sensors-logo

Journal Browser

Journal Browser

Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
61 pages, 4074 KiB  
Review
Sensors and Actuation Technologies in Exoskeletons: A Review
by Monica Tiboni, Alberto Borboni, Fabien Vérité, Chiara Bregoli and Cinzia Amici
Sensors 2022, 22(3), 884; https://doi.org/10.3390/s22030884 - 24 Jan 2022
Cited by 46 | Viewed by 10506
Abstract
Exoskeletons are robots that closely interact with humans and that are increasingly used for different purposes, such as rehabilitation, assistance in the activities of daily living (ADLs), performance augmentation or as haptic devices. In the last few decades, the research activity on these [...] Read more.
Exoskeletons are robots that closely interact with humans and that are increasingly used for different purposes, such as rehabilitation, assistance in the activities of daily living (ADLs), performance augmentation or as haptic devices. In the last few decades, the research activity on these robots has grown exponentially, and sensors and actuation technologies are two fundamental research themes for their development. In this review, an in-depth study of the works related to exoskeletons and specifically to these two main aspects is carried out. A preliminary phase investigates the temporal distribution of scientific publications to capture the interest in studying and developing novel ideas, methods or solutions for exoskeleton design, actuation and sensors. The distribution of the works is also analyzed with respect to the device purpose, body part to which the device is dedicated, operation mode and design methods. Subsequently, actuation and sensing solutions for the exoskeletons described by the studies in literature are analyzed in detail, highlighting the main trends in their development and spread. The results are presented with a schematic approach, and cross analyses among taxonomies are also proposed to emphasize emerging peculiarities. Full article
(This article belongs to the Special Issue Sensor Technologies for Human Health Monitoring)
Show Figures

Figure 1

24 pages, 52875 KiB  
Article
Post-Earthquake Building Evaluation Using UAVs: A BIM-Based Digital Twin Framework
by Nathaniel M. Levine and Billie F. Spencer, Jr.
Sensors 2022, 22(3), 873; https://doi.org/10.3390/s22030873 - 24 Jan 2022
Cited by 45 | Viewed by 7302
Abstract
Computer vision has shown potential for assisting post-earthquake inspection of buildings through automatic damage detection in images. However, assessing the safety of an earthquake-damaged building requires considering this damage in the context of its global impact on the structural system. Thus, an inspection [...] Read more.
Computer vision has shown potential for assisting post-earthquake inspection of buildings through automatic damage detection in images. However, assessing the safety of an earthquake-damaged building requires considering this damage in the context of its global impact on the structural system. Thus, an inspection must consider the expected damage progression of the associated component and the component’s contribution to structural system performance. To address this issue, a digital twin framework is proposed for post-earthquake building evaluation that integrates unmanned aerial vehicle (UAV) imagery, component identification, and damage evaluation using a Building Information Model (BIM) as a reference platform. The BIM guides selection of optimal sets of images for each building component. Then, if damage is identified, each image pixel is assigned to a specific BIM component, using a GrabCut-based segmentation method. In addition, 3D point cloud change detection is employed to identify nonstructural damage and associate that damage with specific BIM components. Two example applications are presented. The first develops a digital twin for an existing reinforced concrete moment frame building and demonstrates BIM-guided image selection and component identification. The second uses a synthetic graphics environment to demonstrate 3D point cloud change detection for identifying damaged nonstructural masonry walls. In both examples, observed damage is tied to BIM components, enabling damage to be considered in the context of each component’s known design and expected earthquake performance. The goal of this framework is to combine component-wise damage estimates with a pre-earthquake structural analysis of the building to predict a building’s post-earthquake safety based on an external UAV survey. Full article
Show Figures

Figure 1

13 pages, 3057 KiB  
Article
Multi-Gas Detection System Based on Non-Dispersive Infrared (NDIR) Spectral Technology
by Manlin Xu, Bo Peng, Xiangyi Zhu and Yongcai Guo
Sensors 2022, 22(3), 836; https://doi.org/10.3390/s22030836 - 22 Jan 2022
Cited by 28 | Viewed by 4139
Abstract
Automobile exhaust gases, such as carbon dioxide (CO2), carbon monoxide (CO), and propane (C3H8), cause the greenhouse effect, photochemical smog, and haze, threatening the urban atmosphere and human health. In this study, a non-dispersive infrared (NDIR) multi-gas [...] Read more.
Automobile exhaust gases, such as carbon dioxide (CO2), carbon monoxide (CO), and propane (C3H8), cause the greenhouse effect, photochemical smog, and haze, threatening the urban atmosphere and human health. In this study, a non-dispersive infrared (NDIR) multi-gas detection system consisting of a single broadband light source, gas cell, and four-channel pyroelectric detector was developed. The system can be used to economically detect gas concentration in the range of 0–5000 ppm for C3H8, 0–14% for CO, and 0–20% for CO2. According to the experimental data, the concentration inversion model was established using the least squares between the voltage ratio and the concentration. Additionally, the interference coefficient between different gases was tested. Therefore, the interference models between the three gases were established by the least square method. The concentration inversion model was experimentally verified, and it was observed that the full-scale error of the sensor changed less than 3.5%, the detection repeatability error was lower than 4.5%, and the detection stability was less than 2.7%. Therefore, the detection system is economical and energy efficient and it is a promising method for the analysis of automobile exhaust gases. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

18 pages, 23878 KiB  
Article
Addressing Gaps in Small-Scale Fisheries: A Low-Cost Tracking System
by Anna Nora Tassetti, Alessandro Galdelli, Jacopo Pulcinella, Adriano Mancini and Luca Bolognini
Sensors 2022, 22(3), 839; https://doi.org/10.3390/s22030839 - 22 Jan 2022
Cited by 18 | Viewed by 4472
Abstract
During the last decade vessel-position-recording devices, such as the Vessel Monitoring System and the Automatic Identification System, have increasingly given accurate spatial and quantitative information of industrial fisheries. On the other hand, small-scale fisheries (vessels below 12 m) remain untracked and largely unregulated [...] Read more.
During the last decade vessel-position-recording devices, such as the Vessel Monitoring System and the Automatic Identification System, have increasingly given accurate spatial and quantitative information of industrial fisheries. On the other hand, small-scale fisheries (vessels below 12 m) remain untracked and largely unregulated even though they play an important socio-economic and cultural role in European waters and coastal communities and account for most of the total EU fishing fleet. The typically low-technological capacity of these small-scale fishing boats—for which space and power onboard are often limited—as well their reduced operative range encourage the development of efficient, low-cost, and low-burden tracking solutions. In this context, we designed a cost-effective and scalable prototypic architecture to gather and process positional data from small-scale vessels, making use of a LoRaWAN/cellular network. Data collected by our first installation are presented, as well as its preliminary processing. The emergence of a such low-cost and open-source technology coupled to artificial intelligence could open new opportunities for equipping small-scale vessels, collecting their trajectory data, and estimating their fishing effort (information which has historically not been present). It enables a new monitoring strategy that could effectively include small-scale fleets and support the design of new policies oriented to inform coastal resource and fisheries management. Full article
Show Figures

Figure 1

12 pages, 2786 KiB  
Communication
UHF RFID Temperature Sensor Tag Integrated into a Textile Yarn
by Sofia Benouakta, Florin Doru Hutu and Yvan Duroc
Sensors 2022, 22(3), 818; https://doi.org/10.3390/s22030818 - 21 Jan 2022
Cited by 12 | Viewed by 2775
Abstract
This paper presents the design of an ultra high-frequency (UHF) radio frequency identification (RFID) sensor tag integrated into a textile yarn and manufactured using the E-Thread® technology. The temperature detection concept is based on the modification of the impedance matching between RFID [...] Read more.
This paper presents the design of an ultra high-frequency (UHF) radio frequency identification (RFID) sensor tag integrated into a textile yarn and manufactured using the E-Thread® technology. The temperature detection concept is based on the modification of the impedance matching between RFID tag’s antenna and the chip. This modification is created by the change in the resistance of a thermistor integrated within the tag system due to a temperature variation. Moreover, in order to obtain an environment independent detection, a differential approach is proposed that avoids the use of a pre-calibration phase by the use of a reference tag. Experimental characterization demonstrates the RFID sensor’s potential of detecting a temperature variation or a temperature threshold between 25 and 70 °C through the variation of the transmitted differential activation power. Full article
(This article belongs to the Special Issue RF Sensors: Design, Optimization and Applications)
Show Figures

Figure 1

14 pages, 3219 KiB  
Article
Photonic Label-Free Biosensors for Fast and Multiplex Detection of Swine Viral Diseases
by Maribel Gómez-Gómez, Carles Sánchez, Sergio Peransi, David Zurita, Laurent Bellieres, Sara Recuero, Manuel Rodrigo, Santiago Simón, Alessandra Camarca, Alessandro Capo, Maria Staiano, Antonio Varriale, Sabato D’Auria, Georgios Manessis, Athnasios I. Gelasakis, Ioannis Bossis, Gyula Balka, Lilla Dénes, Maciej Frant, Lapo Nannucci, Matteo Bonasso, Alessandro Giusti and Amadeu Grioladd Show full author list remove Hide full author list
Sensors 2022, 22(3), 708; https://doi.org/10.3390/s22030708 - 18 Jan 2022
Cited by 9 | Viewed by 3033
Abstract
In this paper we present the development of photonic integrated circuit (PIC) biosensors for the label-free detection of six emerging and endemic swine viruses, namely: African Swine Fever Virus (ASFV), Classical Swine Fever Virus (CSFV), Porcine Reproductive and Respiratory Syndrome Virus (PPRSV), Porcine [...] Read more.
In this paper we present the development of photonic integrated circuit (PIC) biosensors for the label-free detection of six emerging and endemic swine viruses, namely: African Swine Fever Virus (ASFV), Classical Swine Fever Virus (CSFV), Porcine Reproductive and Respiratory Syndrome Virus (PPRSV), Porcine Parvovirus (PPV), Porcine Circovirus 2 (PCV2), and Swine Influenza Virus A (SIV). The optical biosensors are based on evanescent wave technology and, in particular, on Resonant Rings (RRs) fabricated in silicon nitride. The novel biosensors were packaged in an integrated sensing cartridge that included a microfluidic channel for buffer/sample delivery and an optical fiber array for the optical operation of the PICs. Antibodies were used as molecular recognition elements (MREs) and were selected based on western blotting and ELISA experiments to ensure the high sensitivity and specificity of the novel sensors. MREs were immobilized on RR surfaces to capture viral antigens. Antibody–antigen interactions were transduced via the RRs to a measurable resonant shift. Cell culture supernatants for all of the targeted viruses were used to validate the biosensors. Resonant shift responses were dose-dependent. The results were obtained within the framework of the SWINOSTICS project, contributing to cover the need of the novel diagnostic tools to tackle swine viral diseases. Full article
Show Figures

