type of ALT experiment is constant stress ALT (CSALT), under
which independent samples of testing units are exposed to different levels of the stress
factor and held constant during the whole duration of the experiment (see, for instance,
Nelson [4] and Yang [5]). An alternative type of ALT experiment is step-stress ALT (SSALT).
A SSALT experiment uses a single sample, and all test units are exposed to exactly the same
experimental conditions, which vary (usually in an increasing manner) during the test
procedure. In particular, all items are exposed to the same stress level, which is increased
once or several times, after a prefixed time or upon the occurrence of a predetermined
number of failures. SSALT experiments lead to quicker results than CSALT (see Miller and
Nelson [6] and Han and Ng [7]). SSALT tests that involve only a single stress-change point
are called simple SSALT.

Statistical inference for SSALT models has been developed for various modeling
setups and underlying distributional assumptions, mainly through maximum likelihood
or Bayesian procedures. The approaches discussed here are frequentist approaches. For
Bayesian treatments of SSALT models, we refer to [8–13] and the references cited therein.
It is worth noting that the first Bayesian analysis of SSALT models was by DeGroot and
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Goel [14]. SSALT models are analyzed in terms of the cumulative density function (CDF),
the probability density function (PDF), the survival function (SF), and the hazard rate
(HR). In reliability context, the concept of aging intensity (AI) has been introduced by
Jiang et al. [15] as the ratio of the instantaneous hazard rate and a baseline hazard rate. It
is a useful tool to describe reliability properties of a random variable, and it is also used
in order to make comparisons among different distributions. However it has never been
considered in the SSALT context.

In this work, we introduced an AI function for SSALT and explored its properties and
utility. Comparing the cumulative exposure (CE) and tampered failure rate (TFR) models
for SSALT through AI, we gained a deeper understanding of their differences in terms of
their aging effects on test units. In Section 2, we provide the preliminaries of the SSALT
models and set notation. The AI function for SSALT models is introduced and explored for
common families of lifetime distributions in Section 3. An AI-based estimation procedure
for SSALT models is discussed in Section 4, along with examples, while the AI-based
estimation is compared to the maximum likelihood estimation using Kullback–Leibler
and cumulative Kullback–Leibler divergence in Section 5. The final section, Section 6,
summarizes our findings.

2. Preliminaries of SSALT

Consider an SSALT experiment with m stress levels, x1, . . . , xm, and n units being
tested. The stress levels are changed from xj to xj+1, j = 1, . . . , m − 1, at pre-specified time
points τ1 < · · · < τm−1. In case of simple SSALT (m = 2), the single τ1 is for simplicity and
is denoted by τ. Different distributions are assumed in the steps, corresponding to units of
behavior under different stress levels, which are, nonetheless, linked in a manner so that the
compound CDF is absolutely continuous over all stress levels. Thus, the units’ failure times
T1, . . . , Tn are described by the order statistics (OSs) T1:n ≤ · · · ≤ Tn:n from an absolutely
continuous CDF G. The model usually employed for ensuring the continuity of G is the
cumulative exposure (CE) model (see, for instance, Nelson [1,16], Meeker and Escobar [2],
Gouno and Balakrishnan [17], Bagdonavicius and Nikulin [3], and Balakrishnan [18]).
Furthermore, ALT experiments are frequently censored, with Type-I and Type-II censoring
being the most commonly considered censoring schemes. For simplicity of presentation,
we restricted the presentation to simple SSALT models and complete observed sample, but
our results are extendable to models with m > 2 and under censoring.

The CE simple SSALT model is defined by the following CDF:

G(t) =

{
F1(t), if 0 < t ≤ τ

F2(t + c − τ), if t > τ
, (1)

where F1 and F2 are the lifetime CDFs under stress levels x1 and x2, respectively, and the
constant c is chosen so that F2(c) = F1(τ), i.e., it ensures the continuity of G. Then, the
corresponding PDF and HR function are given by

g(t) =

{
f1(t), if 0 < t ≤ τ

f2(t + c − τ), if t > τ
,

and

h(t) =


f1(t)

1−F1(t)
, if 0 < t ≤ τ

f2(t+c−τ)
1−F2(t+c−τ)

, if t > τ
,

respectively.
A common distributional assumption for the lifetimes under each stress level is the

family of exponential distributions, which leads to explicit maximum likelihood estimators
(MLEs) for the model parameters. Consider, thus, the CE SSALT model for an exponential
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distribution, i.e., let Fi ∼ Exp(θi), i = 1, 2. Then, c = θ2
θ1

τ, and the CDF of the model is
as follows:

G(t) =


1 − exp

(
− t

θ1

)
, if 0 < t ≤ τ

1 − exp

(
−

t−
(

1− θ2
θ1

)
τ

θ2

)
, if t > τ

,

=

1 − exp
(
− t

θ1

)
, if 0 < t ≤ τ

1 − exp
(
− τ

θ1
− t−τ

θ2

)
, if t > τ

. (2)

For this model, the maximum likelihood estimators (MLE) for the parameters θ1 and θ2
have been derived and studied, as reviewed and discussed by Balakrishnan [18] and Kateri
and Kamps [19], where the unbiasedness of the estimator for θ2 was also proved.

