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Abstract: Quantum states containing records of incompatible outcomes of quantum measurements
are valid states in the tensor-product Hilbert space. Since they contain false records, they conflict
with the Born rule and with our observations. I show that excluding them requires a fine-tuning
to an extremely restricted subspace of the Hilbert space that seems “conspiratorial”, in the sense
that (1) it seems to depend on future events that involve records (including measurement settings)
and on the dynamical law (normally thought to be independent of the initial conditions), and (2) it
violates Statistical Independence, even when it is valid in the context of Bell’s theorem. To solve the
puzzle, I build a model in which, by changing the dynamical law, the same initial conditions can
lead to different histories in which the validity of records is relative to the new dynamical law. This
relative validity of the records may restore causality, but the initial conditions still must depend, at
least partially, on the dynamical law. While violations of Statistical Independence are often seen as
non-scientific, they turn out to be needed to ensure the validity of records and our own memories and,
by this, of science itself. A Past Hypothesis is needed to ensure the existence of records and turns out
to require violations of Statistical Independence. It is not excluded that its explanation, still unknown,
ensures such violations in the way needed by local interpretations of quantum mechanics. I suggest
that an as-yet unknown law or superselection rule may restrict the full tensor-product Hilbert space
to the very special subspace required by the validity of records and the Past Hypothesis.

Keywords: Born rule; fine-tuning; statistical independence; records; memories; arrow of time; Past
Hypothesis; decoherence; Bell’s theorem; interpretations of quantum mechanics; superdeterminism

1. Introduction

Quantum mechanics, like other theories, is formulated from a God’s-eye perspective.
But, as parts of the world we observe, we are limited to a worm’s-eye perspective. If, in the
present time, we are part of a random state of the universe, this would most likely contain
incompatible records from which we would never be able to guess the laws of quantum
mechanics, particularly the Born rule.

An example of such a state is one containing n records of repeated spin measurement
of the same silver atom so that the records of the n outcomes are random values ± 1

2 , and
not the same value repeated n times. This state is valid in the tensor-product Hilbert space.
But the records it contains could not come from actual repeated quantum measurements.
We practically never observe such states.

The simple fact that we exist and could discover quantum mechanics indicates that
the physical law is user-friendly enough to allow our memories to form and be reliable, to
reflect the evolution of our universe so that we can guess its laws, including the Born rule.
We are led to a “the universe does not mislead us” metaprinciple:

Metaprinciple NMU (Non-Misleading Universe). The records of the experimental results and
the memories of the observers reflect the actual history of the universe.

Without this, science and even life would be impossible. But Metaprinciple NMU,
as we shall see, requires severe restrictions of the possible states. We will explore the
relationship between this fine-tuning and several common-sense beliefs. The first belief is:
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Belief 1 (Universality). Quantum mechanics, including the Born rule and the results of quantum
experiments, respect Metaprinciple NMU for most initial conditions.

Another belief is that of Statistical Independence (SI). We assume that there are enough
degrees of freedom so that any two systems separated in space can be put in independent
and statistically uncorrelated states.

Definition 1. Two events A and B are statistically independent if Pr{AB} = Pr{A}Pr{B} ([1]
p. 10). In particular, if each of two statistically independent events A and B are possible (Pr{A} > 0 and
Pr{B} > 0), they are possible together (Pr{AB} > 0). Therefore, if SI is true for the events that two
subsystems are in particular states, the following should be true as well:

Belief 2 (Subsystem Independence). Let A and B be any two subsystems with no common parts.
If A can possibly be in the state α and B can possibly be in the state β, the combined system can
possibly be in the state α ⊗ β.

Belief 2 is the core reason we take as the Hilbert space of a composite system the
tensor product of the Hilbert spaces of each of the systems. I will show that this, and
consequently SI, is contradicted, although Bell’s weaker assumption of SI is not contradicted
(see Answer 5). Bell’s assumption is about the independence of the state of the observed
system (including possible hidden variables) of the choice of what observable will be
measured [2]. It is sometimes called settings independence, measurement independence, or even
the free-will assumption [3].

The following belief is already known to be violated for “Boltzmann brains”, usually
attributed to fluctuations:

Belief 3 (For-Granted Memory). In the tensor-product Hilbert space formulation of quantum
mechanics, past events always leave reliable records in the present state.

It makes sense to think that no “Laplace demon” knowing the dynamical law and the
future histories is needed to determine what initial conditions ensure Metaprinciple NMU.
This can be stated as the following beliefs:

Belief 4 (No Input From Dynamical Law). Initial conditions are independent of the dynamical
law of the system.

Belief 5 (No Input From Future). Initial conditions are independent of future events in history,
in particular of those involving records.

In Section 2, I show that, in quantum mechanics, Metaprinciple NMU contradicts
Beliefs 1, 2, and 3, and seems to challenge Beliefs 4 and 5.

In Section 3, I gradually build a model that shows that Belief 4 is partially not con-
tradicted, and Belief 5 is not contradicted at all, at least for interpretations that do not
violate Bell’s restricted Statistical Independence. It turns out that for this to work, quantum
mechanics needs to include a certain sophistication, and the Past Hypothesis, according
to which the initial state of the universe had a very low entropy, is required in a way that
involves the dynamical law.

