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Abstract: Eight kinds of heavy metals in soil within 0–2 km from the banks of Shuimo River in
Urumqi were analyzed by using an X-ray fluorescence spectrometer and national standard detection
methods. Unmix and PMF models are comprehensively used to analyze potential pollutant sources
and contribution rates. Soil samples are sampled in three layers of 0–20, 20–40, and 40–60 cm,
and each group of sample points in each layer is 5 m, 1 km, and 2 km away from the riverbank,
respectively. Only the average concentration of Mn in each layer of soil is lower than the background
value, according to the analytical results, while the average concentration of other heavy metals
surpasses the background value. The highest proportion of exceeding the background value is Ni
in the 40–60 cm soil layer, up to 1.92 times. Unmix and PMF models are used to analyze pollutants’
source quantity and contribution rate, respectively. The results show that the two models can identify
two pollution sources at the three soil layers, and their contribution rates are similar, and each index of
the analysis results of the two models is within the required range of model reliability. By comparing
with the Pearson correlation coefficient and distribution map of heavy metal concentration in surface
soil, it is concluded that Zn, Pb, Cr, and Cu are mainly from industrial sewage and air pollution from
coal combustion, while As, Mn, Ni, and V are mainly from agricultural pollution and light industrial
pollution. In future research, it is necessary to investigate the change of heavy metal concentration in
detail from the time dimension to further quantitatively calculate the potential pollutant source and
contribution rate.

Keywords: PMF; UNMIX; source analysis of heavy metals; soil along the river

1. Introduction

Soil heavy metal pollution is an important issue in environmental science, and heavy
metal pollution in urban soil has received increasing research attention [1–3]. With indus-
trial development, human activities have become intense, leading to high contents and
diversity of heavy metals in urban soils. Being toxic and harmful pollutants that are difficult
to degrade, heavy metals not only cause soil quality degradation and reduce crop yield and
quality but also affect human health through food chain accumulation, dust inhalation, skin
contact, and other ways and induce fatal diseases, such as cancer [4]. Moreover, treating
soil pollution is more difficult and time-consuming than treating air and water pollution [5].
After entering the soil, heavy metals exhibit characteristics such as concealment, hysteresis,
accumulation, and irreversibility [6], thereby directly or indirectly endangering human life
and health through the food chain [7–9].

Soil is important for agricultural production and human survival [10]. Heavy metal
pollution in China is not improving, and strict actions must be undertaken to control
heavy metal pollution and reduce its accumulation risk [11,12]. Pollution source alloca-
tion is a key step in addressing pollution threats. Existing heavy metal source analysis
methods can be divided into two major categories: qualitative pollution source identifi-
cation and quantitative pollution source analysis [13]. The former primarily determines
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the pollution source via geostatistical and multivariate statistical analyses. It can identify
possible pollution sources of heavy metals and their major pollution points [14–17].
At present, the main models used to calculate the contribution of pollution sources to
pollutants are multivariate linear regression after absolute principal component analysis
(APCs-MLR), chemical mass balance (CMB) model, positive matrix factorization (PMF),
and UNMIX [18–21]. Among them, the PMF and UNMIX models approved by the U.S.
Environmental Protection Agency can not only provide the number of pollution sources
and the elements contributed by each pollution source but also provide the contribu-
tion rate of each pollution source to the elements [22–24]. Although they have been
widely used in the source analysis of air, water, and sediment pollutants [25–28], they
are rarely used in analyzing soil heavy metal pollution sources [29]. Previous studies
have conducted source analysis of heavy metal pollution in the soil along the Shuimo
River [30]. Using an analysis method that combines UNMIX and PMF is recommended
for source analysis. Thus, by combining the two models, we can overcome both models’
shortcomings and potential errors and obtain more reliable results.

In addition, it is an effective “point to surface” method to use geostatistical analysis
and geographic information systems to interpolate the pollutant concentration of soil sample
points, analyze the spatial distribution characteristics of soil heavy metal pollution, and mine
the spatial distribution rules. The ordinary Kriging interpolation method is an advanced
statistical process of generating estimated surfaces through a group of scattered points with
z values. Compared with the inverse distance weighted interpolation method, the ordinary
Kriging interpolation method takes into account the spatial correlation problem [31] and solves
the problem that it is difficult to estimate the error compared with the spline interpolation
method [32]. When there are many data points, ordinary Kriging’s spatial interpolation
method is more reliable and often used in the field of soil science [33]. Therefore, this paper
uses the ordinary Kriging method and PMF and UNMIX receptor models to explain the
source and distribution of heavy metal pollution in space, so that the distribution of pollution
sources is more intuitive.