Figure 1

15 pages, 12630 KiB  
Article
A Real-Time Zanthoxylum Target Detection Method for an Intelligent Picking Robot under a Complex Background, Based on an Improved YOLOv5s Architecture
by Zhibo Xu, Xiaopeng Huang, Yuan Huang, Haobo Sun and Fangxin Wan
Sensors 2022, 22(2), 682; https://doi.org/10.3390/s22020682 - 17 Jan 2022
Cited by 18 | Viewed by 3313
Abstract
The target recognition algorithm is one of the core technologies of Zanthoxylum pepper-picking robots. However, most existing detection algorithms cannot effectively detect Zanthoxylum fruit covered by branches, leaves and other fruits in natural scenes. To improve the work efficiency and adaptability of the [...] Read more.
The target recognition algorithm is one of the core technologies of Zanthoxylum pepper-picking robots. However, most existing detection algorithms cannot effectively detect Zanthoxylum fruit covered by branches, leaves and other fruits in natural scenes. To improve the work efficiency and adaptability of the Zanthoxylum-picking robot in natural environments, and to recognize and detect fruits in complex environments under different lighting conditions, this paper presents a Zanthoxylum-picking-robot target detection method based on improved YOLOv5s. Firstly, an improved CBF module based on the CBH module in the backbone is raised to improve the detection accuracy. Secondly, the Specter module based on CBF is presented to replace the bottleneck CSP module, which improves the speed of detection with a lightweight structure. Finally, the Zanthoxylum fruit algorithm is checked by the improved YOLOv5 framework, and the differences in detection between YOLOv3, YOLOv4 and YOLOv5 are analyzed and evaluated. Through these improvements, the recall rate, recognition accuracy and mAP of the YOLOv5s are 4.19%, 28.7% and 14.8% higher than those of the original YOLOv5s, YOLOv3 and YOLOv4 models, respectively. Furthermore, the model is transferred to the computing platform of the robot with the cutting-edge NVIDIA Jetson TX2 device. Several experiments are implemented on the TX2, yielding an average time of inference of 0.072, with an average GPU load in 30 s of 20.11%. This method can provide technical support for pepper-picking robots to detect multiple pepper fruits in real time. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

17 pages, 6673 KiB  
Article
A Mass-Producible Washable Smart Garment with Embedded Textile EMG Electrodes for Control of Myoelectric Prostheses: A Pilot Study
by Milad Alizadeh-Meghrazi, Gurjant Sidhu, Saransh Jain, Michael Stone, Ladan Eskandarian, Amirali Toossi and Milos R. Popovic
Sensors 2022, 22(2), 666; https://doi.org/10.3390/s22020666 - 15 Jan 2022
Cited by 18 | Viewed by 3687
Abstract
Electromyography (EMG) is the resulting electrical signal from muscle activity, commonly used as a proxy for users’ intent in voluntary control of prosthetic devices. EMG signals are recorded with gold standard Ag/AgCl gel electrodes, though there are limitations in continuous use applications, with [...] Read more.
Electromyography (EMG) is the resulting electrical signal from muscle activity, commonly used as a proxy for users’ intent in voluntary control of prosthetic devices. EMG signals are recorded with gold standard Ag/AgCl gel electrodes, though there are limitations in continuous use applications, with potential skin irritations and discomfort. Alternative dry solid metallic electrodes also face long-term usability and comfort challenges due to their inflexible and non-breathable structures. This is critical when the anatomy of the targeted body region is variable (e.g., residual limbs of individuals with amputation), and conformal contact is essential. In this study, textile electrodes were developed, and their performance in recording EMG signals was compared to gel electrodes. Additionally, to assess the reusability and robustness of the textile electrodes, the effect of 30 consumer washes was investigated. Comparisons were made between the signal-to-noise ratio (SNR), with no statistically significant difference, and with the power spectral density (PSD), showing a high correlation. Subsequently, a fully textile sleeve was fabricated covering the forearm, with 14 textile electrodes. For three individuals, an artificial neural network model was trained, capturing the EMG of 7 distinct finger movements. The personalized models were then used to successfully control a myoelectric prosthetic hand. Full article
(This article belongs to the Special Issue Smart Textiles Technologies and Wearable Sensors)
Show Figures

Figure 1

12 pages, 4083 KiB  
Article
A Dielectric Elastomer-Based Multimodal Capacitive Sensor
by Yuting Zhu, Tim Giffney and Kean Aw
Sensors 2022, 22(2), 622; https://doi.org/10.3390/s22020622 - 14 Jan 2022
Cited by 13 | Viewed by 3200
Abstract
Dielectric elastomer (DE) sensors have been widely used in a wide variety of applications, such as in robotic hands, wearable sensors, rehabilitation devices, etc. A unique dielectric elastomer-based multimodal capacitive sensor has been developed to quantify the pressure and the location of any [...] Read more.
Dielectric elastomer (DE) sensors have been widely used in a wide variety of applications, such as in robotic hands, wearable sensors, rehabilitation devices, etc. A unique dielectric elastomer-based multimodal capacitive sensor has been developed to quantify the pressure and the location of any touch simultaneously. This multimodal sensor is a soft, flexible, and stretchable dielectric elastomer (DE) capacitive pressure mat that is composed of a multi-layer soft and stretchy DE sensor. The top layer measures the applied pressure, while the underlying sensor array enables location identification. The sensor is placed on a passive elastomeric substrate in order to increase deformation and optimize the sensor’s sensitivity. This DE multimodal capacitive sensor, with pressure and localization capability, paves the way for further development with potential applications in bio-mechatronics technology and other humanoid devices. The sensor design could be useful for robotic and other applications, such as fruit picking or as a bio-instrument for the diabetic insole. Full article
(This article belongs to the Special Issue Stimuli-Responsive Flexible Sensors)
Show Figures

Graphical abstract

17 pages, 821 KiB  
Article
Exploring Silent Speech Interfaces Based on Frequency-Modulated Continuous-Wave Radar
by David Ferreira, Samuel Silva, Francisco Curado and António Teixeira
Sensors 2022, 22(2), 649; https://doi.org/10.3390/s22020649 - 14 Jan 2022
Cited by 11 | Viewed by 3328
Abstract
Speech is our most natural and efficient form of communication and offers a strong potential to improve how we interact with machines. However, speech communication can sometimes be limited by environmental (e.g., ambient noise), contextual (e.g., need for privacy), or health conditions (e.g., [...] Read more.
Speech is our most natural and efficient form of communication and offers a strong potential to improve how we interact with machines. However, speech communication can sometimes be limited by environmental (e.g., ambient noise), contextual (e.g., need for privacy), or health conditions (e.g., laryngectomy), preventing the consideration of audible speech. In this regard, silent speech interfaces (SSI) have been proposed as an alternative, considering technologies that do not require the production of acoustic signals (e.g., electromyography and video). Unfortunately, despite their plentitude, many still face limitations regarding their everyday use, e.g., being intrusive, non-portable, or raising technical (e.g., lighting conditions for video) or privacy concerns. In line with this necessity, this article explores the consideration of contactless continuous-wave radar to assess its potential for SSI development. A corpus of 13 European Portuguese words was acquired for four speakers and three of them enrolled in a second acquisition session, three months later. Regarding the speaker-dependent models, trained and tested with data from each speaker while using 5-fold cross-validation, average accuracies of 84.50% and 88.00% were respectively obtained from Bagging (BAG) and Linear Regression (LR) classifiers, respectively. Additionally, recognition accuracies of 81.79% and 81.80% were also, respectively, achieved for the session and speaker-independent experiments, establishing promising grounds for further exploring this technology towards silent speech recognition. Full article
(This article belongs to the Special Issue Future Speech Interfaces with Sensors and Machine Intelligence)
Show Figures

Figure 1

24 pages, 7214 KiB  
Article
Above-Ground Biomass Estimation in Oats Using UAV Remote Sensing and Machine Learning
by Prakriti Sharma, Larry Leigh, Jiyul Chang, Maitiniyazi Maimaitijiang and Melanie Caffé
Sensors 2022, 22(2), 601; https://doi.org/10.3390/s22020601 - 13 Jan 2022
Cited by 30 | Viewed by 4770
Abstract
Current strategies for phenotyping above-ground biomass in field breeding nurseries demand significant investment in both time and labor. Unmanned aerial vehicles (UAV) can be used to derive vegetation indices (VIs) with high throughput and could provide an efficient way to predict forage yield [...] Read more.
Current strategies for phenotyping above-ground biomass in field breeding nurseries demand significant investment in both time and labor. Unmanned aerial vehicles (UAV) can be used to derive vegetation indices (VIs) with high throughput and could provide an efficient way to predict forage yield with high accuracy. The main objective of the study is to investigate the potential of UAV-based multispectral data and machine learning approaches in the estimation of oat biomass. UAV equipped with a multispectral sensor was flown over three experimental oat fields in Volga, South Shore, and Beresford, South Dakota, USA, throughout the pre- and post-heading growth phases of oats in 2019. A variety of vegetation indices (VIs) derived from UAV-based multispectral imagery were employed to build oat biomass estimation models using four machine-learning algorithms: partial least squares (PLS), support vector machine (SVM), Artificial neural network (ANN), and random forest (RF). The results showed that several VIs derived from the UAV collected images were significantly positively correlated with dry biomass for Volga and Beresford (r = 0.2–0.65), however, in South Shore, VIs were either not significantly or weakly correlated with biomass. For Beresford, approximately 70% of the variance was explained by PLS, RF, and SVM validation models using data collected during the post-heading phase. Likewise for Volga, validation models had lower coefficient of determination (R2 = 0.20–0.25) and higher error (RMSE = 700–800 kg/ha) than training models (R2 = 0.50–0.60; RMSE = 500–690 kg/ha). In South Shore, validation models were only able to explain approx. 15–20% of the variation in biomass, which is possibly due to the insignificant correlation values between VIs and biomass. Overall, this study indicates that airborne remote sensing with machine learning has potential for above-ground biomass estimation in oat breeding nurseries. The main limitation was inconsistent accuracy in model prediction across locations. Multiple-year spectral data, along with the inclusion of textural features like crop surface model (CSM) derived height and volumetric indicators, should be considered in future studies while estimating biophysical parameters like biomass. Full article
Show Figures