Suppose we have a random sample of lifetimes under (2) of size n, with the corre-
sponding OSs T1:n ≤ · · · ≤ Tn:n, such that n1 failures are realized in the first stress level,
i.e., Tn1 :n ≤ τ, and the remaining n2 (= n − n1) in the second one. Then, the MLEs for θ1
and θ2 are given by

θ
(MLE)
1 =

∑n1
i=1 Ti:n + (n − n1)τ

n1
(3)

and

θ
(MLE)
2 =

∑n
i=n1+1 Ti:n − n2τ

n2
, (4)

respectively.
For a simple SSALT model, Bhattacharyya and Soejoeti [20] were the first to consider

a model assumption, alternative to CE, in which the increase in stress level from x1 to x2
has a multiplicative effect on the subsequent HR, i.e.,

h2(t) = αh1(t), t > 0, α > 0 . (5)

This model is known as the tampered failure rate model (TFR), and its CDF is expressed
as follows:

G(t) =

{
F1(t), if 0 < t ≤ τ

1 − F1−α
1 (τ) · Fα

1(t), if t > τ
, (6)

while the corresponding PDF is given by

g(t) =

 f1(t), if 0 < t ≤ τ

α
[

F1(t)
F1(τ)

]α−1
f1(t), if t > τ

. (7)

From the expressions in (6) and (7), it is easy to verify that α represents the proportionality
constant between the hazard on the first and the second level, i.e., the derivation of (5).

The TFR SSALT model is appealing in a reliability context, being linked through (5)
to Cox’s proportional hazard model. Compared to the CE model, it is more convenient to
work with when the underlying distributions are something other than exponential (e.g.,
Weibull), while the TFR and CE models coincide in the case of exponential distributed
lifetimes. For a detailed comparison of these two models, we refer to Kateri and Kamps [21].

An equivalent expression for the CDF of the TFR simple SSALT model, which is
helpful for deriving statistical inference, is

G(t) =

{
F1(t), if 0 < t ≤ τ

1 − 1−F1(τ)
1−F2(τ)

(1 − F2(t)), if t > τ
.
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Furthermore, Kateri and Kamps [21] extended the TFR SSALT models to a generalized
failure rate-based family of models by considering a flexible-scale family of distributions
for the lifetimes under each stress level j ∈ {1, 2}, and it is defined by

Fj(t) = 1 − exp

(
−

gj(t)
θj

)
, t ∈ (0,+∞) (8)

where gj is strictly increasing and differentiable on (g−1
j (0),+∞), θj > 0 and limt→+∞ gj(t) =

+∞. Standard families of distributions used for modeling lifetimes (e.g., exponential,
Weibull, Lomax, Pareto) are members of this family and can be treated in a unified manner
(see Table 1 in [21]). This model generalizes TFR in the sense that it can consider different
distributional families for the stress levels (g1 ̸= g2), while α in (5) can be non-constant, i.e,
time dependent (αt).

3. AI Function for SSALT

For a non-negative and absolutely continuous random variable X with PDF f (·), CDF
F(·), survival function (SF) F(·), and hazard rate function h(·), the aging intensity (AI)
function is defined as

AI(t) =
h(t)

1
t
∫ t

0 h(x)dx
=

−th(t)
log F(t)

=
−t f (t)

F(t) log F(t)
, t ∈ (0,+∞) , (9)

where log denotes the natural logarithm. Thus, AI(t) is the ratio of the instantaneous
hazard rate h(t) to the average hazard rate in the interval (0, t) and expresses the units’
average aging behavior. It analyzes the aging property quantitatively, in the sense that
the larger the AI, the stronger the tendency of aging. We remark that the survival and
the hazard rate functions uniquely determine the AI function, but the converse does not
hold. In fact, the AI function of a non-negative random variable determines a family of
survival functions through a relation presented in [22]. Some properties of AI functions
are presented in Nanda et al. [23], who defined, in particular, a new stochastic order
(aging intensity order) based on the AI functions. For further properties, applications, and
extensions of the aging intensity functions, see [24–29].

So far, the aging intensity has been considered for random variables with an absolutely
continuous PDF. In order to extend the notion of the AI function to SSALT models, we
need to take into account that the PDF (and consequently the HR function) changes at
the stress change point τ. Hence, on the first level, the aging intensity function has the
same expression as in (9) but in terms of h1(·), while on the second level, in order to have
the average of the hazard rate in the interval (0, t), we need to consider the change of the
hazard at τ. Thus, the aging intensity function for simple SSALT is

AI(t) =

{
AI1(t), if 0 < t ≤ τ

AI2(t), if t > τ
,

where

AI1(t) =
h1(t)

1
t
∫ t

0 h1(x)dx
=

−th1(t)
log F1(t)

=
−t f1(t)

F1(t) log F1(t)
, (10)

and

AI2(t) =
h2(t)

1
t

(∫ τ
0 h1(x)dx +

∫ t
τ h2(x)dx

) =
−th2(t)

log
(

F1(τ)

F2(τ)

)
+ log F2(t)

. (11)