2. Geography of the Shuimo River

Urumqi is the capital of the Xinjiang Uyghur Autonomous Region. It is located on
the northern slope of the Tianshan Mountains and is surrounded by desert. It is located
between 42◦45′32.4′′–44◦08′00′′ N and 86◦37′33.3′′–88◦58′24.4′′ E. Urumqi is located in
the center of the Eurasian Continent, Northwest China, and central Xinjiang. It is the
bridgehead of the Second Eurasian Continental Bridge in western China and an important
gateway for China to open to the west. Urumqi is approximately 153 km long from north
to south and 190 km wide from east to west, with a total area of 12,000 km2.

Shuimo River originates from Abuja Hasmudara in the southwest of Fukang City,
Changji Hui Autonomous Prefecture. The river is mainly located in the eastern suburb
of Urumqi. It flows into Bayi Reservoir through Shuimogou District, Tianshan District,
Midong District of Urumqi, and finally flows into Bayi Reservoir. It is a rock fissure spring
river mainly recharged by groundwater. SShimoRiver basin covers E 87◦59′~E88◦09′,
N 43◦45′~N 44◦15′, with a drainage area of 281.4 km2, a water source protection area of
45.7 km2 and a total length of 50 km. The southeast part of the basin is medium-low
mountains, the middle part is low mountains and hills, and the north gradually becomes
a plain area, with an altitude of 600~1800 m [34]. The surface water resource of Shuimo
River is 21.6089 million m3/year, and the groundwater resource is 34.4759 million m3/year.
The annual runoff is relatively stable, without an obvious dry season. The average annual
runoff is 39.67 million m3/year (Weihuliang Observation Station) [35].

3. Sample Collection and Analysis
3.1. Sample Collection

In total, 42 soil sample points were placed along the Shuimo River bank using the grid
method (2 km × 2 km). In addition, parallel sample points were set at 1 and 2 km along
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the vertical direction of the riverbank of each soil sample point, and 80 parallel soil sample
points were thus collected. For each sample point, three layers of soil samples at depths of
0–20, 20–40, and 40–60 cm were collected vertically from the ground surface at every 20 cm
depth [30,36]. Some of the sampling sites were too stiff for the soil texture and therefore
only 0–20 cm or two soil layers of 0–20 and 20–40 cm, and approximately 1 kg of soil
samples was collected for each layer of soil. A total of 122 soil sample sites were collected
along the Shuimo River bank, and the number of soil samples was 334. When collecting
sediment samples, try to choose a place with gentle water flow, and use the plum blossom
mixed sampling method to randomly take 5 times sediments with a depth of 0~10 cm
to mix and record them as a sediment sample. A total of 23 surface sediment samples
at the bottom of the river were collected along the river channel, and they were sealed
and brought back at 4 ◦C. Figure 1 shows the distribution of the sampling points. The
coordinate system used in the drawing is WGS 1984 in the geographical coordinate system.
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3.2. Sample Analysis

Gravel and plant residues were removed from the soil samples, dried in natural shade
indoors, grounded, and passed through 10-mesh and 100-mesh nylon screens to determine
soil pH and heavy metal content, respectively. A portable X-ray fluorescence spectrum
analyzer (Thermo Scientific Nixon XL3t GOLDD analyzer, Thermo Fisher, Wortham, Mas-
sachusetts, USA) was used to rapidly identify all samples to be tested. The test was set to the
soil mode of 90 s, repeated thrice, and the average value was obtained. Simultaneously, 30%
of the samples were tested via the national standard method to calibrate the data measured
by the X-ray fluorescence spectrum analyzer and ensure its accuracy. The national standard
method test was divided into two stages: pretreatment and determination. First, an acid
solution method was used for the pretreatment. We accurately weighed 0.5000 g of soil sam-
ple into a polytetrafluoroethylene crucible, wetted it with 2–3 drops of high-purity water,
and filled it in the order of HF→ HNO3→ HClO4 in strict accordance with the dosage. We
removed the boiled sample for cooling when it emitted slight white smoke. Subsequently,
we added HF→ HClO4 to digest to paste, and the paste residue was dissolved in HNO3 at
low temperature and washed into the colorimetric tube [37]. After pretreatment, the arsenic
content (As) was determined via microwave digestion/atomic fluorescence spectrometry
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(Aurora lumina 3400 atomic fluorescence spectrometer, Aurora Instruments, Vancouver,
British Columbia, CAN ), and the contents of nine heavy metals (Co, Zn, Cu, Ni, and Cr)
were determined via flame atomic absorption spectrometry (PerkinElmer aa900 atomic
absorption spectrometer, PerkinElmer, Waltham, MA, USA). Compared to the national
standard method, this method has an accuracy of over 95%. The above-mentioned results
show that the test results of the X-ray fluorescence spectrum analyzer are more accurate
and convenient. Therefore, all data measured by this instrument were used for statistical
analysis in this study to reduce the error.