Figure 1

39 pages, 710 KiB  
Review
A Systematic Review of Wearable Sensors for Monitoring Physical Activity
by Annica Kristoffersson and Maria Lindén
Sensors 2022, 22(2), 573; https://doi.org/10.3390/s22020573 - 12 Jan 2022
Cited by 27 | Viewed by 7082
Abstract
This article reviews the use of wearable sensors for the monitoring of physical activity (PA) for different purposes, including assessment of gait and balance, prevention and/or detection of falls, recognition of various PAs, conduction and assessment of rehabilitation exercises and monitoring of neurological [...] Read more.
This article reviews the use of wearable sensors for the monitoring of physical activity (PA) for different purposes, including assessment of gait and balance, prevention and/or detection of falls, recognition of various PAs, conduction and assessment of rehabilitation exercises and monitoring of neurological disease progression. The article provides in-depth information on the retrieved articles and discusses study shortcomings related to demographic factors, i.e., age, gender, healthy participants vs patients, and study conditions. It is well known that motion patterns change with age and the onset of illnesses, and that the risk of falling increases with age. Yet, studies including older persons are rare. Gender distribution was not even provided in several studies, and others included only, or a majority of, men. Another shortcoming is that none of the studies were conducted in real-life conditions. Hence, there is still important work to be done in order to increase the usefulness of wearable sensors in these areas. The article highlights flaws in how studies based on previously collected datasets report on study samples and the data collected, which makes the validity and generalizability of those studies low. Exceptions exist, such as the promising recently reported open dataset FallAllD, wherein a longitudinal study with older adults is ongoing. Full article
(This article belongs to the Special Issue Embedded Sensor Systems for Health)
Show Figures

Figure 1

12 pages, 2103 KiB  
Article
Magnetic Nanoparticles Enhanced Surface Plasmon Resonance Biosensor for Rapid Detection of Salmonella Typhimurium in Romaine Lettuce
by Devendra Bhandari, Fur-Chi Chen and Roger C. Bridgman
Sensors 2022, 22(2), 475; https://doi.org/10.3390/s22020475 - 9 Jan 2022
Cited by 15 | Viewed by 2641
Abstract
Salmonella is one of the major foodborne pathogens responsible for many cases of illnesses, hospitalizations and deaths worldwide. Although different methods are available to timely detect Salmonella in foods, surface plasmon resonance (SPR) has the benefit of real-time detection with a high sensitivity [...] Read more.
Salmonella is one of the major foodborne pathogens responsible for many cases of illnesses, hospitalizations and deaths worldwide. Although different methods are available to timely detect Salmonella in foods, surface plasmon resonance (SPR) has the benefit of real-time detection with a high sensitivity and specificity. The purpose of this study was to develop an SPR method in conjunction with magnetic nanoparticles (MNPs) for the rapid detection of Salmonella Typhimurium. The assay utilizes a pair of well-characterized, flagellin-specific monoclonal antibodies; one is immobilized on the sensor surface and the other is coupled to the MNPs. Samples of romaine lettuce contaminated with Salmonella Typhimurium were washed with deionized water, and bacterial cells were captured on a filter membrane by vacuum filtration. SPR assays were compared in three different formats—direct assay, sequential two-step sandwich assay, and preincubation one-step sandwich assay. The interaction of flagellin and MNPs with the antibody-immobilized sensor surface were analyzed. SPR signals from a sequential two-step sandwich assay and preincubation one-step sandwich assay were 7.5 times and 14.0 times higher than the direct assay. The detection limits of the assay were 4.7 log cfu/mL in the buffer and 5.2 log cfu/g in romaine lettuce samples. Full article
(This article belongs to the Collection Enabling Technologies for Biosensors)
Show Figures

Figure 1

20 pages, 8860 KiB  
Article
Visualizing Street Pavement Anomalies through Fog Computing V2I Networks and Machine Learning
by Rogelio Bustamante-Bello, Alec García-Barba, Luis A. Arce-Saenz, Luis A. Curiel-Ramirez, Javier Izquierdo-Reyes and Ricardo A. Ramirez-Mendoza
Sensors 2022, 22(2), 456; https://doi.org/10.3390/s22020456 - 8 Jan 2022
Cited by 19 | Viewed by 2602
Abstract
Analyzing data related to the conditions of city streets and avenues could help to make better decisions about public spending on mobility. Generally, streets and avenues are fixed as soon as they have a citizen report or when a major incident occurs. However, [...] Read more.
Analyzing data related to the conditions of city streets and avenues could help to make better decisions about public spending on mobility. Generally, streets and avenues are fixed as soon as they have a citizen report or when a major incident occurs. However, it is uncommon for cities to have real-time reactive systems that detect the different problems they have to fix on the pavement. This work proposes a solution to detect anomalies in streets through state analysis using sensors within the vehicles that travel daily and connecting them to a fog-computing architecture on a V2I network. The system detects and classifies the main road problems or abnormal conditions in streets and avenues using Machine Learning Algorithms (MLA), comparing roughness against a flat reference. An instrumented vehicle obtained the reference through accelerometry sensors and then sent the data through a mid-range communication system. With these data, the system compared an Artificial Neural Network (supervised MLA) and a K-Nearest Neighbor (Supervised MLA) to select the best option to handle the acquired data. This system makes it desirable to visualize the streets’ quality and map the areas with the most significant anomalies. Full article
(This article belongs to the Special Issue Artificial Intelligence and Internet of Things in Autonomous Vehicles)
Show Figures

Figure 1

16 pages, 1705 KiB  
Article
Predicting Knee Joint Kinematics from Wearable Sensor Data in People with Knee Osteoarthritis and Clinical Considerations for Future Machine Learning Models
by Jay-Shian Tan, Sawitchaya Tippaya, Tara Binnie, Paul Davey, Kathryn Napier, J. P. Caneiro, Peter Kent, Anne Smith, Peter O’Sullivan and Amity Campbell
Sensors 2022, 22(2), 446; https://doi.org/10.3390/s22020446 - 7 Jan 2022
Cited by 22 | Viewed by 4425
Abstract
Deep learning models developed to predict knee joint kinematics are usually trained on inertial measurement unit (IMU) data from healthy people and only for the activity of walking. Yet, people with knee osteoarthritis have difficulties with other activities and there are a lack [...] Read more.
Deep learning models developed to predict knee joint kinematics are usually trained on inertial measurement unit (IMU) data from healthy people and only for the activity of walking. Yet, people with knee osteoarthritis have difficulties with other activities and there are a lack of studies using IMU training data from this population. Our objective was to conduct a proof-of-concept study to determine the feasibility of using IMU training data from people with knee osteoarthritis performing multiple clinically important activities to predict knee joint sagittal plane kinematics using a deep learning approach. We trained a bidirectional long short-term memory model on IMU data from 17 participants with knee osteoarthritis to estimate knee joint flexion kinematics for phases of walking, transitioning to and from a chair, and negotiating stairs. We tested two models, a double-leg model (four IMUs) and a single-leg model (two IMUs). The single-leg model demonstrated less prediction error compared to the double-leg model. Across the different activity phases, RMSE (SD) ranged from 7.04° (2.6) to 11.78° (6.04), MAE (SD) from 5.99° (2.34) to 10.37° (5.44), and Pearson’s R from 0.85 to 0.99 using leave-one-subject-out cross-validation. This study demonstrates the feasibility of using IMU training data from people who have knee osteoarthritis for the prediction of kinematics for multiple clinically relevant activities. Full article
(This article belongs to the Special Issue Application for Assistive Technologies and Wearable Sensors)
Show Figures

Figure 1

46 pages, 3853 KiB  
Review
Insole-Based Systems for Health Monitoring: Current Solutions and Research Challenges
by Sophini Subramaniam, Sumit Majumder, Abu Ilius Faisal and M. Jamal Deen
Sensors 2022, 22(2), 438; https://doi.org/10.3390/s22020438 - 7 Jan 2022
Cited by 40 | Viewed by 15660
Abstract
Wearable health monitoring devices allow for measuring physiological parameters without restricting individuals’ daily activities, providing information that is reflective of an individual’s health and well-being. However, these systems need to be accurate, power-efficient, unobtrusive and simple to use to enable a reliable, convenient, [...] Read more.
Wearable health monitoring devices allow for measuring physiological parameters without restricting individuals’ daily activities, providing information that is reflective of an individual’s health and well-being. However, these systems need to be accurate, power-efficient, unobtrusive and simple to use to enable a reliable, convenient, automatic and ubiquitous means of long-term health monitoring. One such system can be embedded in an insole to obtain physiological data from the plantar aspect of the foot that can be analyzed to gain insight into an individual’s health. This manuscript provides a comprehensive review of insole-based sensor systems that measure a variety of parameters useful for overall health monitoring, with a focus on insole-based PPD measurement systems developed in recent years. Existing solutions are reviewed, and several open issues are presented and discussed. The concept of a fully integrated insole-based health monitoring system and considerations for future work are described. By developing a system that is capable of measuring parameters such as PPD, gait characteristics, foot temperature and heart rate, a holistic understanding of an individual’s health and well-being can be obtained without interrupting day-to-day activities. The proposed device can have a multitude of applications, such as for pathology detection, tracking medical conditions and analyzing gait characteristics. Full article
(This article belongs to the Special Issue Advances of Wearables in Health Monitoring)
Show Figures