Consider the CE SSALT model for an exponential distribution with a CDF given in (2).
Hence, the aging intensity function is expressed on the two levels of stress as
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AIExp(t) =


−t 1

θ1
− t

θ1

, if 0 < t ≤ τ

−t 1
θ2

−
(

τ
θ1
+ t−τ

θ2

) , if t > τ
=

1, if 0 < t ≤ τ
1

1−
(

1− θ2
θ1

)
τ
t

, if t > τ . (12)

Analogously, consider next the CE SSALT model for Weibull-distributed lifetimes,
i.e., let Fi ∼ W(θi, δ), i = 1, 2, with a common shape parameter δ under both levels. Then,
Fj(t) = 1 − exp

(
− tδ

θj

)
, j = 1, 2, leading to c = θ2

θ1
τ, and the CDF (1) takes the form

G(t) =


1 − exp

(
− tδ

θ1

)
, if 0 < t ≤ τ

1 − exp
(
− 1

θ2

(
t −
(

1 − θ2
θ1

)
τ
)δ
)

, if t > τ
,

from which the PDF and the hazard rate function are derived as follows:

g(t) =


δtδ−1

θ1
exp

(
− tδ

θ1

)
, if 0 < t ≤ τ

δ
θ2

(
t −
(

1 − θ2
θ1

)
τ
)δ−1

exp
(
− 1

θ2

(
t −
(

1 − θ2
θ1

)
τ
)δ
)

, if t > τ
,

and

h(t) =


δtδ−1

θ1
, if 0 < t ≤ τ

δ
θ2

(
t −
(

1 − θ2
θ1

)
τ
)δ−1

, if t > τ
,

respectively. Finally, through (10) and (11), the AI function on the two stress levels can be
expressed as

AICEδ(t) =

δ, if 0 < t ≤ τ
tδ(

t−
(

1− θ2
θ1

)
τ
) , if t > τ . (13)

For the TFR simple SSALT with the scale family of distributions as given in (8), the AI
function terms (10) and (11) are simplified to (10), which simplifies to

AITFR
1 (t) = − th1(t)

log F1(t)
=

−t · g′1(t)
θ1

− g1(t)
θ1

= t ·
g′1(t)
g1(t)

and

AITFR
2 (t) =

−th2(t)

log
(

F1(τ)

F2(τ)

)
+ log F2(t)

=
−t g′2(t)

θ2

− g1(τ)
θ1

− g2(t)−g2(τ)
θ2

= t · g′2(t)
θ2
θ1

g1(τ) + g2(t)− g2(τ)
.

In particular, at the stress change point τ, we have

AITFR
2 (τ) =

θ1

θ2
τ

g′2(τ)
g1(τ)

.

Hence, if we consider the case in which g1 = g2, the condition AITFR
2 (τ) > AITFR

1 (τ) is
equivalent to

θ1

θ2
τ

g′1(τ)
g1(τ)

> τ
g′1(τ)
g1(τ)

,
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which holds if, and only if, θ1 > θ2. This is a reasonable assumption representing a higher
stress in the second level with respect to the first one. Furthermore, when g1 = g2 and
θ1 = θ2 (i.e., constant stress), AITFR

1 = AITFR
2 , as expected.

The AITFR
1 and AITFR

2 expressions for some distributions of interest, members of the
scale family of distributions (8), are as follows:

(i) Exp(θ1), Exp(θ2): g1(t) = g2(t) = t

AIExp
1 (t) = 1 and AIExp

2 (t) =
t

t −
(

1 − θ2
θ1

)
τ

(ii) W(θ1, δ), W(θ2, δ): g1(t) = g2(t) = tδ

AITFRδ
1 (t) = δ and AITFRδ

2 (t) =
δtδ

tδ −
(

1 − θ2
θ1

)
τδ

(14)

(iii) Gompertz(θ1, d), Gompertz(θ2, d): g1(t) = g2(t) = edt − 1

AIGomp
1 (t) = t · dedt

edt − 1
and AIGomp

2 (t) =
dt

1 + θ2
θ1

(
ed(τ−t) − e−dt

)
− ed(τ−t)

Remark 1. For exponential lifetimes, AIExp
1 and AIExp

2 (obtained also from (14) for δ = 1),
obviously coincide with those under the CE model, i.e., (12), as expected, since the TFR and CE are
equivalent for exponential distributed lifetimes. For the Weibull distribution, AITFRδ

2 (t) in (14) can
be equivalently written as

AITFRδ
2 (t) =

δ

1 −
(

1 − θ2
θ1

)(
τ
t
)δ

.

In Figure 1, we plot the AI function in the second stress level for the Weibull and the
exponential distributions with the TFR and CE SSALT model, for different choices of the
parameter δ of the Weibull distribution and of the ratio θ2/θ1. Recall that in the case of
exponential distributed lifetimes, the TFR and CE models coincide. Moreover, we chose
values of θ2/θ1 less than one in order to represent the higher stress in the second level.