3.3. Quality Assurance and Control

The testing standards refer to HJ/T166-2004 Technical Code for Soil Environmental
Monitoring and Modern Analysis Methods of Soil Elements of China National Environ-
mental Monitoring Station. Compared with the national standard method, the accuracy of
the fast-testing method used is more than 95%.

4. Introduction to Models
4.1. PMF Model

Paatero and Tapper proposed the concept of the PMF model in 1994. It is a source
analysis method based on factor analysis and has been updated to PMF version 5.0. When
a dataset with n samples and m chemical species is imported into the PMF model, it is
considered that the dimension of Matrix X is n × m [38]. This model decomposes the
original matrix Xij into two-factor matrices, gik and fik, and residual matrix eij. The formula
used is as follows:

Xij = ∑p
k=1 gik fik+eij (1)

where Xij is the concentration of the j-th heavy metal in sample i, gik is the contribution rate
of the k-th pollution source in sample i, and fik is the characteristic value of the concentration
of k-th heavy metal of pollution source i. The residual matrix eij was calculated from the
minimum value of the objective function Q.

Q = ∑n
i=1 ∑m

j=1

(
eij

uij

)2

(2)

where uij is the uncertainty of the j-th heavy metal in sample i. The MDL calculation method
followed that described by Chen et al. [39].

4.2. UNMIX Model

In 2003, Henry proposed a calculation method for UNMIX model and launched the
UNMIX model software on the official website of the EPA of the United States. The UNMIX
model provides a visible graphical interface, and graphical diagnostic tools can be included
in the results. The model obtains the results according to the selected components and
expresses the uncertainty information in the analysis results, which partly reduces the
impact of anthropogenic factors [40]. The UNMIX model has a strict data screening process
based on eigenvalue analysis, thereby eliminating missing data or data lower than the
minimum detection limit. As this model uses the geometric concept of self-modeling curve
resolution, the model results must be non-negative. Using the singular value decomposition
(SVD) method, the model estimates the number of sources by reducing the dimension of
the data space m to p [29,41]. The calculation formula is as follows:

Cij = ∑m
k=1 FjkSjk + E (3)

where Cij is the content of the j-th element in the i-th regional sample (soil); Fjk is the
element content of the j-th sample in source k (k = 1, . . . M), representing the composition
of the source; Sjk represents the total amount of source K in the i-th sample, that is, the
contribution rate of the source; and E is the uncertainty of the analysis process or the
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standard deviation of each source component. In this study, to eliminate the influence of
the huge difference between different trace heavy metals in the soil on the analysis results,
before inputting the data into the UNMIX model, the deviation normalization method was
used to process the whole data. The calculation formula is as follows:

Xk=
Xi −MinXi

MaxXi −MinXi
(4)

Deviation standardization was applied to 2856 data points from 357 soil sample sites
containing eight heavy metals (Pb, Zn, Cu, Ni, Mn, Cr, As, and V). The normalized data
were dimensionless, and the value of the variable observations ranged between 0 and 1.
Standardized data were replaced with UNMIX 6.0 for analysis.

5. Results and Discussion
5.1. Analysis of Heavy Metal Pollution along the Shuimo River

According to the soil layers, the collected soil samples were divided into three parts.
Since some places have high walls, private houses, and steep slopes, samples of individual
soil layers were not collected, and therefore, the number of samples of each soil layer was
inconsistent. There were 121 samples in the 0–20 cm soil layer, 109 samples in the 20–40 cm
soil layer, 104 samples in the 40–60 cm soil layer, and 23 samples in the sediment soil layer.
Since the number of sediment soil layer samples was small, and the statistical significance
was not significant, statistical characteristics and correlation analysis were not conducted.