Figure 1

21 pages, 11989 KiB  
Article
A Social Distance Estimation and Crowd Monitoring System for Surveillance Cameras
by Mohammad Al-Sa’d, Serkan Kiranyaz, Iftikhar Ahmad, Christian Sundell, Matti Vakkuri and Moncef Gabbouj
Sensors 2022, 22(2), 418; https://doi.org/10.3390/s22020418 - 6 Jan 2022
Cited by 20 | Viewed by 4187
Abstract
Social distancing is crucial to restrain the spread of diseases such as COVID-19, but complete adherence to safety guidelines is not guaranteed. Monitoring social distancing through mass surveillance is paramount to develop appropriate mitigation plans and exit strategies. Nevertheless, it is a labor-intensive [...] Read more.
Social distancing is crucial to restrain the spread of diseases such as COVID-19, but complete adherence to safety guidelines is not guaranteed. Monitoring social distancing through mass surveillance is paramount to develop appropriate mitigation plans and exit strategies. Nevertheless, it is a labor-intensive task that is prone to human error and tainted with plausible breaches of privacy. This paper presents a privacy-preserving adaptive social distance estimation and crowd monitoring solution for camera surveillance systems. We develop a novel person localization strategy through pose estimation, build a privacy-preserving adaptive smoothing and tracking model to mitigate occlusions and noisy/missing measurements, compute inter-personal distances in the real-world coordinates, detect social distance infractions, and identify overcrowded regions in a scene. Performance evaluation is carried out by testing the system’s ability in person detection, localization, density estimation, anomaly recognition, and high-risk areas identification. We compare the proposed system to the latest techniques and examine the performance gain delivered by the localization and smoothing/tracking algorithms. Experimental results indicate a considerable improvement, across different metrics, when utilizing the developed system. In addition, they show its potential and functionality for applications other than social distancing. Full article
(This article belongs to the Special Issue Computer Visions and Pattern Recognition)
Show Figures

Figure 1

9 pages, 4541 KiB  
Article
Identification of Corrosion Minerals Using Shortwave Infrared Hyperspectral Imaging
by Thomas De Kerf, Georgios Pipintakos, Zohreh Zahiri, Steve Vanlanduit and Paul Scheunders
Sensors 2022, 22(1), 407; https://doi.org/10.3390/s22010407 - 5 Jan 2022
Cited by 14 | Viewed by 5017
Abstract
In this study, we propose a new method to identify corrosion minerals in carbon steel using hyperspectral imaging (HSI) in the shortwave infrared range (900–1700 nm). Seven samples were artificially corroded using a neutral salt spray test and examined using a hyperspectral camera. [...] Read more.
In this study, we propose a new method to identify corrosion minerals in carbon steel using hyperspectral imaging (HSI) in the shortwave infrared range (900–1700 nm). Seven samples were artificially corroded using a neutral salt spray test and examined using a hyperspectral camera. A normalized cross-correlation algorithm is used to identify four different corrosion minerals (goethite, magnetite, lepidocrocite and hematite), using reference spectra. A Fourier Transform Infrared spectrometer (FTIR) analysis of the scraped corrosion powders was used as a ground truth to validate the results obtained by the hyperspectral camera. This comparison shows that the HSI technique effectively detects the dominant mineral present in the samples. In addition, HSI can also accurately predict the changes in mineral composition that occur over time. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

20 pages, 10570 KiB  
Article
Motion Capture Sensor-Based Emotion Recognition Using a Bi-Modular Sequential Neural Network
by Yajurv Bhatia, ASM Hossain Bari, Gee-Sern Jison Hsu and Marina Gavrilova
Sensors 2022, 22(1), 403; https://doi.org/10.3390/s22010403 - 5 Jan 2022
Cited by 13 | Viewed by 3513
Abstract
Motion capture sensor-based gait emotion recognition is an emerging sub-domain of human emotion recognition. Its applications span a variety of fields including smart home design, border security, robotics, virtual reality, and gaming. In recent years, several deep learning-based approaches have been successful in [...] Read more.
Motion capture sensor-based gait emotion recognition is an emerging sub-domain of human emotion recognition. Its applications span a variety of fields including smart home design, border security, robotics, virtual reality, and gaming. In recent years, several deep learning-based approaches have been successful in solving the Gait Emotion Recognition (GER) problem. However, a vast majority of such methods rely on Deep Neural Networks (DNNs) with a significant number of model parameters, which lead to model overfitting as well as increased inference time. This paper contributes to the domain of knowledge by proposing a new lightweight bi-modular architecture with handcrafted features that is trained using a RMSprop optimizer and stratified data shuffling. The method is highly effective in correctly inferring human emotions from gait, achieving a micro-mean average precision of 0.97 on the Edinburgh Locomotive Mocap Dataset. It outperforms all recent deep-learning methods, while having the lowest inference time of 16.3 milliseconds per gait sample. This research study is beneficial to applications spanning various fields, such as emotionally aware assistive robotics, adaptive therapy and rehabilitation, and surveillance. Full article
(This article belongs to the Special Issue Section “Sensor Networks”: 10th Anniversary)
Show Figures

Figure 1

24 pages, 2193 KiB  
Review
Cost Effective Synthesis of Graphene Nanomaterials for Non-Enzymatic Electrochemical Sensors for Glucose: A Comprehensive Review
by Georgia Balkourani, Theodoros Damartzis, Angeliki Brouzgou and Panagiotis Tsiakaras
Sensors 2022, 22(1), 355; https://doi.org/10.3390/s22010355 - 4 Jan 2022
Cited by 32 | Viewed by 4733
Abstract
The high conductivity of graphene material (or its derivatives) and its very large surface area enhance the direct electron transfer, improving non-enzymatic electrochemical sensors sensitivity and its other characteristics. The offered large pores facilitate analyte transport enabling glucose detection even at very low [...] Read more.
The high conductivity of graphene material (or its derivatives) and its very large surface area enhance the direct electron transfer, improving non-enzymatic electrochemical sensors sensitivity and its other characteristics. The offered large pores facilitate analyte transport enabling glucose detection even at very low concentration values. In the current review paper we classified the enzymeless graphene-based glucose electrocatalysts’ synthesis methods that have been followed into the last few years into four main categories: (i) direct growth of graphene (or oxides) on metallic substrates, (ii) in-situ growth of metallic nanoparticles into graphene (or oxides) matrix, (iii) laser-induced graphene electrodes and (iv) polymer functionalized graphene (or oxides) electrodes. The increment of the specific surface area and the high degree reduction of the electrode internal resistance were recognized as their common targets. Analyzing glucose electrooxidation mechanism over Cu- Co- and Ni-(oxide)/graphene (or derivative) electrocatalysts, we deduced that glucose electrochemical sensing properties, such as sensitivity, detection limit and linear detection limit, totally depend on the route of the mass and charge transport between metal(II)/metal(III); and so both (specific area and internal resistance) should have the optimum values. Full article
(This article belongs to the Special Issue Electrochemical (Bio)sensors for Biomedical Applications)
Show Figures

Graphical abstract

16 pages, 4057 KiB  
Article
Human Activity Recognition via Hybrid Deep Learning Based Model
by Imran Ullah Khan, Sitara Afzal and Jong Weon Lee
Sensors 2022, 22(1), 323; https://doi.org/10.3390/s22010323 - 1 Jan 2022
Cited by 104 | Viewed by 9187
Abstract
In recent years, Human Activity Recognition (HAR) has become one of the most important research topics in the domains of health and human-machine interaction. Many Artificial intelligence-based models are developed for activity recognition; however, these algorithms fail to extract spatial and temporal features [...] Read more.
In recent years, Human Activity Recognition (HAR) has become one of the most important research topics in the domains of health and human-machine interaction. Many Artificial intelligence-based models are developed for activity recognition; however, these algorithms fail to extract spatial and temporal features due to which they show poor performance on real-world long-term HAR. Furthermore, in literature, a limited number of datasets are publicly available for physical activities recognition that contains less number of activities. Considering these limitations, we develop a hybrid model by incorporating Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) for activity recognition where CNN is used for spatial features extraction and LSTM network is utilized for learning temporal information. Additionally, a new challenging dataset is generated that is collected from 20 participants using the Kinect V2 sensor and contains 12 different classes of human physical activities. An extensive ablation study is performed over different traditional machine learning and deep learning models to obtain the optimum solution for HAR. The accuracy of 90.89% is achieved via the CNN-LSTM technique, which shows that the proposed model is suitable for HAR applications. Full article
(This article belongs to the Special Issue Human Activity Recognition Using Deep Learning)
Show Figures

Figure 1

11 pages, 3181 KiB  
Article
Reversible Room Temperature H2 Gas Sensing Based on Self-Assembled Cobalt Oxysulfide
by Hui Zhou, Kai Xu, Nam Ha, Yinfen Cheng, Rui Ou, Qijie Ma, Yihong Hu, Vien Trinh, Guanghui Ren, Zhong Li and Jian Zhen Ou
Sensors 2022, 22(1), 303; https://doi.org/10.3390/s22010303 - 31 Dec 2021
Cited by 15 | Viewed by 2584
Abstract
Reversible H2 gas sensing at room temperature has been highly desirable given the booming of the Internet of Things (IoT), zero-emission vehicles, and fuel cell technologies. Conventional metal oxide-based semiconducting gas sensors have been considered as suitable candidates given their low-cost, high [...] Read more.
Reversible H2 gas sensing at room temperature has been highly desirable given the booming of the Internet of Things (IoT), zero-emission vehicles, and fuel cell technologies. Conventional metal oxide-based semiconducting gas sensors have been considered as suitable candidates given their low-cost, high sensitivity, and long stability. However, the dominant sensing mechanism is based on the chemisorption of gas molecules which requires elevated temperatures to activate the catalytic reaction of target gas molecules with chemisorbed O, leaving the drawbacks of high-power consumption and poor selectivity. In this work, we introduce an alternative candidate of cobalt oxysulfide derived from the calcination of self-assembled cobalt sulfide micro-cages. It is found that the majority of S atoms are replaced by O in cobalt oxysulfide, transforming the crystal structure to tetragonal coordination and slightly expanding the optical bandgap energy. The H2 gas sensing performances of cobalt oxysulfide are fully reversible at room temperature, demonstrating peculiar p-type gas responses with a magnitude of 15% for 1% H2 and a high degree of selectivity over CH4, NO2, and CO2. Such excellent performances are possibly ascribed to the physisorption dominating the gas–matter interaction. This work demonstrates the great potentials of transition metal oxysulfide compounds for room-temperature fully reversible gas sensing. Full article
(This article belongs to the Special Issue Chemiresistive Sensors: Materials and Applications)
Show Figures