For Weibull lifetimes, AITFRδ
2 in (14) and AICEδ

2 in (13) have the same functional form,
but the TFR model is in terms of tδ, τδ, while the CE is in terms of t, τ, respectively. This has
as a consequence that for δ > 1 (aging effect of exposure to stress), AITFRδ

2 < AICEδ
2 , while

for δ < 1 (recovering effect), AITFRδ
2 > AICEδ

2 (see also Figure 1). Furthermore, at the time
point of stress level change τ, we have AITFRδ

2 (τ) = AICEδ
2 (τ) = δ θ1

θ2
. Thus, though the

instant stress change effect on the AI is the same for both models, the AI development in
time differs. Focusing on the aging case, we realize another qualitative difference between
the CE and TFR models. The AI curve under a Weibull TFR model is steeper than that of the
corresponding CE model, reaching, after some time, the AI value δ of Weibull distributions,
which is not the case for the AI under the CE model. For the CE model, AI stabilizes as
well but at a higher level. This difference of the two models can motivate the decision for
one or the other when modeling SSALT experimental data, depending on the effect that the
stress factor has on the aging at a particular application setup.

The AI of a SSALT model can be estimated parametrically. For example, for Weibull
lifetimes, we have AI(t) = AI(t|θ1, θ2, δ) and ÂI(t) = AI(t|θ̂1, θ̂2, δ̂), where θ̂1, θ̂2, and δ̂
are the maximum likelihood estimators (MLEs) of the parameters.
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Figure 1. Aging intensity function on the second stress level for the Weibull and exponential
distributions for the TFR and CE SSALT models, for δ = 2 (upper), δ = 0.5 (lower), θ2/θ1 = 0.25 (left),
and θ2/θ1 = 0.5 (right). The dashed lines represent the AI of a CSALT model at level x1 (truncated
at τ, it is also the AI on the first level of a SSALT model, i.e., the constant 1 for the exponential
distribution and δ for the Weibull distribution.

Remark 2. We introduced the AI function and explored it for characteristic families of lifetime
distributions under CE and TFR assumptions for simple SSALT models. The discussion can be
extended to SSALT models for m > 2 stress levels. In this case, AI is defined by

AI(t) =


h1(t)

1
t
∫ t

0 h1(x)dx
, if 0 < t ≤ τ1

hi(t)
1
t

(
∑i−1

j=1
∫ τj

τj−1
hj(x)dx+

∫ t
τi−1

hi(x)dx
) , if τi−1 < t ≤ τi, 2 ≤ i ≤ m

=


−t f1(t)

F1(t) log F1(t)
, if 0 < t ≤ τ1

−thi(t)

∑i−1
j=1 log

(
Fj(τj)

Fj+1(τj)

)
+log Fi(t)

, if τi−1 < t ≤ τi, 2 ≤ i ≤ m

where τ1 < · · · < τm−1 are the stress change points, and τ0 = 0 and τm = +∞ by convention. For
example, in the case of exponential lifetimes, the CDF of a SSALT model with m stress levels takes
the form

G(t) =

1 − exp
(
− t

θ1

)
, if 0 < t ≤ τ1

1 − exp
(
− 1

θi

(
t + θi ∑i−1

j=1
τj−τj−1

θj
− τi−1

))
, if τi−1 < t ≤ τi, 2 ≤ i ≤ m

,

where θi is the exponential parameter under level i, for i ∈ {1, . . . , m}. The corresponding AI is
given by

AIExp(t) =


1, if 0 < t ≤ τ1

t

t+θi ∑i−1
j=1

τj−τj−1
θj

−τi−1

, if τi−1 < t ≤ τi, 2 ≤ i ≤ m . (15)

Notice that if m = 2, then (15) reduces to (12).
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4. AI-Based Estimation

In this section, we propose a method based on the AI function to estimate the parame-
ters θ1 and θ2 in a CE SSALT model for an exponential distribution and compare the results
with the those of MLEs.

Let T1:n, . . . , Tn:n be the OSs of a sample from a simple SSALT experiment, such that
n1 failures are realized at the first stress level, and the remaining n2 (= n − n1), at the
second one (i.e., Tn1 :n ≤ τ < Tn1+1:n). The estimation of the corresponding AI function
builds on a kernel-based estimation of the model’s CDF G and PDF g. We proceed by
dividing the support in the intervals (0, τ] and (τ,+∞). On the first stress level, i.e., for
t ∈ (0, τ], the CDF is estimated with a kernel approach and the assumption of positive
support on the data T1:n, . . . , Tn1 :n. The obtained CDF is then scaled by the factor n1/n,
the proportion of failures in the first stress level, which approximates G(τ). The CDF in
the second stress level is estimated using the same approach applied on the shifted data
Tn1+1:n − τ, . . . , Tn:n − τ, which also have a positive support. The derived CDF is scaled
by the factor n2/n, representing the proportion of failures on the second stress level, and
the term n1/n is also added to the estimation of the CDF in order to ensure that it is a
CDF, i.e, it fulfills its continuity at τ and is monotone increasing. Along the same lines, the
PDF is estimated by applying a kernel density estimation procedure separately to the data
observed under the first stress level and the shifted data of the second, synthesizing the
derived PDFs in a mixture weighted by the factors n1/n and n2/n, respectively.