Based on the statistical results of heavy metal contents in the soil along the Shuimo
River (Table 1), the average concentration values of As, Pb, Zn, Cu, Ni, Mn, Cr, and
V were 12.65, 20.00, 80.84, 38.78, 49.70, 532.47, 53.18, and 111.29 mg/kg, respectively.
Moreover, the average concentrations of all heavy metals except Mn were higher than
the background values of the corresponding local soil heavy metals, and the average
concentration of Ni in each layer highly exceeded the background value concentration of
Xinjiang Uygur Autonomous Region in the China Soil Element Background Value issued by
the National Environmental Protection Administration in 1990, reaching 1.85, 1.87 and 1.92
times, respectively. Based on the degree of coefficient of variation [42], Zn, Pb, As, Cr, and
Cu was highly variable (CV > 30%), indicating that the spatial distribution of these five
heavy metals varies, and the source may be significantly affected by external interference.
Ni, Mn, and V were moderately variable (10% < CV < 30%), indicating that these three
heavy metals are relatively evenly distributed. The concentrations of all heavy metals in
this study were lower than the screening value of the GB 36600-2018 soil environmental
quality control standard for soil pollution risk of construction land (Trial) (Zn, Mn, and
V have no screening value, and Cr screening value is hexavalent), indicating that the soil
environmental quality along the Shuimo River is generally good. However, compared with
the background value, the eight heavy metals were enriched and may pose a pollution risk,
and thus, further pollution source analysis is warranted.
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Table 1. Statistical analysis results of heavy metals in soils along the Shuimo River.

Soil Depth
(cm)

Heavy
Metals

ω (mg/kg)
Variant Line
Number (%)Minimum

Value
Mean
Value

Maximum
Value

Median
Value

Standard
Deviation

BackGround
Value

Filtered
Value

0–20

As 6.72 12.69 43.49 11.67 5.13 11.2 60 40.46
Pb 10.32 20.60 66.49 18.59 8.21 19.4 800 39.87
Zn 46.79 79.07 230.14 69.38 29.89 68.8 / 37.80
Cu 18.09 39.01 144.41 37.69 12.85 26.7 18,000 32.95
Ni 29.57 49.29 86.74 47.55 13.07 26.6 900 26.53
Mn 377.08 529.00 769.47 525.68 66.05 688 / 12.49
Cr 20.75 52.40 187.68 50.68 18.83 49.3 / 35.93
V 70.24 112.31 175.77 112.66 15.24 74.9 / 13.57

20–40

As 6.06 12.65 41.61 11.80 4.92 11.2 60 38.92
Pb 9.07 19.53 48.47 17.31 7.42 19.4 800 37.98
Zn 43.65 78.94 264.57 66.62 38.23 68.8 / 48.43
Cu 20.92 37.40 103.88 35.40 11.72 26.7 18,000 31.33
Ni 30.61 49.74 92.49 46.77 12.91 26.6 900 25.95
Mn 334.71 545.36 1413.36 531.02 117.17 688 / 21.49
Cr 20.43 56.02 252.82 52.86 27.02 49.3 / 48.23
V 58.57 112.63 182.32 114.03 15.95 74.9 / 14.16

40–60

As 5.58 12.89 45.64 11.71 5.61 11.2 60 43.57
Pb 9.46 20.10 70.43 17.71 9.97 19.4 800 49.63
Zn 22.64 76.98 323.71 66.53 36.04 68.8 / 46.82
Cu 19.1 39.34 101.43 36.83 13.63 26.7 18,000 34.65
Ni 30.44 50.97 83.81 49.67 12.38 26.6 900 24.29
Mn 261.17 543.00 1307.35 532.55 116.88 688 / 21.53
Cr 17.5 50.90 128.46 49.86 16.14 49.3 / 31.70
V 44.38 111.74 181.42 112.35 18.50 74.9 / 16.55

Note: The background values of soil heavy metals were selected from the soil heavy metal concentration of layer
a in the Xinjiang Uygur autonomous region divided by administrative provinces and cities (because the soil of
layer B in arid areas is not fully developed, only layers a and C were selected in the sampling process. Layer a is
the surface layer of soil, and layer C is the parent material of soil formation; therefore, layer a was selected).