Figure 1

59 pages, 2616 KiB  
Review
Electrical and Electrochemical Sensors Based on Carbon Nanotubes for the Monitoring of Chemicals in Water—A Review
by Gookbin Cho, Sawsen Azzouzi, Gaël Zucchi and Bérengère Lebental
Sensors 2022, 22(1), 218; https://doi.org/10.3390/s22010218 - 29 Dec 2021
Cited by 33 | Viewed by 5270
Abstract
Carbon nanotubes (CNTs) combine high electrical conductivity with high surface area and chemical stability, which makes them very promising for chemical sensing. While water quality monitoring has particularly strong societal and environmental impacts, a lot of critical sensing needs remain unmet by commercial [...] Read more.
Carbon nanotubes (CNTs) combine high electrical conductivity with high surface area and chemical stability, which makes them very promising for chemical sensing. While water quality monitoring has particularly strong societal and environmental impacts, a lot of critical sensing needs remain unmet by commercial technologies. In the present review, we show across 20 water monitoring analytes and 90 references that carbon nanotube-based electrochemical sensors, chemistors and field-effect transistors (chemFET) can meet these needs. A set of 126 additional references provide context and supporting information. After introducing water quality monitoring challenges, the general operation and fabrication principles of CNT water quality sensors are summarized. They are sorted by target analytes (pH, micronutrients and metal ions, nitrogen, hardness, dissolved oxygen, disinfectants, sulfur and miscellaneous) and compared in terms of performances (limit of detection, sensitivity and detection range) and functionalization strategies. For each analyte, the references with best performances are discussed. Overall, the most frequently investigated analytes are H+ (pH) and lead (with 18% of references each), then cadmium (14%) and nitrite (11%). Micronutrients and toxic metals cover 40% of all references. Electrochemical sensors (73%) have been more investigated than chemistors (14%) or FETs (12%). Limits of detection in the ppt range have been reached, for instance Cu(II) detection with a liquid-gated chemFET using SWCNT functionalized with peptide-enhanced polyaniline or Pb(II) detection with stripping voltammetry using MWCNT functionalized with ionic liquid-dithizone based bucky-gel. The large majority of reports address functionalized CNTs (82%) instead of pristine or carboxyl-functionalized CNTs. For analytes where comparison is possible, FET-based and electrochemical transduction yield better performances than chemistors (Cu(II), Hg(II), Ca(II), H2O2); non-functionalized CNTs may yield better performances than functionalized ones (Zn(II), pH and chlorine). Full article
(This article belongs to the Special Issue Micro- and Nanostructures for Sensing Applications)
Show Figures

Figure 1

15 pages, 4756 KiB  
Article
Multistage Centrifugal Pump Fault Diagnosis Using Informative Ratio Principal Component Analysis
by Zahoor Ahmad, Tuan-Khai Nguyen, Sajjad Ahmad, Cong Dai Nguyen and Jong-Myon Kim
Sensors 2022, 22(1), 179; https://doi.org/10.3390/s22010179 - 28 Dec 2021
Cited by 21 | Viewed by 2844
Abstract
This study proposes a fault diagnosis method (FD) for multistage centrifugal pumps (MCP) using informative ratio principal component analysis (Ir-PCA). To overcome the interference and background noise in the vibration signatures (VS) of the centrifugal pump, the fault diagnosis method selects the fault-specific [...] Read more.
This study proposes a fault diagnosis method (FD) for multistage centrifugal pumps (MCP) using informative ratio principal component analysis (Ir-PCA). To overcome the interference and background noise in the vibration signatures (VS) of the centrifugal pump, the fault diagnosis method selects the fault-specific frequency band (FSFB) in the first step. Statistical features in time, frequency, and wavelet domains were extracted from the fault-specific frequency band. In the second step, all of the extracted features were combined into a single feature vector called a multi-domain feature pool (MDFP). The multi-domain feature pool results in a larger dimension; furthermore, not all of the features are best for representing the centrifugal pump condition and can affect the condition classification accuracy of the classifier. To obtain discriminant features with low dimensions, this paper introduces a novel informative ratio principal component analysis in the third step. The technique first assesses the feature informativeness towards the fault by calculating the informative ratio between the feature within the class scatteredness and between-class distance. To obtain a discriminant set of features with reduced dimensions, principal component analysis was applied to the features with a high informative ratio. The combination of informative ratio-based feature assessment and principal component analysis forms the novel informative ratio principal component analysis. The new set of discriminant features obtained from the novel technique are then provided to the K-nearest neighbor (K-NN) condition classifier for multistage centrifugal pump condition classification. The proposed method outperformed existing state-of-the-art methods in terms of fault classification accuracy. Full article
(This article belongs to the Special Issue Sensing Technologies for Fault Diagnostics and Prognosis)
Show Figures

Figure 1

32 pages, 14081 KiB  
Review
Recent Advances in Self-Powered Piezoelectric and Triboelectric Sensors: From Material and Structure Design to Frontier Applications of Artificial Intelligence
by Zetian Yang, Zhongtai Zhu, Zixuan Chen, Mingjia Liu, Binbin Zhao, Yansong Liu, Zefei Cheng, Shuo Wang, Weidong Yang and Tao Yu
Sensors 2021, 21(24), 8422; https://doi.org/10.3390/s21248422 - 17 Dec 2021
Cited by 18 | Viewed by 5996
Abstract
The development of artificial intelligence and the Internet of things has motivated extensive research on self-powered flexible sensors. The conventional sensor must be powered by a battery device, while innovative self-powered sensors can provide power for the sensing device. Self-powered flexible sensors can [...] Read more.
The development of artificial intelligence and the Internet of things has motivated extensive research on self-powered flexible sensors. The conventional sensor must be powered by a battery device, while innovative self-powered sensors can provide power for the sensing device. Self-powered flexible sensors can have higher mobility, wider distribution, and even wireless operation, while solving the problem of the limited life of the battery so that it can be continuously operated and widely utilized. In recent years, the studies on piezoelectric nanogenerators (PENGs) and triboelectric nanogenerators (TENGs) have mainly concentrated on self-powered flexible sensors. Self-powered flexible sensors based on PENGs and TENGs have been reported as sensing devices in many application fields, such as human health monitoring, environmental monitoring, wearable devices, electronic skin, human–machine interfaces, robots, and intelligent transportation and cities. This review summarizes the development process of the sensor in terms of material design and structural optimization, as well as introduces its frontier applications in related fields. We also look forward to the development prospects and future of self-powered flexible sensors. Full article
(This article belongs to the Special Issue Frontiers in Flexible Electronics and Sensors)
Show Figures

Figure 1

34 pages, 2959 KiB  
Review
Sensors and Measurements for UAV Safety: An Overview
by Eulalia Balestrieri, Pasquale Daponte, Luca De Vito, Francesco Picariello and Ioan Tudosa
Sensors 2021, 21(24), 8253; https://doi.org/10.3390/s21248253 - 10 Dec 2021
Cited by 35 | Viewed by 6506
Abstract
Unmanned aerial vehicles’ (UAVs) safety has gained great research interest due to the increase in the number of UAVs in circulation and their applications, which has inevitably also led to an increase in the number of accidents in which these vehicles are involved. [...] Read more.
Unmanned aerial vehicles’ (UAVs) safety has gained great research interest due to the increase in the number of UAVs in circulation and their applications, which has inevitably also led to an increase in the number of accidents in which these vehicles are involved. The paper presents a classification of UAV safety solutions that can be found in the scientific literature, putting in evidence the fundamental and critical role of sensors and measurements in the field. Proposals from research on each proposed class concerning flight test procedures, in-flight solutions including soft propeller use, fault and damage detection, collision avoidance and safe landing, as well as ground solution including testing and injury and damage quantification measurements are discussed. Full article
(This article belongs to the Special Issue Advanced UAV-Based Sensor Technologies)
Show Figures

Figure 1

14 pages, 1179 KiB  
Article
Toward Modular and Flexible Open RAN Implementations in 6G Networks: Traffic Steering Use Case and O-RAN xApps
by Marcin Dryjański, Łukasz Kułacz and Adrian Kliks
Sensors 2021, 21(24), 8173; https://doi.org/10.3390/s21248173 - 7 Dec 2021
Cited by 47 | Viewed by 7305
Abstract
The development of cellular wireless systems has entered the phase when 5G networks are being deployed and the foundations of 6G solutions are being identified. However, in parallel to this, another technological breakthrough is observed, as the concept of open radio access networks [...] Read more.
The development of cellular wireless systems has entered the phase when 5G networks are being deployed and the foundations of 6G solutions are being identified. However, in parallel to this, another technological breakthrough is observed, as the concept of open radio access networks is coming into play. Together with advancing network virtualization and programmability, this may reshape the way the functionalities and services related to radio access are designed, leading to modular and flexible implementations. This paper overviews the idea of open radio access networks and presents ongoing O-RAN Alliance standardization activities in this context. The whole analysis is supported by a study of the traffic steering use case implemented in a modular way, following the open networking approach. Full article
(This article belongs to the Special Issue Next Generation Radio Communication Technologies)
Show Figures

Figure 1

20 pages, 11035 KiB  
Review
Recent Progress in Devices Based on Magnetoelectric Composite Thin Films
by Deepak Rajaram Patil, Ajeet Kumar and Jungho Ryu
Sensors 2021, 21(23), 8012; https://doi.org/10.3390/s21238012 - 30 Nov 2021
Cited by 17 | Viewed by 3449
Abstract
The strain-driven interfacial coupling between the ferromagnetic and ferroelectric constituents of magnetoelectric (ME) composites makes them potential candidates for novel multifunctional devices. ME composites in the form of thin-film heterostructures show promising applications in miniaturized ME devices. This article reports the recent advancement [...] Read more.
The strain-driven interfacial coupling between the ferromagnetic and ferroelectric constituents of magnetoelectric (ME) composites makes them potential candidates for novel multifunctional devices. ME composites in the form of thin-film heterostructures show promising applications in miniaturized ME devices. This article reports the recent advancement in ME thin-film devices, such as highly sensitive magnetic field sensors, ME antennas, integrated tunable ME inductors, and ME band-pass filters, is discussed. (Pb1−xZrx)TiO3 (PZT), Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT), Aluminium nitride (AlN), and Al1−xScxN are the most commonly used piezoelectric constituents, whereas FeGa, FeGaB, FeCo, FeCoB, and Metglas (FeCoSiB alloy) are the most commonly used magnetostrictive constituents in the thin film ME devices. The ME field sensors offer a limit of detection in the fT/Hz1/2 range at the mechanical resonance frequency. However, below resonance, different frequency conversion techniques with AC magnetic or electric fields or the delta-E effect are used. Noise floors of 1–100 pT/Hz1/2 at 1 Hz were obtained. Acoustically actuated nanomechanical ME antennas operating at a very-high frequency as well as ultra-high frequency (0.1–3 GHz) range, were introduced. The ME antennas were successfully miniaturized by a few orders smaller in size compared to the state-of-the-art conventional antennas. The designed antennas exhibit potential application in biomedical devices and wearable antennas. Integrated tunable inductors and band-pass filters tuned by electric and magnetic field with a wide operating frequency range are also discussed along with miniaturized ME energy harvesters. Full article
(This article belongs to the Special Issue Magnetoelectric Thin-Film Based Devices)
Show Figures