In Section 4, I discuss the implications for the Past Hypothesis.
In Section 5, I discuss the violation of Statistical Independence resulting from the

Theorem and its relationship with the particular case used by Bell in his theorem.
In Section 6, I discuss the possibility that a new law may solve the puzzle.

2. The Puzzle

In this Section, I state the puzzle in the form of a Theorem. In Section 3, I will try to
build a model to resolve the puzzle and succeed only partially.

Theorem 1. Metaprinciple NMU for quantum mechanics requires the initial states to belong to an
extremely restricted subspace of the Hilbert space in a way that contradicts Beliefs 1, 2, and 3, and
seems to challenge Beliefs 4 and 5 (which I will try to restore in Section 3).
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Proof. Consider a closed quantum system which includes observed systems, measuring
devices, and observers. This may be the entire universe. Its states are represented by unit
vectors in a separable Hilbert space H, and evolve governed by the Schrödinger equation

with the Hamiltonian Ĥ. In terms of the unitary evolution operator Ût,t0 := e−
i
h̄ (t−t0)Ĥ

between the times t0 and t, the evolution of an initial state vector Ψ(t0) ∈ H at t0 is

Ψ(t) = Ût,t0 Ψ(t0). (1)

Suppose for simplicity that our system contains a system to be observed S, with Hilbert
space HS of finite dimension dimHS = n < ∞, and a measuring device whose pointer
is represented in the Hilbert space HMA

of dimension n + 1. Then H = HS ⊗HMA
⊗HE,

where HE represents everything else, including the other parts of the measuring device. Let
Â be a Hermitian operator on HS representing the observable of interest, with eigenbasis(
ψA

1 , . . . , ψA
n
)
. Let ẐA be the pointer observable, with eigenbasis

(
ζA0 , ζA1 , . . . , ζAn

)
, where ζA0

represents the “ready” state of the pointer. We assume that the observable and the pointer
have nondegenerate spectra, and the measurement is ideal. We work in the interaction
picture, which allows us to treat the observed degrees of freedom as stationary and the
pointer states as stationary before and after the measurement. Let the measurement of Â
take place between t0 and t1 > t0, leading to the superposition

Ψ(t1) = Ût1,t0 ψ ⊗ ζA0 ⊗ . . . = ∑
j
⟨ψA

j |ψ⟩ψA
j ⊗ ζAj ⊗ . . . (2)

To resolve the superposition from Equation (2) into definite outcomes, one usually invokes
projection, objective collapse, decoherence into branches, additional hidden variables, etc.

The results from this article apply to all these options. The Born rule states that the
probability that at t1 the pointer is in the state ζAj is |⟨ψA

j |ψ⟩|2.

Consider a second measurement of an observable B̂ of the system S, with eigenbasis(
ψB

1 , . . . , ψB
n
)
. Let the pointer observable of the second apparatus be ẐB, with eigenbasis(

ζB0 , ζB1 , . . . , ζBn
)
, where ζB0 is the “ready” state. The total Hilbert space is now H = HS ⊗

HMA
⊗HMB

⊗HE.
The measurement of B̂ takes place after the first measurement, ending before t2 > t1.

It leads to
Ψ(t2) = Ût2,t1Ût1,t0 ψ ⊗ ζA0 ⊗ ζB0 ⊗ . . .

= Ût2,t1 ∑
j
⟨ψA

j |ψ⟩ψA
j ⊗ ζAj ⊗ ζB0 ⊗ . . .

= ∑
j,k
⟨ψA

j |ψ⟩⟨ψB
k |ψ

A
j ⟩ψB

k ⊗ ζAj ⊗ ζBk ⊗ . . .

(3)

The probability that at t2 the first pointer state is ζAj and the second pointer state is ζBk
is |⟨ψA

j |ψ⟩⟨ψB
k |ψ

A
j ⟩|2. This vanishes if Â = B̂ and j ̸= k, and we obtain

Observation 1. The Born rule forbids orthogonal results for repeated measurements, e.g., if Â = B̂,
the states ψB

k ⊗ ζAj ⊗ ζBk ⊗ . . . with j ̸= k are practically forbidden at t2, in the sense that to ensure
the Born rule, such states must be extremely rare.

Observation 2. However, a priori, all unit vectors in H are possible initial conditions at the initial
time ti < t0 of the universe, including, for any j and k, the vectors

Ψj,k(ti) := Û†
t2,ti

ψB
k ⊗ ζAj ⊗ ζBk ⊗ . . . (4)

The uniform probability distribution on the projective Hilbert space gives equal probabilities to
all possible states Ψj,k(ti) at any time ti, but the Born rule gives a totally different probability. If
Â = B̂ (or in general [Â, B̂] = 0̂), the probability vanishes for j ̸= k.
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In practice, quantum measurements are not exactly sharp, so states as in Observation 1
are not exactly forbidden, but in the case of repeated measurements with Â = B̂ the
probability distribution is concentrated on the states Ψj,j(ti) and is negligible for the other
states. Because they contain misleading records, we will call them “misleading states”.
Misleading states are possible, albeit extremely improbable.