5.2. Correlation Analysis of Heavy Metal Contents

The correlation between heavy metal contents can provide information about heavy
metal sources. As seen in Figure 2, Pearson was adopted to describe the correlation since
the set of data followed a normal distribution.
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Table 2 presents the Pearson correlation coefficient analysis results for the heavy
metal content in soils along the Shuimo River. As presented in Table 2, Zn and Pb were
significantly positively correlated in all soil layers (p < 0.01), and Cu was significantly
positively correlated with these two metals in all soil layers (p < 0.05), indicating that these
three elements may have similar sources. As and Cu and As and V also had a certain
correlation in each soil layer (p < 0.05); however, no significant correlation was observed
between Cu and V, and there was no correlation between Ni and other heavy metals.
Pearson’s correlation coefficient can only be used as a reference for heavy metal source
analyses, and thus, it cannot be used for reaching conclusions. Further verification and
analysis are required to accurately determine the source of heavy metals.

Table 2. Pearson correlation coefficient of soil heavy metal contents at different sampling depths
along the Shuimo River.

Sampling Depth
(cm) Heavy Metal As Pb Zn Cu Ni Mn Cr

0–20

As 1.00
Pb 0.14 1.00
Zn 0.14 0.69 ** 1.00
Cu 0.30 * 0.30 * 0.67 ** 1.00
Ni 0.04 −0.08 −0.05 0.05 1.00
Mn 0.28 0.07 0.14 0.23 0.22 1.00
Cr 0.11 0.39 * 0.48 * 0.22 −0.17 0.19 1.00
V 0.45 * 0.17 0.03 0.17 0.12 0.35 * 0.23

20–40

As 1.00
Pb 0.12 1.00
Zn 0.12 0.86 ** 1.00
Cu 0.32 * 0.70 ** 0.74 ** 1.00
Ni 0.13 0.10 0.15 0.28 1.00
Mn 0.34 * 0.18 0.23 0.33 * 0.03 1.00
Cr 0.11 0.45 * 0.47 * 0.42 * 0.20 0.09 1.00
V 0.34 * 0.21 0.14 0.27 0.14 0.29 0.31 *

40–60

As 1.00
Pb 0.22 1.00
Zn 0.12 0.75 ** 1.00
Cu 0.44 * 0.59 * 0.64 ** 1.00
Ni 0.25 0.21 −0.01 0.11 1.00
Mn 0.05 0.07 0.18 0.14 0.11 1.00
Cr 0.41 * 0.16 0.27 0.31 * −0.01 0.05 1.00
V 0.26 −0.01 −0.06 0.27 0.25 0.07 0.24

Note: ** indicates significant correlation at 0.01 level (bilateral), * indicates a significant correlation at the 0.05
level (bilateral).

5.3. Source Analysis of UNMIX and PMF Models

The samples of four soil layers were analyzed using the UNMIX and PMF models,
respectively. After importing the data into the UNMIX software, use the Suggest exclusion
function to screen the data, and the results show that all eight substances meet the software
operation requirements. After the official operation, the software automatically matches
the two sources and fits the proportion of each source. The first step is to import the data
and the uncertainty corresponding to the data into the PMF software. Next, set the number
of the run to 20 and the number of factors to 2. Select the operation result with the largest
Q (Robust) value to record the proportion of each source. After sorting out the operation
results of the two models, Figure 3 is drawn with Origin software. As shown in the figure,
both the UNMIX and PMF models determined the two sources of heavy metals in the soil.
For the UNMIX model, min RSQ is the minimum r2 of any species in the model (the r2 of
any species is greater than this value). Our results show that the minimum RSQ was 0.91,
indicating that 91% of the species variance can be explained by the model, which is larger
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than the minimum value required by the model (min RSQ > 0.8); Min sig/noise = 3.05 in
multiple operations, which was higher than the minimum value required by the system
(min sig/noise > 2). For PMF, the minimum R2 in the three-layer soil operation was between
0.233 and 1, Q(robust)/Q (true) tended to converge, and the residual error was between
−3 and 3, indicating that the model results can efficiently explain the source of soil heavy
metals [43]. Therefore, the analysis results of these two models were reliable. As shown
in Figure 3, according to the UNMIX and PMF analysis results, the proportions of Zn and
Pb sources in most soil layers are approximately the same, indicating that these two heavy
metals likely have the same source. The Pearson correlation coefficient analysis results
presented in Table 2 also reveal that Pb and Zn are significantly correlated, which further
supports this view. By comparing the source proportions of each soil layer, the source
proportions of different soil layers were significantly different, indicating that different
pollution sources have different effects on different soil layers. When the Pb and Zn sources
increase (decrease), other heavy metals decrease (increase), indicating that other heavy
metals may have different Pb and Zn sources. The analysis results of the two models for
the three soil layers of 0–20 cm, 20–40 cm, and 40–60 cm were very similar; however, the
difference in the sediment layer was relatively high. The sediment layer is considered to
have very few samples, resulting in large fluctuations in the model analysis results; thus,
the reliability is low. According to the analysis results of the two models, the Source 1
contributions of As, Mn, Ni, and V were primarily concentrated in the surface soil, and the
analysis results of the UNMIX model were more obvious than those of the PMF model,
indicating that these four heavy metals may belong to the same source and tend to be
caused by later human activities.
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5.4. Surface Distribution of Heavy Metal Concentration via the Kriging Interpolation Method