Figure 1

24 pages, 4032 KiB  
Article
A Convolutional Neural Network-Based Intelligent Medical System with Sensors for Assistive Diagnosis and Decision-Making in Non-Small Cell Lung Cancer
by Xiangbing Zhan, Huiyun Long, Fangfang Gou, Xun Duan, Guangqian Kong and Jia Wu
Sensors 2021, 21(23), 7996; https://doi.org/10.3390/s21237996 - 30 Nov 2021
Cited by 25 | Viewed by 2850
Abstract
In many regions of the world, early diagnosis of non-small cell lung cancer (NSCLC) is a major challenge due to the large population and lack of medical resources, which is difficult toeffectively address via limited physician manpower alone. Therefore, we developed a convolutional [...] Read more.
In many regions of the world, early diagnosis of non-small cell lung cancer (NSCLC) is a major challenge due to the large population and lack of medical resources, which is difficult toeffectively address via limited physician manpower alone. Therefore, we developed a convolutional neural network (CNN)-based assisted diagnosis and decision-making intelligent medical system with sensors. This system analyzes NSCLC patients’ medical records using sensors to assist staging a diagnosis and provides recommended treatment plans to physicians. To address the problem of unbalanced case samples across pathological stages, we used transfer learning and dynamic sampling techniques to reconstruct and iteratively train the model to improve the accuracy of the prediction system. In this paper, all data for training and testing the system were obtained from the medical records of 2,789,675 patients with NSCLC, which were recorded in three hospitals in China over a five-year period. When the number of case samples reached 8000, the system achieved an accuracy rate of 0.84, which is already close to that of the doctors (accuracy: 0.86). The experimental results proved that the system can quickly and accurately analyze patient data and provide decision information support for physicians. Full article
(This article belongs to the Collection Medical Applications of Sensor Systems and Devices)
Show Figures

Figure 1

20 pages, 3312 KiB  
Article
Robust Data Association Using Fusion of Data-Driven and Engineered Features for Real-Time Pedestrian Tracking in Thermal Images
by Mircea Paul Muresan, Sergiu Nedevschi and Radu Danescu
Sensors 2021, 21(23), 8005; https://doi.org/10.3390/s21238005 - 30 Nov 2021
Cited by 21 | Viewed by 2568
Abstract
Object tracking is an essential problem in computer vision that has been extensively researched for decades. Tracking objects in thermal images is particularly difficult because of the lack of color information, low image resolution, or high similarity between objects of the same class. [...] Read more.
Object tracking is an essential problem in computer vision that has been extensively researched for decades. Tracking objects in thermal images is particularly difficult because of the lack of color information, low image resolution, or high similarity between objects of the same class. One of the main challenges in multi-object tracking, also referred to as the data association problem, is finding the correct correspondences between measurements and tracks and adapting the object appearance changes over time. We addressed this challenge of data association for thermal images by proposing three contributions. The first contribution consisted of the creation of a data-driven appearance score using five Siamese Networks, which operate on the image detection and on parts of it. Secondly, we engineered an original edge-based descriptor that improves the data association process. Lastly, we proposed a dataset consisting of pedestrian instances that were recorded in different scenarios and are used for training the Siamese Networks. The data-driven part of the data association score offers robustness, while feature engineering offers adaptability to unknown scenarios and their combination leads to a more powerful tracking solution. Our approach had a running time of 25 ms and achieved an average precision of 86.2% on publicly available benchmarks, containing real-world scenarios, as shown in the evaluation section. Full article
(This article belongs to the Special Issue Thermal Imaging Sensors and Their Applications)
Show Figures

Figure 1

22 pages, 5463 KiB  
Article
Dynamic Object Tracking on Autonomous UAV System for Surveillance Applications
by Li-Yu Lo, Chi Hao Yiu, Yu Tang, An-Shik Yang, Boyang Li and Chih-Yung Wen
Sensors 2021, 21(23), 7888; https://doi.org/10.3390/s21237888 - 27 Nov 2021
Cited by 39 | Viewed by 6894
Abstract
The ever-burgeoning growth of autonomous unmanned aerial vehicles (UAVs) has demonstrated a promising platform for utilization in real-world applications. In particular, a UAV equipped with a vision system could be leveraged for surveillance applications. This paper proposes a learning-based UAV system for achieving [...] Read more.
The ever-burgeoning growth of autonomous unmanned aerial vehicles (UAVs) has demonstrated a promising platform for utilization in real-world applications. In particular, a UAV equipped with a vision system could be leveraged for surveillance applications. This paper proposes a learning-based UAV system for achieving autonomous surveillance, in which the UAV can be of assistance in autonomously detecting, tracking, and following a target object without human intervention. Specifically, we adopted the YOLOv4-Tiny algorithm for semantic object detection and then consolidated it with a 3D object pose estimation method and Kalman filter to enhance the perception performance. In addition, UAV path planning for a surveillance maneuver is integrated to complete the fully autonomous system. The perception module is assessed on a quadrotor UAV, while the whole system is validated through flight experiments. The experiment results verified the robustness, effectiveness, and reliability of the autonomous object tracking UAV system in performing surveillance tasks. The source code is released to the research community for future reference. Full article
Show Figures

Figure 1

15 pages, 5112 KiB  
Article
A Wearable Electrochemical Gas Sensor for Ammonia Detection
by Martina Serafini, Federica Mariani, Isacco Gualandi, Francesco Decataldo, Luca Possanzini, Marta Tessarolo, Beatrice Fraboni, Domenica Tonelli and Erika Scavetta
Sensors 2021, 21(23), 7905; https://doi.org/10.3390/s21237905 - 27 Nov 2021
Cited by 22 | Viewed by 5375
Abstract
The next future strategies for improved occupational safety and health management could largely benefit from wearable and Internet of Things technologies, enabling the real-time monitoring of health-related and environmental information to the wearer, to emergency responders, and to inspectors. The aim of this [...] Read more.
The next future strategies for improved occupational safety and health management could largely benefit from wearable and Internet of Things technologies, enabling the real-time monitoring of health-related and environmental information to the wearer, to emergency responders, and to inspectors. The aim of this study is the development of a wearable gas sensor for the detection of NH3 at room temperature based on the organic semiconductor poly(3,4-ethylenedioxythiophene) (PEDOT), electrochemically deposited iridium oxide particles, and a hydrogel film. The hydrogel composition was finely optimised to obtain self-healing properties, as well as the desired porosity, adhesion to the substrate, and stability in humidity variations. Its chemical structure and morphology were characterised by infrared spectroscopy and scanning electron microscopy, respectively, and were found to play a key role in the transduction process and in the achievement of a reversible and selective response. The sensing properties rely on a potentiometric-like mechanism that significantly differs from most of the state-of-the-art NH3 gas sensors and provides superior robustness to the final device. Thanks to the reliability of the analytical response, the simple two-terminal configuration and the low power consumption, the PEDOT:PSS/IrOx Ps/hydrogel sensor was realised on a flexible plastic foil and successfully tested in a wearable configuration with wireless connectivity to a smartphone. The wearable sensor showed stability to mechanical deformations and good analytical performances, with a sensitivity of 60 ± 8 μA decade−1 in a wide concentration range (17–7899 ppm), which includes the safety limits set by law for NH3 exposure. Full article
(This article belongs to the Special Issue Wearable and Unobtrusive Technologies for Healthcare Monitoring)
Show Figures

Graphical abstract

11 pages, 903 KiB  
Article
Validation of a Sensor-Based Gait Analysis System with a Gold-Standard Motion Capture System in Patients with Parkinson’s Disease
by Verena Jakob, Arne Küderle, Felix Kluge, Jochen Klucken, Bjoern M. Eskofier, Jürgen Winkler, Martin Winterholler and Heiko Gassner
Sensors 2021, 21(22), 7680; https://doi.org/10.3390/s21227680 - 18 Nov 2021
Cited by 25 | Viewed by 4322
Abstract
Digital technologies provide the opportunity to analyze gait patterns in patients with Parkinson’s Disease using wearable sensors in clinical settings and a home environment. Confirming the technical validity of inertial sensors with a 3D motion capture system is a necessary step for the [...] Read more.
Digital technologies provide the opportunity to analyze gait patterns in patients with Parkinson’s Disease using wearable sensors in clinical settings and a home environment. Confirming the technical validity of inertial sensors with a 3D motion capture system is a necessary step for the clinical application of sensor-based gait analysis. Therefore, the objective of this study was to compare gait parameters measured by a mobile sensor-based gait analysis system and a motion capture system as the gold standard. Gait parameters of 37 patients were compared between both systems after performing a standardized 5 × 10 m walking test by reliability analysis using intra-class correlation and Bland–Altman plots. Additionally, gait parameters of an age-matched healthy control group (n = 14) were compared to the Parkinson cohort. Gait parameters representing bradykinesia and short steps showed excellent reliability (ICC > 0.96). Shuffling gait parameters reached ICC > 0.82. In a stridewise synchronization, no differences were observed for gait speed, stride length, stride time, relative stance and swing time (p > 0.05). In contrast, heel strike, toe off and toe clearance significantly differed between both systems (p < 0.01). Both gait analysis systems distinguish Parkinson patients from controls. Our results indicate that wearable sensors generate valid gait parameters compared to the motion capture system and can consequently be used for clinically relevant gait recordings in flexible environments. Full article
(This article belongs to the Special Issue Inertial Sensors for Clinically Relevant Mobility Outcome Measures)
Show Figures