In general, including if [Â, B̂] ̸= 0̂, the Born rule gives, for the state Ψj,k(ti), the
probability |⟨ψA

j |ψ⟩⟨ψB
k |ψ

A
j ⟩|2, which again is very different from the uniform probability

distribution on the projective Hilbert space. The difference is significant enough so that we
could infer from experiments the Born rule and not any other probabilistic rule. In this case,
the states Ψj,k(ti) are allowed even if j ̸= k, as long as the probability does not vanish, but
the initial conditions are constrained statistically. One may hope that an initially uniform
probability distribution evolves, converging towards the Born rule, perhaps by successive
projections or decoherence. But if this were true, it should have been true for the limiting
case Â = B̂ as well. Therefore, the Born rule must come from a different initial probability
distribution than the uniform one.

Observation 3. The problem is not whether a state containing measuring devices in the “ready”
state and observed systems can evolve, by performing measurements, into misleading states as in
Observation 1. This is not the case (see Answer 1). But such states are represented by valid vectors in
the total tensor-product Hilbert space, and they can be reached by unitary evolution (even including
projections) from states like (4). This evolution into misleading states avoids the natural course of
events, but the resulting state contains records of false accounts of history. They can even contain
multiple pieces of camera footage from different angles, and human observers with false memories to
attest to the false history. Nothing seems to prevent this since we can only access the present, not the
past. So, the problem is that there is nothing in the formulation of quantum mechanics that makes
misleading states extremely improbable.

Refutation 1 (of Belief 1). This part of the analysis depends on the approach to resolve the
superposition into definite outcomes. We consider first unitary approaches based on decoherence
(like the consistent histories approach [4] and the many-worlds interpretation (MWI) [5]). From
Observation 1, initial states Ψj,k(ti) with Â = B̂ and j ̸= k are misleading states, because they
evolve into misleading states at t2. Such states would contradict Metaprinciple NMU. Moreover,
all initial states that are not orthogonal on all misleading states of the form Ψj,k(ti) should also be
extremely unlikely because the nonvanishing component Ψj,k(ti) leads to a misleading branch with
nonzero amplitude. Therefore, the states that are not initially misleading have to be orthogonal to all
initial states leading to misleading states at any time. They form a “very small” Hilbert subspace
H̃ ≪ H, which is extremely restricted compared to H because there are potentially infinitely more
orthogonal states that contain invalid records compared to those that contain valid records.

For the pilot-wave theory (PWT) and variations [6,7], the wavefunction also never collapses,
but it is completed with “hidden variables”, e.g., point-particles with definite positions that resolve
the superposition. The initial conditions of the wavefunction are constrained exactly as in the MWI
case because the same branching structure is needed to make sure that the configurations of the point
particles are stable.

In standard quantum mechanics (SQM), the superposition is resolved by invoking the Projection
Postulate. This happens when the observation causes a macroscopic effect, usually by changing the
pointer of the measuring device. Let

(
P̂α

)
α

be a set of mutually orthogonal projectors that correspond
to the macro-states, so that ∑α P̂α is the identity operator ÎH on H. In our case, these projectors are
determined by the eigenstates of the pointer observables, so they are ÎHS ⊗ |ζAj ⟩⟨ζAj | ⊗ |ζBk ⟩⟨ζ

B
k | ⊗ ÎHE

,
or some other projectors finer than them, obtained by including other observables that commute with the
pointer observables.

The Projection Postulate makes it possible that, for any state at t2, there are many possible
initial states that can lead to it by unitary evolution alternated with projections. Let us verify that
any misleading state at t2 can be obtained like this. Suppose that the state vector is projected at a
time t from Ψ1 to Ψ2. Since |⟨Ψ2|Ψ1⟩|2 = |⟨Ψ1|Ψ2⟩|2, the probability that Ψ1 projects to Ψ2 in
forward time evolution equals the probability that Ψ2 projects to Ψ1 in backward time evolution.



Entropy 2024, 26, 411 5 of 14

This implies that if we propagate a misleading state at t2 back in time to ti “unprojecting” whenever
is needed, we should find a set of initial states at ti that can evolve forward in time (with projections)
into the misleading state at t2 (where I define the result of the “unprojection” of a vector |Ψ⟩ with
the projector operator P̂α as the set of vectors |Ψ′⟩ so that ⟨Ψ|P̂α|Ψ′⟩ ̸= 0.) All these initial states
should, therefore, be extremely unlikely. Since any initial state that is not orthogonal to all of them
has components that can evolve into misleading states, these should be extremely unlikely as well.
This, again, constrains the possible states to an extremely restricted subspace H̃ orthogonal to all
initial states that could evolve into misleading states at any future time.

In collapse theories [8,9], spontaneous localization is not defined in terms of projectors but
by multiplying the wavefunction with a Gaussian function centered at a random point in the
configuration space. This happens at random times. Gaussian functions do not form an orthonormal
basis, but they partition the identity, so the possible histories with collapses at the same moments of
time also add up to the identity, and we can apply similar reasoning as in the SQM case, obtaining
the same conclusion. Moreover, when the wavefunction is multiplied by a Gaussian, the result
has tails, and decoherence is required to prevent those tails from interfering because otherwise,
the collapse could make the state jump to a too different state, so similar constraints as in MWI
are required.

Therefore, in all cases, the Born rule constrains the states to an extremely restricted subspace
H̃ of H, and Belief 1 (Universality) is contradicted.