Denoting the resulting estimators for the PDF and the CDF by g̃ and G̃, respectively,
the estimator for the AI function is

ÃI(t) =
−tg̃(t)

(1 − G̃(t)) log G̃(t)
. (16)

We remark that we do not need a piecewise function to estimate AI since we work directly
with G and g and not with F1, F2, f1, and f2.

Example 1. We applied the procedure described above to two randomly generated sample from
model (2), with stress change point τ = 18.2 and parameters θ1 = 33 and θ2 = 7, both of sample
size n = 80. We present the results in Figure 2 where we compare the kernel-based estimated CDF
and PDF and the AI function with the true ones. We consider two generated samples to highlight
that the proposed method provides a good estimation of the true functions, but, especially for the PDF
and the AI function (see Sample 2), it may have a considerable local error right after the stress change
point. Based on this observation, in our procedure described below, we excluded the estimate of the
AI function at Tn1+1:n, as it may cause misleading results (confirmed by our simulation studies).

Remark 3. Based on our simulation studies, and also supported by Figure 2, the kernel density
estimation of the PDF is not fully satisfactory, confirming the well-known problem of kernel density
estimation with bounded supports (especially on the lower bound of the second stress level). A
method to deal with the problem of bounded support S is the reflection technique for kernel density
estimation (see Silverman [30], chapter 2.10). The method consists of augmenting the data by
adding the reflections of all points in the boundary, deriving the PDF estimation on an unbounded
support and based on 2n data points, and then obtaining the estimated PDF for the original data
on S as twice the above-derived PDF. We adapted this method to a SSALT model by dividing the
sample data from the first and second level. For the first stress level and its lower bound of 0,
the reflections of T1, . . . , Tn1 are −T1, . . . ,−Tn1 , the kernel density estimator f ∗ is constructed
using 2n points, and the estimated PDF for the original data is given by f̃1(t) = 2 f ∗1 (t)I(t > 0),
where I(·) is the indicator function. For the second level, we reflect the data with respect to
τ, consider, additionally, the points 2τ − Ti:n, i ∈ {n1 + 1, . . . , n}, derive the kernel density
estimated f ∗2 , and set f̃2(t) = 2 f ∗2 (t)I(t > τ). Then, the PDF of the SSALT model is estimated
by f̃ (t) = n1

n f̃1(t) +
n2
n f̃2(t). The results obtained in this way seem to be much better with regard

to the PDF, but they are not satisfying when considering the corresponding estimated AI function
(which depends also on the estimated CDF). In Figure 3, we present the plots for the estimated PDF
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and AI function for the same two samples of Example 1. Hence, we decided to proceed with the PDF
estimated using the classical kernel approach and excluding the AI estimate at point Tn1+1:n.
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Figure 2. True and estimated CDF, PDF, and AI function in red and blue, respectively, for two
simulated samples of the considered SSALT exponential model.

We now introduce new estimators for the parameters θ1 and θ2, alternative to the MLEs,
that are based on the kernel-based estimated AI function. They are derived by minimizing
the distance between the estimated AI (16), evaluated at the order statistics of the sample,
T1:n, . . . , Tn:n, by excluding Tn1+1:n, and the theoretical values of the aging intensity at these
points given in (12) by assuming a SSALT model for exponential distributed lifetimes with
parameters θ1 and θ2. More precisely, the function to be minimized is

H∗(θ1, θ2) =
n1

∑
i=1

(
ÃI(Ti:n)− 1

)2
+

n

∑
i=n1+2

ÃI(Ti:n)−
1

1 −
(

1 − θ2
θ1

)
τ

Ti:n

2

. (17)

Hence, we need to solve the system

∂H∗(θ1, θ2)

∂θ1
= 0 and

∂H∗(θ1, θ2)

∂θ2
= 0 , (18)
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where

∂H∗(θ1, θ2)

∂θ1
= 2

n

∑
i=n1+2

ÃI(Ti:n)−
1

1 −
(

1 − θ2
θ1

)
τ

Ti:n

 ·
−θ2τ
θ2

1 Ti:n(
1 −

(
1 − θ2

θ1

)
τ

Ti:n

)2 ,

∂H∗(θ1, θ2)

∂θ2
= 2

n

∑
i=n1+2

ÃI(Ti:n)−
1

1 −
(

1 − θ2
θ1

)
τ

Ti:n

 ·
τ

θ1Ti:n(
1 −

(
1 − θ2

θ1

)
τ

Ti:n

)2 .

Note that the first sum in (17) is constant with respect to θ1 and θ2, so it may seem that
T1:n, . . . , Tn1 :n (and also Tn1+1:n, excluded from the second sum) are not involved in the
derivation of the estimators, but they actually influence the values of the aging intensity
estimates in Tn1+1:n, . . . , Tn:n through the estimated PDF and CDF. Moreover, the system
in (18) is not analytically solvable, and numerical methods have to be applied. Hence,
we minimize (17) numerically by choosing as initial values for θ1 and θ2 the maximum
likelihood estimates given in (3) and (4). The estimators obtained in this way are denoted
by θ̌1 and θ̌2.
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Figure 3. True and estimated PDF and AI function in red and blue, respectively, based on the kernel
method with data reflection, for the two simulated samples of Example 1.