Only the surface soil was sampled completely among the three soil layers, and other
soil layers could not be excavated entirely because of various factors; therefore, the sam-
pling points were incomplete. Since the expected value of attribute value is assumed to be
unknown, the ordinary Kriging interpolation method is used to draw the spatial distribu-
tion map of pollutants. As shown in Figure 4, we used the ordinary Kriging interpolation
method to draw the distribution map of heavy metal concentration in the 0–20 cm soil layer
and further analyzed the heavy metal sources using this map. Based on the correlation
analysis, it can be seen that there is a significant correlation among the three heavy metals
Zn, Pb, and Cu, and it can be seen from the comparison of different soil layers in Figure 2
that the change rule of source percentage among As, Mn and V is almost the same. Ac-
cording to the distribution law of heavy metal concentration in Figure 4, it can be found
that the concentration of Zn, Pb, Cr, and Cu in the south end of the river is significantly
higher than that in the north end. This shows that the four heavy metals Zn, Pb, Cr, and
Cu come from one of the pollution sources, and the pollution source is concentrated in the
south end of the river. According to the survey and relevant documents, Weihuliang Coal
Mine, Weihuliang Power Plant, Cement Plant, Yinjia Paper, and other enterprises and many
domestic waste storage sites are distributed within two kilometers around the sampling
point at the south end. Studies have found that Cu and Zn mainly come from garbage
incineration and industrial emissions, and some also come from coal emissions [44]. It is
generally believed that Pb mainly comes from coal combustion, industrial utilization of
lead-containing ores, combustion of crude oil and leaded gasoline, and vehicle exhaust
emissions [45]. Cr may come from metallurgy, electroplating, paper making, machinery
manufacturing, and other industries, mainly used in metal surface treatment and printing
and dyeing industries [46]. It can be inferred that Source 1 mainly represents the pollution
of industrial sewage and air emissions from coal combustion.

According to the comparison of different soil layers in Figure 3, it can be found that
the change rule of source percentage among As, Mn, and V is almost the same, and Figure 4
shows that the concentration of As, Mn, Ni, and V is low near the riverbank and high
far from the river. According to this, it can be judged that As, Mn, Ni, and V are from
another pollution source, and the pollution source is more evenly distributed in the slightly
distant places on both sides of the river. It has been found that the element As is rare in the
natural environment and is an important component of chemical fertilizers and pesticides.
It is also a major pollutant in the cinder dump area [47]. The low-grade superphosphate
and phosphate rock powder in chemical fertilizers contain trace As [48]. The heavy metal
element Ni is mainly used in the electroplating industry or as a catalyst in the industry [46].
Mn is mainly used in the production of glass colorants, paints, pigments, matches, soaps,
artificial rubber, plastics, pesticides, and other industries. In addition, there are a large
number of Mn compounds in soil. V Pollution mainly comes from organic and inorganic
chemistry, glass and ceramic manufacturing, textile, electronics, pigment, paint, leather,
national defense, and other industries. Generally, exhaust gases pollute the atmosphere and
can settle after diffusion. It can be concluded that source 2 mainly represents agricultural
pollution and light industrial pollution emissions.