Remark 1. In all cases, the non-misleading states are constrained to an extremely restricted
subspace H̃ ≪ H. In fact, to protect the Born rule at arbitrary times in the future, the constraints
must be valid at all times. But the subspace H̃0 ≪ H̃ of non-misleading initial states that can lead
to states in H̃ is even more restricted than H̃.

Refutation 2 (of Belief 2). Consider a factorization H = H1 ⊗H2, obtained by dividing the total
system into a subsystem S1 and the rest of the world, S2. The tensor-product basis cannot have
all its elements in H̃, because then H would be included in H̃. Therefore, there are tensor-product
states that are forbidden or at least extremely unlikely, contrary to Belief 2. Interestingly, even if S1
consists of a single particle, the Subsystem Independence is violated. This also contradicts Statistical
Independence from Definition 1.

Refutation 3 (of Belief 3). From Observation 1, there are states containing invalid records. As
seen, avoiding them requires fine-tuning that violates Beliefs 1 and 2.

Challenge 1 (of Beliefs 4 and 5). To show the independence of H̃0 from the dynamical law and the
validity of future records, we need to show that modifications Ĥ′ of the Hamiltonian Ĥ lead to valid
records. The valid records should be consistent with the modified Hamiltonian Ĥ′. It is not needed
to prove this for all possible modifications of Ĥ, but at least for those that are local and preserve its
tensor-product decomposition into Hilbert spaces for elementary particles. Partial progress, but not
a definitive proof, is described in Section 3.

This concludes the proof of Theorem 1.

Corollary 1. The state of any subsystem S is not completely independent of the state of the rest of
the universe, in the sense that there are extremely unlikely and hence practically forbidden states of
the form ψ ⊗ ε, where ψ is the state of S and ε is the state of the rest of the universe.

Proof. See Refutation 2 (of Belief 2).

Corollary 1 suggests that the tensor-product Hilbert space may contain too many
states, and we should consider a much smaller subspace instead.

Question 1. Why, in all known examples, does textbook quantum mechanics work without fine-tuning?

Answer 1. Textbook scenarios of quantum experiments make assumptions that implicitly
fine-tune the system:
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(a) measuring devices already exist, despite their construction being complicated, neces-
sitating precision technology, and depending on the Hamiltonian to function as desired,

(b) before measurements, the measuring devices are in the “ready” states, like ζA0 and
ζB0 in Equations (2) and (3),

(c) the observed systems and measuring devices are initially in separable states like
ψ ⊗ ζA0 in Equation (2),

(d) after the measurement, the pointer states both before and after the measurement
are known, so that the recovery of the state of the observed system is possible.

All examples, in all interpretations of quantum mechanics, assume (a), (b), (c), and
(d), but this requires fine-tuning. Even MWI requires that branching be time-asymmetric,
which constrains the initial conditions to ensure (a). Assumption (a) requires the initial
conditions to depend on the Hamiltonian. Linear combinations satisfying (b) and (c) are
valid, but they form a strict subspace of the full tensor-product Hilbert space H.

If, as in the example from the proof of Theorem 1, Â = B̂ and j ̸= k, the state
Ψ2(t2) = ψB

k ⊗ ζAj ⊗ ζBk ⊗ . . . cannot be reached from the state Ψ1(t1) = ψA
j ⊗ ζAj ⊗ ζB0 ⊗ . . ..

This means that the pointer state ζAj contained in Ψ2(t2) is an invalid record since in the

histories leading to Ψ2(t2) there is no measurement of Â in which the observed system was
found at t1 in the state ψA

j and the pointer was in the corresponding state ζAj . Therefore,
the misleading state Ψ2(t2) is excluded simply because the state at t1 was assumed to be
Ψ1(t1).

Even if we are not aware of this, we usually take for granted records at different times.
But all that is available to us are the present-time records of past events. From these records
or memories, we infer laws and make predictions about future times, and experiments
confirm them. This is possible because the invalid records are already excluded by the
constraints of the initial conditions implicit in the assumptions (a), (b), (c), and (d).

All these and more become apparent when we try to build a model, particularly
(d) makes the necessity of fine-tuning clear, as it will be seen in more detail in Section 3,
Problem 2.

Theorem 1 and Corollary 1 pose a puzzle for some common-sense beliefs about
quantum mechanics and about the possibility of having reliable records of past events.
In Section 3, I will try to make progress toward the resolution of this puzzle and address
Challenge 1.

3. A Counterexample?

Let us try to address Challenge 1 by building a model.
I start with an ideal model, which seems to need the least fine-tuning possible. Since

even general ideal quantum measurements turn out to require very special initial conditions,
irreversibility is needed. Therefore, we must refine the model by including the Past
Hypothesis and the possibility of bound states. The resulting model suggests that Belief 5
can still be true, but Belief 4 is partially contradicted by the necessity to appeal to the
dynamical law.

The first model is designed so that it contains the simplest possible measuring devices,
each consisting of a single particle. The pointer state will be represented as an internal
state. A measurement requires a limited duration of interaction between the observed
system and the measuring device, and this is, in general, achieved by interactions with a
limited range. Therefore, the measuring device and the observed system should be able
to be well-localized and separated in space before and after the measurement. Then, the
model needs a space for positions, internal degrees of freedom, and local interactions.