Example 2. Consider the setup described in Example 1 with n = 80, τ = 18.2, θ1 = 33, and
θ2 = 7. We performed a simulation study and derive the estimates for θ1 and θ2 based on the AI
function and the MLEs for 10.000 simulated samples. We observed that the θ̌1’s estimates of θ1
based on the AI are closer than the corresponding MLEs’ θ̂1 to the real value of θ1 in 60.2% of the
cases, while this holds for θ2 in 43.0% of the simulated samples. In order to perform a comparison
based on both θ1 and θ2, we checked that the following inequality based on relative errors is satisfied
in 59.0% of the samples:

|θ̌1 − θ1|
θ1

+
|θ̌2 − θ2|

θ2
<

|θ̂1 − θ1|
θ1

+
|θ̂2 − θ2|

θ2
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The mean observed bias for the estimates of θ1 based on the AI function and the maximum likelihood
are given by 7.3992 and 8.1316, respectively, while for θ2, we have 0.0698 (AI) and 0.0151 (MLE).
Recall that the θ̂2 is unbiased. In Figure 4, we plot the histograms with the estimates for θ1 and θ2,
both based on AI and MLE, showing also the PDF of the corresponding fitted normal distributions.
The estimated means and standard deviations of the fitted normal distributions are given in Table 1.

Figure 4. Histograms with the estimates of θ1 and θ2 based on AI and MLE (θ̌i = θ
(AI)
i , θ̂i = θ

(MLE)
i ,

i = 1, 2).

Table 1. Mean and standard deviation of the fitted (MLE) normal distributions for the estimators
of θ1 = 33 and θ2 = 7 of the SSALT model (2) based on AI and MLE in the simulation study of
Example 2 with 10.000 replications.

Mean Standard Deviation

θ̌1 25.6008 4.9854
θ̂1 24.8684 4.3003
θ̌2 6.9302 1.3083
θ̂2 6.9849 1.1683

Next, we consider an example of a SSALT model with m = 3, and we derive new
estimators for the parameters θ1, θ2, and θ3 based on the AI function and on minimizing a
function analogous to H∗ in (17) for the case of m = 2.

Example 3. Consider a CE SSALT model for exponential lifetimes under each stress level, with
stress change points τ1 = 18.2 and τ2 = 24, parameters θ1 = 33, θ2 = 7, and θ3 = 3, and with
sample size n = 80. First, we compare the kernel-based estimated AI function with the true one
given in (15) in the case of m = 3. We show the results for two generated samples to remark that
the proposed method provides a good estimation of the true function, but it may have a considerable
local error right after the second stress change point (see Sample 2). The results are shown in
Figure 5. Based on this observation, which is analogous to the observation made in Example 1 for
the corresponding simple SSALT, in our procedure, described below, we excluded the estimate of the
AI function at one point (Tn1+n2+1:n) as it may cause misleading results (n1 and n2 represent the
number of failures in the first and second stress levels, respectively).
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Next, we performed a simulation study and derived the estimates for θ1, θ2, and θ3 based on
the AI function and the MLEs for 10.000 simulated samples. In 1% of the cases (103 over 10.000),
the optimization procedure did not converge. For those cases, we applied a constrained optimization
procedure to our function. We observed that the θ̌1’s estimates of θ1 based on the AI are closer than
the corresponding MLEs’ θ̂1 to the real value of θ1 in 68.1% of the cases, and this holds for θ2 and θ3
in 38.7% and 39.1% of the simulated samples, respectively. In order to perform a comparison based
on the three parameters, θ1, θ2, and θ3, we checked that the following inequality based on relative
errors was satisfied in 45.7% of the samples:

|θ̌1 − θ1|
θ1

+
|θ̌2 − θ2|

θ2
+

|θ̌3 − θ3|
θ3

<
|θ̂1 − θ1|

θ1
+

|θ̂2 − θ2|
θ2

+
|θ̂3 − θ3|

θ3

The estimated means and standard deviations of the fitted normal distributions are given in Table 2.
Notice that compared to θ̂1, θ̌1 has a higher standard deviation but is of reduced bias. For the
other two stress levels, the maximmum likelihood estimation seems to behave slightly better for this
example (in terms of bias and standard deviation) than the AI based estimation.

Finally, to compare the two different estimation approaches to the true distribution, in Figure 6,
we plot the true CDF jointly with the maximum likelihood and AI-based estimated CDFs, along
with the points corresponding to the empirical CDF for two of the simulated samples. In Figure 6
(left), we have a case in which the estimated CDF based on the AI and the one based on the MLE are
both close to the underlying true distribution. They are indistinguishable on the third level, while
the one based on AI (MLE) performs slightly better on the first (second) level. In Figure 6 (right),
we have a case in which the simulated data are far from the true distribution, and the estimated CDF
based on the AI is closer to the true CDF compared with the one based on the MLE, seeming to be
more robust to outliers.
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Figure 5. True and estimated AI function in red and blue, respectively, for two simulated samples of
the considered SSALT exponential model with three stress levels.

Table 2. Mean and standard deviation of the fitted (MLE) normal distributions for the estimators
of θ1 = 33, θ2 = 7, and θ3 = 3 based on AI and MLE in the simulation study of Example 3 with
10.000 replications.