Int. J. Environ. Res. Public Health 2022, 19, 14794 10 of 13

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW  10  of  13 
 

 

around the sampling point at the south end. Studies have found that Cu and Zn mainly 

come from garbage incineration and industrial emissions, and some also come from coal 

emissions [44]. It is generally believed that Pb mainly comes from coal combustion, indus‐

trial utilization of lead‐containing ores, combustion of crude oil and leaded gasoline, and 

vehicle exhaust emissions [45]. Cr may come from metallurgy, electroplating, paper mak‐

ing, machinery manufacturing, and other industries, mainly used in metal surface treat‐

ment and printing and dyeing industries [46]. It can be inferred that Source 1 mainly rep‐

resents the pollution of industrial sewage and air emissions from coal combustion. 

 

Figure 4. Distribution of heavy metal concentration in 0–20 cm soil layer. 

According to the comparison of different soil layers in Figure 3, it can be found that 

the change rule of source percentage among As, Mn, and V is almost the same, and Figure 

4 shows that the concentration of As, Mn, Ni, and V is low near the riverbank and high 

far from the river. According to this,  it can be  judged that As, Mn, Ni, and V are from 

another  pollution  source,  and  the  pollution  source  is more  evenly  distributed  in  the 

slightly distant places on both sides of the river. It has been found that the element As is 

Figure 4. Distribution of heavy metal concentration in 0–20 cm soil layer.

However, there is no single source of heavy metals. According to the Pearson correla-
tion analysis, Ni and other heavy metals are not related; however, this does not mean that it
is from another pollution source. Figure 4 shows that the concentration distribution of Ni is
high in the south and low in the north, with a low concentration at the sampling point and
a high concentration around the sampling point. This indicates that the Ni concentration
is the result of the interaction between Sources 1 and 2, and there is no primary source
connecting the two sources.

6. Conclusions

The sources of heavy metals in soils along the Shuimo River in Urumqi were analyzed
using two models, PMF and UNMIX, and the results showed that the combination of
the two methods improved the credibility of the source analysis, and the results of the
analysis of these two models had strong similarity and could be verified with each other.
Although the basic principles of the two models are different, similar conclusions can
be drawn for the same set of data after simulation and analysis, which shows that the
two models are fully applicable to this set of data. This reduces to a certain extent the
possibility of errors in a single software run and further improves the credibility of the



Int. J. Environ. Res. Public Health 2022, 19, 14794 11 of 13

source analysis results. Combined with the ordinary kriging interpolation method, it
can be concluded that the four heavy metals As, Mn, Ni, and V mainly originate from
agricultural pollution and light industrial pollution emissions, and the four heavy metals
Zn, Pb, Cr, and Cu mainly originate from industrial emissions of sewage and air pollution
from coal combustion. However, a comparison of Figure 4 shows that some pollutants
mainly from Source 2 have the same distribution characteristics as Source 1, such as Ni and
V. This shows that the sources of many heavy metals are not single, and even for pollutants
whose main concentration contribution comes from source 1, there is a significant part of
the contribution from source 2, or even other sources outside the two sources, and vice
versa. Therefore, to quantify the number of pollutants discharged from different emission
enterprises, we need a large amount of information on soil heavy metal concentrations in a
more refined and longer time dimension.

Combined with the statistical characteristics of soil heavy metal concentration, the
average concentration of heavy metals in different soil layers is not significantly different,
which may be due to the difficulty of downward migration of pollutants in hard soil
locations where deep excavation is not possible and the concentration of pollutants is
low, but due to the limitation of sampling tools we did not collect, while the downward
migration of pollutants is faster in places where the soil is soft and easy to collect, resulting
in the concentration between the upper and lower layers is not very different, these deep
layers As soon as the data were aggregated, the concentration of pollutants in the deep
layer was not very different from that in the surface layer, so the average values of pollutant
concentrations in the three layers of soil samples were similar in the end.

The overall analysis concluded that the soil environmental conditions along the
Shuimo River were generally good. However, as a big city with a population of more
than 4 million, the situation around the river is likely to deteriorate further with the con-
tinuous influence of human activities. Therefore, to create a good living environment for
the residents along the river, continuous monitoring of the soil heavy metal concentrations
along the Shuimo River is needed. Subsequently, quantitative studies on the sources of
heavy metal pollution can be conducted to analyze the sources of various pollutants in
more detail, thus providing more feasible policy recommendations for river environmental
protection and providing a scientific basis for subsequent studies related to the precise
control of the sources of heavy metal pollutants in the soil along the river.
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