The first model I propose consists of particles moving in the lattice Z3 and interacting
when they occupy the same position in the lattice. The time evolution takes place in discrete
steps, so t ∈ Z. A continuous version of this model is possible, but for simplicity, I start
with discrete space and time.
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Each particle, labeled with j ∈ J, has attached an internal Hilbert space Vj ⊗ Sj. It
includes a velocity space Vj := span(V)3, where V = {| − 1⟩v, |0⟩v, |1⟩v}, and an internal
space Sj := span{|a⟩m|a ∈ Zm}, where Zm := {0, 1, . . . , m − 1}, representing either the
pointer states or the internal degrees of freedom to be measured.

Since time is discrete, for the dynamical law, we only need a unitary operator Û
representing the evolution of the system for a unit of time. The free evolution of each
particle, labeled by j, is given by its own unitary operator

Ûj|x, v⟩j|a⟩j = |x + v, v⟩jÛm
j |a⟩j, (5)

where v ∈ V and a ∈ Zm, and Ûm
j acts on Sj.

Please note that in this ideal quantum system, there is no uncertainty trade-off between
the positions and momenta, and therefore particles can be well-localized “wave packets”.

When two particles occupy the same position, their dynamics include interaction,
which I specify to be

Ûjk|xj, vj⟩j|aj⟩k
j |xk, vk⟩k|bk⟩

j
k

=|xj + vj, vj⟩jÛm
j |aj ⊕ δ(xj − xk)bk⟩k

j |xk + vk, vk⟩Ûm
k |bk ⊕ δ(xj − xk)aj⟩

j
k,

(6)

where ⊕ denotes the addition modulo m.
This requires some explanations. The Kronecker symbol δ(xj − xk) = 1 if xj = xk and

0 otherwise (we are in a discrete model) forces the interaction to take place only when the
two particles occupy the same position. The upper index k for the basis of Sj indicates
that the basis also depends on the particle k with which j interacts. The reason for using
different bases for the same particle, a basis for each other particle with which it interacts,
allows the existence of different incompatible measurements of the same particle j. This
was already ensured by the existence of Ûm

j , but we want the most general settings. If
xj ̸= xk, the two particles evolve freely, as in Equation (5).

Interactions should also be defined for the case when more than two particles occupy
the same position, but I will discuss only interactions between two particles.

Some of the particles are of a special type, JM ⊂ J, representing measuring devices,
while for each j ∈ JM, all the other particles from J (not only those from J \ JM) are the
observed systems. The pointer states are the elements of the basis of Sk, for each k ∈ JM.
The macro-states are characterized by the positions, velocities, and the pointer states of the
particles from JM, i.e., a triple (xk, vk, bk). The basis

(
|bk⟩

j
k
)

k from Equation (6) is assumed,
only for type JM particles, to be independent of the particles j with which they interact.
The free evolution operator Ûm

k for k is taken to be the identity operator so that the pointer
states are stable in time.

Let us see how an interaction between a particle k from JM and another particle j
constitutes a measurement of j by k, when xj = xk = x and vj ̸= vk. If bk = 0, the pointer

state |bk⟩
j
k = |0⟩k ∈ Sk, so the measuring device k is in the “ready” state. If the observed

particle j is in a basis state |aj⟩k
j , Equation (6) gives

Ûjk|x, vj⟩j|aj⟩k
j |x, vk⟩k|0⟩k = |x + vj, vj⟩jÛm

j |aj⟩k
j |x + vk, vk⟩|aj⟩k. (7)

We see that the particle j was measured in the basis of Sj corresponding to the measuring
device k, and the result is recorded as |aj⟩k ∈ Sk. After that, Ûm

j may change the state
of j, but it was already measured. The measured observable has as eigenbasis the basis(
|aj⟩k

j
)

aj∈Zm
.

Now, let us see how it works. We assume that at the initial time ti = 0, the particles
have well-defined positions. Equation (6) ensures us that they remain well-defined. The
pointers decompose the total state so that each pointer is in a definite pointer eigenstate. In
SQM, we invoke the Projection Postulate, while in MWI, the total state branches. When two
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particles occupy the same point in space, they interact. If one of them is a measuring device,
this leads again to the superposition of macro-states, demanding again the invocation of
the preferred solution to the measurement problem.

At this point, this model seems to contain all that is needed to describe a quantum
world, and we may be tempted to proclaim that the problem was solved:

Solution 1 (Premature claim). In this simple ideal model, it seems that the fine-tuning is minimal,
and the conspiracy is avoided. The only fine-tuning needed is that the initial state consists of
particles with definite positions. Then, each interaction with a measuring device (particle from JM)
constitutes a measurement. The positions of the measuring devices, along with their pointer states,
can be used to characterize the macro-states. Moreover, if we change the free evolution operators Ûm

j
and the bases from the interaction evolution operators in Equation (6), the system evolves properly,
leading to different histories, whose states contain different records, but these records are consistent
with the history of the system. Therefore, the initial state does not have to depend on the dynamical
law or of the future records since we can change it and still have only compatible records.

However, two problems show that the claims from Solution 1 would be rushed. These
problems are not specific to this model. They must be solved for any other model.

The first one is particular to interpretations requiring decoherence, like MWI and PWT:

Problem 1. There is no definite branching structure.