Figure 1

22 pages, 4119 KiB  
Review
Recent Progress in Smart Electronic Nose Technologies Enabled with Machine Learning Methods
by  Zhenyi Ye, Yuan Liu and Qiliang Li
Sensors 2021, 21(22), 7620; https://doi.org/10.3390/s21227620 - 16 Nov 2021
Cited by 49 | Viewed by 9304
Abstract
Machine learning methods enable the electronic nose (E-Nose) for precise odor identification with both qualitative and quantitative analysis. Advanced machine learning methods are crucial for the E-Nose to gain high performance and strengthen its capability in many applications, including robotics, food engineering, environment [...] Read more.
Machine learning methods enable the electronic nose (E-Nose) for precise odor identification with both qualitative and quantitative analysis. Advanced machine learning methods are crucial for the E-Nose to gain high performance and strengthen its capability in many applications, including robotics, food engineering, environment monitoring, and medical diagnosis. Recently, many machine learning techniques have been studied, developed, and integrated into feature extraction, modeling, and gas sensor drift compensation. The purpose of feature extraction is to keep robust pattern information in raw signals while removing redundancy and noise. With the extracted feature, a proper modeling method can effectively use the information for prediction. In addition, drift compensation is adopted to relieve the model accuracy degradation due to the gas sensor drifting. These recent advances have significantly promoted the prediction accuracy and stability of the E-Nose. This review is engaged to provide a summary of recent progress in advanced machine learning methods in E-Nose technologies and give an insight into new research directions in feature extraction, modeling, and sensor drift compensation. Full article
Show Figures

Figure 1

28 pages, 18628 KiB  
Article
Highly-Optimized Radar-Based Gesture Recognition System with Depthwise Expansion Module
by Mateusz Chmurski, Gianfranco Mauro, Avik Santra, Mariusz Zubert and Gökberk Dagasan
Sensors 2021, 21(21), 7298; https://doi.org/10.3390/s21217298 - 2 Nov 2021
Cited by 15 | Viewed by 3641
Abstract
The increasing integration of technology in our daily lives demands the development of more convenient human–computer interaction (HCI) methods. Most of the current hand-based HCI strategies exhibit various limitations, e.g., sensibility to variable lighting conditions and limitations on the operating environment. Further, the [...] Read more.
The increasing integration of technology in our daily lives demands the development of more convenient human–computer interaction (HCI) methods. Most of the current hand-based HCI strategies exhibit various limitations, e.g., sensibility to variable lighting conditions and limitations on the operating environment. Further, the deployment of such systems is often not performed in resource-constrained contexts. Inspired by the MobileNetV1 deep learning network, this paper presents a novel hand gesture recognition system based on frequency-modulated continuous wave (FMCW) radar, exhibiting a higher recognition accuracy in comparison to the state-of-the-art systems. First of all, the paper introduces a method to simplify radar preprocessing while preserving the main information of the performed gestures. Then, a deep neural classifier with the novel Depthwise Expansion Module based on the depthwise separable convolutions is presented. The introduced classifier is optimized and deployed on the Coral Edge TPU board. The system defines and adopts eight different hand gestures performed by five users, offering a classification accuracy of 98.13% while operating in a low-power and resource-constrained environment. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

19 pages, 6041 KiB  
Article
Evaluation of the Path-Tracking Accuracy of a Three-Wheeled Omnidirectional Mobile Robot Designed as a Personal Assistant
by Jordi Palacín, Elena Rubies, Eduard Clotet and David Martínez
Sensors 2021, 21(21), 7216; https://doi.org/10.3390/s21217216 - 29 Oct 2021
Cited by 23 | Viewed by 3308
Abstract
This paper presents the empirical evaluation of the path-tracking accuracy of a three-wheeled omnidirectional mobile robot that is able to move in any direction while simultaneously changing its orientation. The mobile robot assessed in this paper includes a precise onboard LIDAR for obstacle [...] Read more.
This paper presents the empirical evaluation of the path-tracking accuracy of a three-wheeled omnidirectional mobile robot that is able to move in any direction while simultaneously changing its orientation. The mobile robot assessed in this paper includes a precise onboard LIDAR for obstacle avoidance, self-location and map creation, path-planning and path-tracking. This mobile robot has been used to develop several assistive services, but the accuracy of its path-tracking system has not been specifically evaluated until now. To this end, this paper describes the kinematics and path-planning procedure implemented in the mobile robot and empirically evaluates the accuracy of its path-tracking system that corrects the trajectory. In this paper, the information gathered by the LIDAR is registered to obtain the ground truth trajectory of the mobile robot in order to estimate the path-tracking accuracy of each experiment conducted. Circular and eight-shaped trajectories were assessed with different translational velocities. In general, the accuracy obtained in circular trajectories is within a short range, but the accuracy obtained in eight-shaped trajectories worsens as the velocity increases. In the case of the mobile robot moving at its nominal translational velocity, 0.3 m/s, the root mean square (RMS) displacement error was 0.032 m for the circular trajectory and 0.039 m for the eight-shaped trajectory; the absolute maximum displacement errors were 0.077 m and 0.088 m, with RMS errors in the angular orientation of 6.27° and 7.76°, respectively. Moreover, the external visual perception generated by these error levels is that the trajectory of the mobile robot is smooth, with a constant velocity and without perceiving trajectory corrections. Full article
Show Figures

Figure 1

19 pages, 6874 KiB  
Review
Recent Progress in Self-Powered Sensors Based on Triboelectric Nanogenerators
by Junpeng Wu, Yang Zheng and Xiaoyi Li
Sensors 2021, 21(21), 7129; https://doi.org/10.3390/s21217129 - 27 Oct 2021
Cited by 35 | Viewed by 4700
Abstract
The emergence of the Internet of Things (IoT) has subverted people’s lives, causing the rapid development of sensor technologies. However, traditional sensor energy sources, like batteries, suffer from the pollution problem and the limited lifetime for powering widely implemented electronics or sensors. Therefore, [...] Read more.
The emergence of the Internet of Things (IoT) has subverted people’s lives, causing the rapid development of sensor technologies. However, traditional sensor energy sources, like batteries, suffer from the pollution problem and the limited lifetime for powering widely implemented electronics or sensors. Therefore, it is essential to obtain self-powered sensors integrated with renewable energy harvesters. The triboelectric nanogenerator (TENG), which can convert the surrounding mechanical energy into electrical energy based on the surface triboelectrification effect, was born of this background. This paper systematically introduces the working principle of the TENG-based self-powered sensor, including the triboelectrification effect, Maxwell’s displacement current, and quantitative analysis method. Meanwhile, this paper also reviews the recent application of TENG in different fields and summarizes the future development and current problems of TENG. We believe that there will be a rise of TENG-based self-powered sensors in the future. Full article
(This article belongs to the Special Issue Flexible and Stretchable Sensor Technology)
Show Figures

Figure 1

13 pages, 1482 KiB  
Article
Extremely Sensitive Microwave Microfluidic Dielectric Sensor Using a Transmission Line Loaded with Shunt LC Resonators
by Haneen Abdelwahab, Amir Ebrahimi, Francisco J. Tovar-Lopez, Grzegorz Beziuk and Kamran Ghorbani
Sensors 2021, 21(20), 6811; https://doi.org/10.3390/s21206811 - 13 Oct 2021
Cited by 26 | Viewed by 3104
Abstract
In this paper, a very high sensitivity microwave-based planar microfluidic sensor is presented. Sensitivity enhancement is achieved and described theoretically and experimentally by eliminating any extra parasitic capacitance not contributing to the sensing mechanism. The sensor consists of a microstrip transmission line loaded [...] Read more.
In this paper, a very high sensitivity microwave-based planar microfluidic sensor is presented. Sensitivity enhancement is achieved and described theoretically and experimentally by eliminating any extra parasitic capacitance not contributing to the sensing mechanism. The sensor consists of a microstrip transmission line loaded with a series connected shunt LC resonator. A microfluidic channel is attached to the area of the highest electric field concentration. The electric field distribution and, therefore, the resonance characteristics are modified by applying microfluidic dielectric samples to the sensing area. The sensor performance and working principle are described through a circuit model analysis. A device prototype is fabricated, and experimental measurements using water/ethanol and water/methanol solutions are presented for validation of the sensing mathematical model. Full article
(This article belongs to the Special Issue State-of-the-Art Technologies in Microwave Sensors)
Show Figures

Figure 1

21 pages, 7684 KiB  
Article
Comprehensive mPoint: A Method for 3D Point Cloud Generation of Human Bodies Utilizing FMCW MIMO mm-Wave Radar
by Guangcheng Zhang, Xiaoyi Geng and Yueh-Jaw Lin
Sensors 2021, 21(19), 6455; https://doi.org/10.3390/s21196455 - 27 Sep 2021
Cited by 17 | Viewed by 5630
Abstract
In this paper, comprehensive mPoint, a method for generating 3D (range, azimuth, and elevation) point cloud of human targets using a Frequency-Modulated Continuous Wave (FMCW) signal and Multi-Input Multi-Output (MIMO) millimeter wave radar is proposed. Distinct from the TI-mPoint method proposed by TI [...] Read more.
In this paper, comprehensive mPoint, a method for generating 3D (range, azimuth, and elevation) point cloud of human targets using a Frequency-Modulated Continuous Wave (FMCW) signal and Multi-Input Multi-Output (MIMO) millimeter wave radar is proposed. Distinct from the TI-mPoint method proposed by TI technology, a comprehensive mPoint method considering both the static and dynamic characteristics of radar reflected signals is utilized to generate a high precision point cloud, resulting in more comprehensive information of the target being detected. The radar possessing 60–64 GHz FMCW signal with two sets of different dimensional antennas is utilized in order to experimentally verify the results of the methodology. By using the proposed process, the point cloud data of human targets can be obtained based on six different postures of the underlying human body. The human posture cube and point cloud accuracy rates are defined in the paper in order to quantitively and qualitatively evaluate the quality of the generated point cloud. Benefitting from the proposed comprehensive mPoint, evidence shows that the point number and the accuracy rate of the generated point cloud compared with those from the popular TI-mPoint can be largely increased by 86% and 42%, respectively. In addition, the noise level of multipath reflection can be effectively reduced. Moreover, the length of the algorithm running time is only 1.6% longer than that of the previous method as a slight tradeoff. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

