Origins and Natures of Inflation, Dark Matter and Dark Energy, 2nd Edition

A special issue of Universe (ISSN 2218-1997). This special issue belongs to the section "Cosmology".

Deadline for manuscript submissions: 30 November 2024 | Viewed by 475

Special Issue Editor

Special Issue Information

Dear Colleagues,

Exploring the origins of inflation, dark matter, and dark energy is one of the most important problems in modern physics and cosmology. It is strongly expected that primordial gravitational waves will be detected in the near future, revealing the energy scale of inflation of the early universe.

Regarding the origin of dark matter, there are two main possibilities: The first is new particles in particle theory models beyond the standard model. The second is astrophysical objects. On the other hand, two representative approaches exist to investigate the properties of dark energy components leading to late-time cosmic acceleration. One is the introduction of unknown matter, called dark energy, with the negative pressure in general relativity. The other is the extension of gravity on large scales, known as geometrical dark energy.

The main subject of this Special Issue is to understand the origins and true nature of inflation, dark matter, and dark energy. We can consider not only phenomenological approaches but also more fundamental physics, such as higher-dimensional gravity theories, quantum gravity, quantum cosmology, physics in the early universe, quantum field theories and gauge field theories in curved spacetime, string theories, brane world models, and the holographic principle. It is our pleasure to invite submissions to this Special Issue on inflation, dark matter, dark energy, and related foundations of physics.

Dr. Kazuharu Bamba
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Universe is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • inflation
  • dark matter
  • dark energy
  • alternative theory of gravity
  • cosmology
  • physics in the early universe
  • cosmological perturbation theory
  • cosmic microwave background radiation
  • gravitational waves
  • large-scale structure of the universe

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

21 pages, 370 KiB  
Article
The Equation of State of Novel Double-Field Pure K-Essence for Inflation, Dark Matter and Dark Energy
by Changjun Gao
Universe 2024, 10(6), 235; https://doi.org/10.3390/universe10060235 - 24 May 2024
Viewed by 263
Abstract
K-essence theories are usually studied in the framework of a single scalar field ϕ. Namely, the Lagrangian of K-essence is the function of the single scalar field ϕ and its covariant derivative. However, in this paper, we explore a double-field pure K-essence, [...] Read more.
K-essence theories are usually studied in the framework of a single scalar field ϕ. Namely, the Lagrangian of K-essence is the function of the single scalar field ϕ and its covariant derivative. However, in this paper, we explore a double-field pure K-essence, i.e., the corresponding Lagrangian is the function of covariant derivatives of double scalar fields without a dependency on scalar fields themselves. This is why we call it double-field pure K-essence. The novelty of this K-essence is that its Lagrangian contains the quotient term of the kinetic energies from the two scalar fields. This results in the presence of many interesting features; for example, the equation of state can be arbitrarily small and arbitrarily large. In comparison, the range of the equation of state for quintessence is 1 to +1. Interestingly, this novel K-essence can play the role of an inflation field, dark matter, or dark energy by appropriately selecting the expressions of Lagrangian. Full article
Show Figures

Figure 1

Back to TopTop