The terms in superposition, corresponding to different macro-states, can evolve so
that they contain the same pointer states, which means that the branches interfere or even
are joined back into a single branch. For example, consider the interaction

Ûjk|x, vj⟩j|aj ⊖ 1⟩k
j |x, vk⟩k|1⟩k = |x + vj, vj⟩jÛm

j |(aj ⊖ 1)⊕ 1⟩k
j |x + vk, vk⟩|(aj ⊖ 1)⊕ 1⟩k

= |x + vj, vj⟩jÛm
j |aj⟩k

j |x + vk, vk⟩|aj⟩k,
(8)

where ⊖ denotes the subtraction modulo m.
Here, the final macro-state, the state of the measuring device, is (x+ vk, vk, aj), and it is

the same as that from Equation (7), but the macro-state immediately before the interaction
was (x, vk, 1), so it was different from the prior macro-state from Equation (7), which was
(x, vk, 0). This means that two macro-states can interfere. A superposition of the two prior
macro-states from Equations (7) and (8) will evolve into the same macro-state. In other
words, branching happens towards the past in this example. The branching structure is
not a tree with the trunk in the past and the branches in the future, as it should be. Since
the interference of separate branches spoils the Born rule, we need to fix this by choosing
suitable initial conditions.

Another problem, more important, is that

Problem 2. At any given time, the pointer states contain insufficient information to encode
the states of the observed systems. This is true even for more sophisticated models of quantum
measurements, as long as the state of the pointer can be known only by observing it.

Let us see why. If the pointer state is not in the “ready” state |0⟩k before the mea-
surement, the particle k performs a disturbing measurement, and the pointer no longer
indicates the state of the observed particle,

Ûjk|x, vj⟩j|aj⟩k
j |x, vk⟩k|bk⟩k = |x + vj, vj⟩jÛm

j |aj ⊕ bk⟩k
j |x + vk, vk⟩|aj ⊕ bk⟩k. (9)

Therefore, while the pointer correctly indicates the state of the observed system after
the measurement, the interaction disturbed it, and the observed system’s state before the
measurement is now unknown, even if it was an eigenstate. To know the value aj before
the measurement, we need to know the pointer’s state |bk⟩k before the measurement. Our
intuition may fool us into thinking that both bk and aj ⊕ bk can be known, but at the time
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when aj ⊕ bk is known, bk is no longer available. To make it available, the pointer of k must
be measured by another measuring device k′ ∈ JM. But the measuring device k′ has the
same problem since we would have to know its pointer state before and after it interacts
with the measuring device k. This leads to an infinite regress. This happens for all models
of measurements, as long as it is assumed that the pointer state can be known only by
direct observation.

Albert wrote about such situations in [10], p. 118:

There must [...] be something we can be in a position to assume about some other time–
something of which we have no record; something which cannot be inferred from the
present by means of prediction/retrodiction–the mother (as it were) of all ready conditions.
And this mother must be prior in time to everything of which we can potentially ever
have a record, which is to say that it can be nothing other than the initial macrocondition
of the universe as a whole.

He is talking about what he calls the Past Hypothesis, the condition proposed by
Boltzmann [11,12] to explain the Second Law of Thermodynamics, that the universe was a
very long time ago in a very low-entropy state.

But how can this allow the measuring device k′ to measure the previous state of the
measuring device k? For example, in practice, a photographic plate can be used to record
the position of a particle. We do not need to observe the photographic plate before the
experiment. We prepare it, assuming that thermalization does the job. The same is true for
a bubble chamber. Eventually, any real-life measurement requires the Past Hypothesis.

So, let us assume that some of our particles act like a gas or a thermal bath that brings
the pointer state of the measuring devices to the ready state, assumed to be its energy
ground state. The time interval needed to reach equilibrium should allow the record to
be preserved long enough, and the pointer state is more stable in its ground state. With
properly chosen parameters, this may solve our Problem 2. Let these particles form a subset
JE ⊂ J \ JM. We assume JE to make the overwhelming majority of the particles from J

so that each measuring device is involved, between two measurements, in many weak
interactions with the particles from JE.

At this point, our model turns out, again, to be too simple. Different couplings require
different interaction times, so the interaction times should vary more. The velocities should
also vary to account for the entropy. However, the model can be made more realistic by
modifying it so that each interaction can have a different range, requiring a longer time to
change the pointer state into another eigenstate by thermalization.

Another problem is that the interaction between the particles from JE and those from
JM are, like any interaction (6), time-reversible. We recall that the decay of excited atoms or
particles with finite lifetime is perhaps the simplest irreversible process. In the Weisskopf-
Wigner approximation [13], an excited atom evolves into a superposition of an excited
atom state and a ground atom-plus-photon state, and the coefficient of the excited term
decays exponentially. The irreversibility is due to the fact that the emitted photon quickly
moves away from the atom. A time-reversed situation is possible, of course, and consists of
the photon being absorbed by the atom, which becomes excited. But the Past Hypothesis
makes the events of absorption of a photon coming from a distance become, in time, less
frequent than the emission events, so the most stable state becomes the ground state.

Solution 2 (More realistic). Our model can be made more realistic by including, along with
weak couplings with the thermal bath, bound states that constitute the pointers of the measuring
device so that the bath changes each pointer state to the “ready” state after a reasonable time. This
should allow the Past Hypothesis to be applicable to the model, which should allow the records to be
kept like in the real world, likely solving Problem 2. A thermal bath may also solve Problem 1, by
environmental decoherence [14–16].