Mean Standard Deviation

θ̌1 29.2562 9.2000
θ̂1 24.9046 4.3508
θ̌2 6.4401 2.0313
θ̂2 7.2282 1.6811
θ̌3 2.7728 0.9291
θ̂3 2.9939 0.7604
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Figure 6. True CDF (red), estimated CDFs based on MLE (black), and AI (blue) with points corre-
sponding to empirical CDF (red dots) for two simulated samples from Example 3.

5. Goodness-of-Fit Testing for SSALT

In this section, we cover the goodness-of-fit testing for the SSALT model with exponential
distributed lifetimes based on the Kullback–Leibler (KL) divergence. The Kullback–Leibler
divergence between two probability density functions f and g with non-negative support
is defined as follows (see Kullback and Leibler [31]):

KL( f , g) =
∫ +∞

0
f (x) log

f (x)
g(x)

dx,

It is non-negative and equal to 0 if, and only if, f = g almost everywhere. The KL
divergence is not symmetric in f and g so that KL( f , g) ̸= KL(g, f ).

The PDF of the exponential SSALT model is

g(t) = g(t|θ1, θ2) =


1
θ1

exp
(
− t

θ1

)
, if 0 < t ≤ τ,

1
θ2

exp
(
− 1

θ2

(
t + θ2

θ1
τ − τ

))
, if t > τ.

The AI-based estimated PDF is then ǧ(t) = g(t|θ̌1, θ̌2), t > 0, while the maximum likelihood
estimated PDF is denoted by ĝ(t) = g(t|θ̂1, θ̂2), t > 0. Hence, the KL divergence between
the exact theoretical PDF g and the AI-based estimated ǧ is expressed as follows:

KL(g, ǧ) =
∫ τ

0

1
θ1

exp
(
− x

θ1

)
log

(
θ̌1

θ1
exp

(
− x

θ1
+

x
θ̌1

))
dx

+
∫ +∞

τ

1
θ2

exp
(
− 1

θ2

(
x +

θ2

θ1
τ − τ

))
log

(
θ̌2

θ2
exp

(
− 1

θ2

(
x +

θ2

θ1
τ − τ

)

+
1
θ̌2

(
x +

θ̌2

θ̌1
τ − τ

)))
dx.

By integrating by parts in the above integrals, we further obtain

KL(g, ǧ) =

(
1 − exp

(
− τ

θ1

))
log

θ̌1

θ1
+ θ1

(
1
θ̌1

− 1
θ1

)(
− τ

θ1
exp

(
− τ

θ1

)
+ 1 − exp

(
− τ

θ1

))
+

(
log

θ̌2

θ2
+

(
1
θ̌1

− 1
θ1

− 1
θ̌2

+
1
θ2

)
τ

)
exp

(
− τ

θ1

)
+θ2

(
1
θ̌2

− 1
θ2

)
exp

((
1
θ2

− 1
θ1

)
τ

)(
τ

θ2
exp

(
− τ

θ2

)
+ exp

(
− τ

θ2

))
,
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which is non-negative and equal to 0 if, and only if, θ1 = θ̌1 and θ2 = θ̌2. The KL divergence
between g and the MLE ĝ is defined analogously. We remark that the knowledge of g and,
hence, the evaluations of KL(g, ǧ) and KL(g, ĝ) are obtained only with simulated data.

Considering the simulation study described in Example 2, we have that the inequality

KL(g, ǧ) < KL(g, ĝ)

is satisfied in 56.60% of cases, but the differences between KL(g, ǧ) and KL(g, ĝ) are small.
The histogram of the differences KL(g, ĝ)− KL(g, ǧ) is provided in Figure 7. To improve
the readability of the figure, a few extreme values on the left are not displayed. From
the histogram, we note that, with the exception of the closest regions to 0, the results
are symmetric around 0. To compare the two different estimation approaches to the true
distribution, we considered the more extreme case on the right, corresponding to a value of
0.0892, for the difference. Then, in Figure 8 (left), we plotted the true CDF, together with the
maximum likelihood and AI-based estimated CDFs, along with the points corresponding
to the empirical CDF. We note that in this case, the simulated data are far from the true
distribution. Hence, the estimated CDF based on the AI, which is closer to the true CDF
compared with the one based on MLE, seems to be more robust to outliers. In Figure 8
(right), we repeated the same analysis with a random selected sample (which is more
representative of the underlying true model) and observe that the CDFs estimated using
the MLE and AI are indistinguishable.

Figure 7. Histogram of the differences KL(g, ĝ)− KL(g, ǧ) based on the simulation study described
in Example 2.

In case of real data, where the underlying PDF g is unknown, the goodness of fit for ĝ
(maximum likelihood estimated PDF) can be evaluated using KL(g̃, ĝ), i.e., by comparing
ĝ to the estimated g based on the kernel density approach of Section 4. However, this is
not a fair tool for comparing ĝ to ǧ, since the AI-based estimated PDF ǧ is based on the
kernel-based estimation g̃. For this reason, we searched for a different comparison tool.
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Figure 8. True CDF (red), estimated CDFs based on MLE (black), and AI (blue) with points correspond-
ing to empirical CDF (red dots) for sample with outliers (left) and random selected sample (right)
from Example 2.