Observation 4 (on Solution 2). We have seen that the original ideal model is unable to extract
the states of the observed systems and record them. A more realistic version requires the Past
Hypothesis and measuring devices constructed of bound states. However, the updated model needs
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weak couplings and bound states with carefully chosen parameters, so it depends on the dynamical
law. By changing the Hamiltonian, the measuring devices can stop working as such, and the
observables defining the macro-states may no longer do this job. The Past Hypothesis should not
merely state that the initial macro-state or the initial subspace H̃0 was extremely small, but also
that the dynamical law matters in the choice of this region. This implies that Belief 4 is contradicted
at least partially, and Challenge 1 is still open.

4. Past Hypothesis

Question 2. It is thought that the Past Hypothesis and the Statistical Postulate are sufficient to
ensure the reliability of the records. Does Theorem 1 challenge this?

Answer 2. There are numerous good arguments that the Past Hypothesis (PH) and the
Statistical Postulate together are sufficient to explain the reliability of the records. An
incomplete selection that cannot do justice to the literature is [10,17–22]. Critiques of the
Boltzmann program can be found e.g., in [23,24].

Usually, the Past Hypothesis is formulated as the request that the initial state should
be confined to a very restricted initial Hilbert subspace or a relatively very small region of
the phase space. This, according to Boltzmann, would ensure the very low entropy of the
initial state, necessary for the statistical account of the Second Law of Thermodynamics.
But Theorem 1 and Corollary 1 imply that there is more to the story, in particular, that the
Past Hypothesis must depend on the dynamical law and violate Statistical Independence
or be extended with an additional condition or a law that guarantees these conditions.
The attempt from Section 3 to build a model that escapes Theorem 1 confirms this and
may suggest how the dynamical law should intervene in the Past Hypothesis, even in a
model that is intentionally built to separate as much as possible the initial conditions from
the dynamics.

Question 3. In an infinitely large universe or a multiverse, with an eternal history, this apparent
fine-tuning happens with necessity somewhere or sometimes, albeit extremely rarely. Since intelli-
gent living beings like us need reliable memories to exist and survive, they can only exist in such a
region. Is this not enough to explain away the fine-tuning?

Answer 3. If we were in such a region where it just happened that the Metaprinciple
NMU was respected up to a time t1, it would be extremely more likely that NMU will
be violated than not after t1. Subsystems able to record events, like measuring devices
in the “ready” state, are a limited resource. But then, we should already observe that the
Born rule “wears off” and the world becomes flooded by unreliable records, becoming
increasingly inconsistent, like a dream. Also, by an indexical argument, if we rely on
anthropic reasoning, it would be much more likely that an observer finds herself as a
Boltzmann brain in a region where NMU is violated.

Question 4. Is it not the case that these results apply to classical physics as well?

Answer 4. This is correct. This article is about quantum mechanics because the world is
quantum, but the main idea applies to classical physics, too. The following result proves it.

Corollary 2. The conclusion of Theorem 1 applies to classical physics, too.

Proof. As shown by Koopman and von Neumann, classical physics can be formulated as a
quantum theory [25–27]. In Koopman’s quantum representation of a classical theory, the
wavefunctions are defined on the classical phase space (not on the classical configuration
space as we do when quantizing a classical system). Each classical state (q, p), where
q = (q1, q2, . . .) are the generalized positions and p = (p1, p2, . . .) the generalized momenta,
is then represented by a Dirac delta distribution, represented as a state vector by |q, p⟩, and
the dynamics preserves classicality, i.e. it evolves states of the form |q, p⟩ into states of the
same form. The classical states |q, p⟩ have both definite positions and definite momenta,
and this is preserved in the quantum representation, where q̂ and p̂ commute (because p̂j
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and −ih̄ ∂
∂qj are different operators). Since all classical observables are functions f (q, p) of

the positions and momenta, the operators representing them, f (q̂, p̂), also commute, and
|q, p⟩ are eigenstates for f (q̂, p̂) too. So classical physics can be formulated as a quantum
theory in which all relevant observables commute (note that the operator −ih̄ ∂

∂qj does not
correspond to any classical observable, it is not p̂j, so it is not part of the theory, and there
is no use for the Planck constant). The only vectors of interest in the Hilbert space H are
those representing classical states of the form |q, p⟩. Superpositions of the basis vectors can
be used not to represent states but classical ensembles.

The proof of Theorem 1 is limited to commuting observables and shows that the set of
allowed states must be the classical vectors |q, p⟩ from a very restricted Hilbert subspace
H̃0 ≪ H̃. Returning to the original classical theory, this corresponds to a very small,
zero-measure subset of the classical phase space.

Therefore, except for the parts involving non-commuting observables, the entire
discussion from this article applies to classical physics as well.

5. Statistical Independence

Question 5. Does Corollary 1 refute the Statistical Independence assumption used by Bell in his
proof that any interpretation of quantum mechanics in which measurements have definite outcomes
must be nonlocal [2,28]?

Answer 5. Short answer: no, but before addressing this question, let us establish that the
experiment of interest in Bell’s theorem is covered in the proof of Theorem 1.

Example 1 (EPR). The Einstein–Podolsky–Rosen (EPR) experiment [29] is a particular case of
the example from the proof. At t1, the preparation results in a singlet state of two entangled spin
1/2 particles, with total spin 0. The preparation is made by taking as Â an observable that has the
singlet state among its eigenstates and pre-selecting this state. At t2, Alice measures the spin of
the first particle along a direction a, and Bob, in a different place, measures the spin of the second
particle along a direction b. Let Ŝa and Ŝb be the two spin observables. Since the two measurements
are performed on different particles, they commute,

[
Ŝa ⊗ Î2, Î2 ⊗ Ŝb

]
= 0, and can be seen as a

single measurement of the observable B̂ = Ŝa ⊗ Ŝb performed on the pair of particles. If a = b, the
misleading outcomes are those resulting in parallel spins. But the states containing pointer states
that correspond to these results are valid vectors in H. So, the initial conditions that can lead to
these states have to be forbidden, which means that SI from Definition 1 must be violated.

If, in Definition 1, Pr{B} > 0, SI is equivalent to Pr{A|B} = Pr{A}, the form that
appears in Bell’s theorem [2]. But Bell’s SI refers to the independence of the observed system
from the measurement settings, and it is not refuted by Corollary 1. Corollary 1 allows
the observed system to be in any state |ψ⟩ ∈ H1, provided that the rest of the world |ε⟩ is
restricted to a strict subset of its Hilbert space H2. In Bell’s SI, the only considered states
|ε⟩ ∈ H2 are those containing Alice and Bob’s measuring devices. Moreover, the settings of
the measuring devices have macroscopic properties that can be realized in infinitely many
ways at the microscopic level. This means that |ε⟩ can be chosen in many ways that are
compatible with the macroscopic settings of the measuring devices. To violate Bell’s SI
assumption, all possible microscopic ways to realize the same measurement settings should
be excluded, and Corollary 1 does not do this.

This is why Corollary 1 does not contradict Bell’s SI, while still contradicting the SI
from Definition 1. The EPR experiment is a particular case of the situation from the proof
of Theorem 1 (Example 1).

Question 6. Does Theorem 1 imply superdeterminism?

Answer 6. Theorem 1 does not refute nonlocal interpretations like PWT or GRW, or
multiple-outcome interpretations like MWI. However, if SI is a reason to reject superde-
terministic approaches, Corollary 1 shows that all interpretations are guilty of the same
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sin, but to a lesser extent. There is still a large difference of degree between violating the SI
from Definition 1 and violating Bell’s SI.

Question 7. Isn’t the violation of Statistical Independence unscientific [21,30–32]? By fine-tuning
you can make the theory predict anything. According to Maudlin:

If we fail to make this sort of statistical independence assumption, empirical science can
no longer be done at all.

Bell wrote ([33], p. 244):

In such ‘superdeterministic’ theories the apparent free will of experimenters, and any
other apparent randomness, would be illusory. Perhaps such a theory could be both locally
causal and in agreement with quantum mechanical predictions. However I do not expect
to see a serious theory of this kind.

Answer 7. Now we have a theorem showing that quantum mechanics itself requires the
violation of SI (Definition 1) but not of Bell’s SI (Answer 5).

We cannot do science without the possibility to trust the records of past experiments
and our own memory. And this, as we have seen, requires SI violations. Does this mean
that we can no longer do science?

There are proposals that try to save locality by sacrificing Bell’s SI [34–38]. Other
proposals even try to save locality but also to maintain unitary evolution with a single
world, i.e., without branching, and without collapse or “hidden variables” [39–41]. These
approaches require very special initial conditions [42]. But, as Theorem 1 shows, so does
quantum mechanics in all interpretations, and it also violates SI from Definition 1.

However, it is unfair to say that you can predict anything by fine-tuning, because
approaches with unitary evolution and a single world could so far only reproduce very
simple quantum experiments. In addition, as explained in [39,41], these approaches make
very strict predictions, for example, that the conservation laws hold even if their violation
is allowed by SQM [41,43] and other interpretations, including in MWI (per branch).

6. New Law?

Question 8. Do you have another explanation?

Answer 8. Maybe there is a still unknown law that restricts the possible states to H̃. Since
subsystems are not independent (Corollary 1), the tensor-product Hilbert space is too large
and should be replaced by its subspace H̃. Since the restrictions do not depend on time
(Remark 1), H̃ should be an invariant subspace under unitary evolution. This justifies
the hypothesis that there is an as-yet-unknown law that specifies what kinds of states are
allowed and extends the Past Hypothesis to include the dependence of the allowed Hilbert
subspace H̃ ≪ H on the dynamical law. This may be a superselection rule, similar to the
superselection rules that forbid superpositions of systems with different electric charges or
different spins [44]. If such a law or superselection rule exists for H̃, it could explain the SI
violations without fine-tuning. But such a law would have to encode the dependence of H̃
of the Hamiltonian and the macro projectors

(
P̂α

)
α
.

Therefore, the challenge is

Challenge 2. Find a simple universal law that describes the restriction of the Hilbert space to the
subspace H̃ from the proof of Theorem 1 without fine-tuning. Then verify whether this law violates
Bell’s SI or only the general SI from Definition 1.

It remains to be seen whether or not this new law restricts the Hilbert space more than
is needed for standard quantum mechanics so that Bell’s SI is violated sufficiently to allow
unitary evolution to resolve the measurements without collapse, as suggested in proposals
like [39–41].
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