In order to make a non-parametric comparison of the distributions with parameters
given by the AI and the MLE, we considered a different type of KL divergence proposed
by Park et al. [32] with properties that have been further studied by Di Crescenzo and
Longobardi [33]. This measure is known as the cumulative Kullback–Leibler divergence,
and for two non-negative random variables X and Y with cumulative distribution functions
FX and FY, respectively, it is defined by

CKL(FX , FY) =
∫ +∞

0
FX(x) log

FX(x)
FY(x)

dx +E(X)−E(Y).

Hence, we can use this measure to make comparisons using Fe, the empirical CDF of the
data, in place of FX , i.e.,

Fe(t) =
1
n

n

∑
i=1

I(Ti≤t),

with the corresponding mean given by

E(X) =
1
n

n

∑
i=1

Ti.

In place of FY we set the MLE-based or AI-based estimate of the CDF G of the exponential
SSALT model. That is, Ĝ(t) = G(t|θ̂1, θ̂2), t > 0, with G defined in (2), or Ǧ, which is
defined analogously. The mean of a CE SSALT exponential model is evaluated as follows:

E(T) =
∫ τ

0

t
θ1

exp
(
− t

θ1

)
dt +

∫ +∞

τ

t
θ2

exp
(
− 1

θ2

(
t +

θ2

θ1
τ − τ

))
dt,

which, after integration by parts, is equal to

E(T) = θ1

(
1 − exp

(
− τ

θ1

))
+ θ2 exp

(
− τ

θ1

)
.

Then, denoting by T0 = 0 and Tn+1:n = +∞, the cumulative Kullback–Leibler divergence
between the considered distribution is evaluated as follows:
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CKL(Fe, Ĝ) =
n1

∑
i=1

∫ Ti:n

Ti−1:n

Fe(x) log
Fe(x)
Ĝ(x)

dx +
∫ τ

Tn1:n
Fe(x) log

Fe(x)
Ĝ(x)

dx

+
∫ Tn1+1:n

τ
Fe(x) log

Fe(x)
Ĝ(x)

dx +
n+1

∑
i=n1+2

∫ Ti:n

Ti−1:n

Fe(x) log
Fe(x)
Ĝ(x)

dx

+E(X)−E(T)

=
n1

∑
i=2

i − 1
n

∫ Ti:n

Ti−1:n

log
(

i − 1
n

)
− log Ĝ1(x)dx

+
n1

n

∫ τ

Tn1:n
log
(n1

n

)
− log Ĝ1(x)dx

+
n1

n

∫ Tn1+1:n

τ
log
(n1

n

)
− log Ĝ2(x)dx

+
n

∑
i=n1+2

i − 1
n

∫ Ti:n

Ti−1:n

log
(

i − 1
n

)
− log Ĝ2(x)dx

−
∫ +∞

Tn:n
log Ĝ2(x)dx +E(X)−E(T)

=
n

∑
i=2

i − 1
n

log
(

i − 1
n

)
(Ti:n − Ti−1:n)−

n1

∑
i=2

i − 1
n

∫ Ti:n

Ti−1:n

log Ĝ1(x)dx

−n1

n

∫ τ

Tn1:n
log Ĝ1(x)dx − n1

n

∫ Tn1+1:n

τ
log Ĝ2(x)dx

−
n

∑
i=n1+2

i − 1
n

∫ Ti:n

Ti−1:n

log Ĝ2(x)dx −
∫ +∞

Tn:n
log Ĝ2(x)dx +E(X)−E(T).

Considering again the simulation study described in Example 2, we verify that
the inequality

CKL(Fe, Ǧ) < CKL(Fe, Ĝ)

is satisfied in 31.51% of the cases.

6. Discussion

In this work, we extended the concept of aging intensity to the setup of SSALT models.
This provides new insights to the model and enables a deeper understanding of the aging
process of the testing units exposed under a step-stress ALT experiment, as well as further
clarification of the differences between the CE and TFR models. Based on the AI function,
new estimators for the parameters of a SSALT model were proposed and compared to the
MLEs in terms of simulated examples and a simulation study. The models and methods
discussed mainly referred to simple SSALT experiments with m = 2 stress levels, but they
are extendable to cases with m > 2, as shown in Example 3 for the case m = 3.

This approach opens new research directions in SSALT modeling. Additional studies
are required to investigate, in depth and with various setups, the performance of the AI-
based estimation in comparison to that of the maximum likelihood estimation. Furthermore,
alternative estimators could be considered by replacing the distance H∗ used in Section 4
with another divergence measure, e.g., the KL divergence. Furthermore, one could proceed
to interval the estimation of the parameters (asymptotic or bootstrap) and to test the
hypothesis on the SSALT model’s parameters (e.g., θs+1 = cθs, s = 1, . . . , m − 1, for a
fixed c ∈ (0, 1)). It is of interest to investigate the robustness of AI-based estimation in
comparison to that of the MLE. Finally, it is worth it to explore possible AI-based criteria
for optimal SSALT experimental designs.

In summary, further extensive studies are required to investigate the AI-based estima-
tion with various setups.
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