25 pages, 53263 KiB  
Review
Research Progress of Small Molecule Fluorescent Probes for Detecting Hypochlorite
by Zhi-Guo Song, Qing Yuan, Pengcheng Lv and Kun Chen
Sensors 2021, 21(19), 6326; https://doi.org/10.3390/s21196326 - 22 Sep 2021
Cited by 28 | Viewed by 4315
Abstract
Hypochlorous acid (HOCl) generates from the reaction between hydrogen peroxide and chloride ions via myeloperoxidase (MPO)-mediated in vivo. As very important reactive oxygen species (ROS), hypochlorous acid (HOCl)/hypochlorite (OCl) play a crucial role in a variety of physiological and pathological processes. [...] Read more.
Hypochlorous acid (HOCl) generates from the reaction between hydrogen peroxide and chloride ions via myeloperoxidase (MPO)-mediated in vivo. As very important reactive oxygen species (ROS), hypochlorous acid (HOCl)/hypochlorite (OCl) play a crucial role in a variety of physiological and pathological processes. However, excessive or misplaced production of HOCl/OCl can cause variety of tissue damage and human diseases. Therefore, rapid, sensitive, and selective detection of OCl is very important. In recent years, the fluorescent probe method for detecting hypochlorous acid has been developed rapidly due to its simple operation, low toxicity, high sensitivity, and high selectivity. In this review, the progress of recently discovered fluorescent probes for the detection of hypochlorous acid was summarized with the aim to provide useful information for further design of better fluorescent probes. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

32 pages, 1082 KiB  
Review
Deep Learning Methods for Remote Heart Rate Measurement: A Review and Future Research Agenda
by Chun-Hong Cheng, Kwan-Long Wong, Jing-Wei Chin, Tsz-Tai Chan and Richard H. Y. So
Sensors 2021, 21(18), 6296; https://doi.org/10.3390/s21186296 - 20 Sep 2021
Cited by 41 | Viewed by 11249
Abstract
Heart rate (HR) is one of the essential vital signs used to indicate the physiological health of the human body. While traditional HR monitors usually require contact with skin, remote photoplethysmography (rPPG) enables contactless HR monitoring by capturing subtle light changes of skin [...] Read more.
Heart rate (HR) is one of the essential vital signs used to indicate the physiological health of the human body. While traditional HR monitors usually require contact with skin, remote photoplethysmography (rPPG) enables contactless HR monitoring by capturing subtle light changes of skin through a video camera. Given the vast potential of this technology in the future of digital healthcare, remote monitoring of physiological signals has gained significant traction in the research community. In recent years, the success of deep learning (DL) methods for image and video analysis has inspired researchers to apply such techniques to various parts of the remote physiological signal extraction pipeline. In this paper, we discuss several recent advances of DL-based methods specifically for remote HR measurement, categorizing them based on model architecture and application. We further detail relevant real-world applications of remote physiological monitoring and summarize various common resources used to accelerate related research progress. Lastly, we analyze the implications of research findings and discuss research gaps to guide future explorations. Full article
(This article belongs to the Special Issue Contactless Sensors for Healthcare)
Show Figures

Figure 1

39 pages, 6617 KiB  
Article
Towards Fully Autonomous UAVs: A Survey
by Taha Elmokadem and Andrey V. Savkin
Sensors 2021, 21(18), 6223; https://doi.org/10.3390/s21186223 - 16 Sep 2021
Cited by 44 | Viewed by 10088
Abstract
Unmanned Aerial Vehicles have undergone rapid developments in recent decades. This has made them very popular for various military and civilian applications allowing us to reach places that were previously hard to reach in addition to saving time and lives. A highly desirable [...] Read more.
Unmanned Aerial Vehicles have undergone rapid developments in recent decades. This has made them very popular for various military and civilian applications allowing us to reach places that were previously hard to reach in addition to saving time and lives. A highly desirable direction when developing unmanned aerial vehicles is towards achieving fully autonomous missions and performing their dedicated tasks with minimum human interaction. Thus, this paper provides a survey of some of the recent developments in the field of unmanned aerial vehicles related to safe autonomous navigation, which is a very critical component in the whole system. A great part of this paper focus on advanced methods capable of producing three-dimensional avoidance maneuvers and safe trajectories. Research challenges related to unmanned aerial vehicle development are also highlighted. Full article
(This article belongs to the Special Issue Smart Sensors for Remotely Operated Robots)
Show Figures

Figure 1

22 pages, 3826 KiB  
Article
Development of a Low-Cost System for the Accurate Measurement of Structural Vibrations
by Seyedmilad Komarizadehasl, Behnam Mobaraki, Haiying Ma, Jose-Antonio Lozano-Galant and Jose Turmo
Sensors 2021, 21(18), 6191; https://doi.org/10.3390/s21186191 - 15 Sep 2021
Cited by 36 | Viewed by 5082
Abstract
Nowadays, engineers are widely using accelerometers to record the vibration of structures for structural verification purposes. The main obstacle for using these data acquisition systems is their high cost, which limits its use to unique structures with a relatively high structural health monitoring [...] Read more.
Nowadays, engineers are widely using accelerometers to record the vibration of structures for structural verification purposes. The main obstacle for using these data acquisition systems is their high cost, which limits its use to unique structures with a relatively high structural health monitoring budget. In this paper, a Cost Hyper-Efficient Arduino Product (CHEAP) has been developed to accurately measure structural accelerations. CHEAP is a system that is composed of five low-cost accelerometers that are connected to an Arduino microcontroller as their data acquisition system. Test results show that CHEAP not only has a significantly lower price (14 times cheaper in the worst-case scenario) compared with other systems used for comparison but also shows better accuracy on low frequencies for low acceleration amplitudes. Moreover, the final output results of Fast Fourier Transformation (FFT) assessments showed a better observable resolution for CHEAP than the studied control systems. Full article
Show Figures

Figure 1

27 pages, 5692 KiB  
Article
Making the PI and PID Controller Tuning Inspired by Ziegler and Nichols Precise and Reliable
by Mikulas Huba, Stefan Chamraz, Pavol Bistak and Damir Vrancic
Sensors 2021, 21(18), 6157; https://doi.org/10.3390/s21186157 - 14 Sep 2021
Cited by 38 | Viewed by 4835
Abstract
This paper deals with the design of a DC motor speed control implemented by an embedded controller. The design is simple and brings some important changes to the traditional Ziegler–Nichols tuning. The design also includes a novel anti-windup implementation of the controller and [...] Read more.
This paper deals with the design of a DC motor speed control implemented by an embedded controller. The design is simple and brings some important changes to the traditional Ziegler–Nichols tuning. The design also includes a novel anti-windup implementation of the controller and an integrated noise-reduction filter design. The proposed tuning method considers all important aspects of the control, such as pre-processing of the measured signals and filtering (to attenuate the measurement noise), time delays of the process, modeling and identification of the process, and constraints on the control signal. Three important aspects of designing PI and PID controllers for processes with noisy output on Arduino-type embedded computers are considered. First, it deals with the integrated design of the input filter and the controller parameters, since both are interdependent. Secondly, the method of setting the controllers from step responses by Ziegler and Nichols is modified for the case of digital signal processing (without drawing the tangent), while it recommends the suitability of its modification in terms of the use of both integral and static models. Third, the most suitable anti-windup solution for the given controller structure is proposed. In summary, the paper shows that an appropriate design of the embedded controller can achieve excellent closed-loop performance even in a noisy process environment with limited control signals. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

31 pages, 2169 KiB  
Review
A Comprehensive Review of Techniques for Processing and Analyzing Fetal Heart Rate Signals
by Alfonso Maria Ponsiglione, Carlo Cosentino, Giuseppe Cesarelli, Francesco Amato and Maria Romano
Sensors 2021, 21(18), 6136; https://doi.org/10.3390/s21186136 - 13 Sep 2021
Cited by 61 | Viewed by 5158
Abstract
The availability of standardized guidelines regarding the use of electronic fetal monitoring (EFM) in clinical practice has not effectively helped to solve the main drawbacks of fetal heart rate (FHR) surveillance methodology, which still presents inter- and intra-observer variability as well as uncertainty [...] Read more.
The availability of standardized guidelines regarding the use of electronic fetal monitoring (EFM) in clinical practice has not effectively helped to solve the main drawbacks of fetal heart rate (FHR) surveillance methodology, which still presents inter- and intra-observer variability as well as uncertainty in the classification of unreassuring or risky FHR recordings. Given the clinical relevance of the interpretation of FHR traces as well as the role of FHR as a marker of fetal wellbeing autonomous nervous system development, many different approaches for computerized processing and analysis of FHR patterns have been proposed in the literature. The objective of this review is to describe the techniques, methodologies, and algorithms proposed in this field so far, reporting their main achievements and discussing the value they brought to the scientific and clinical community. The review explores the following two main approaches to the processing and analysis of FHR signals: traditional (or linear) methodologies, namely, time and frequency domain analysis, and less conventional (or nonlinear) techniques. In this scenario, the emerging role and the opportunities offered by Artificial Intelligence tools, representing the future direction of EFM, are also discussed with a specific focus on the use of Artificial Neural Networks, whose application to the analysis of accelerations in FHR signals is also examined in a case study conducted by the authors. Full article
(This article belongs to the Special Issue Sensors for Heart Rate Monitoring)
Show Figures

Figure 1

29 pages, 435 KiB  
Review
A Survey of Human Activity Recognition in Smart Homes Based on IoT Sensors Algorithms: Taxonomies, Challenges, and Opportunities with Deep Learning
by Damien Bouchabou, Sao Mai Nguyen, Christophe Lohr, Benoit LeDuc and Ioannis Kanellos
Sensors 2021, 21(18), 6037; https://doi.org/10.3390/s21186037 - 9 Sep 2021
Cited by 81 | Viewed by 7137
Abstract
Recent advances in Internet of Things (IoT) technologies and the reduction in the cost of sensors have encouraged the development of smart environments, such as smart homes. Smart homes can offer home assistance services to improve the quality of life, autonomy, and health [...] Read more.
Recent advances in Internet of Things (IoT) technologies and the reduction in the cost of sensors have encouraged the development of smart environments, such as smart homes. Smart homes can offer home assistance services to improve the quality of life, autonomy, and health of their residents, especially for the elderly and dependent. To provide such services, a smart home must be able to understand the daily activities of its residents. Techniques for recognizing human activity in smart homes are advancing daily. However, new challenges are emerging every day. In this paper, we present recent algorithms, works, challenges, and taxonomy of the field of human activity recognition in a smart home through ambient sensors. Moreover, since activity recognition in smart homes is a young field, we raise specific problems, as well as missing and needed contributions. However, we also propose directions, research opportunities, and solutions to accelerate advances in this field. Full article
(This article belongs to the Special Issue Multi-Sensor for Human Activity Recognition)
Show Figures

Figure 1

36 pages, 36030 KiB  
Article
Green IoT and Edge AI as Key Technological Enablers for a Sustainable Digital Transition towards a Smart Circular Economy: An Industry 5.0 Use Case
by Paula Fraga-Lamas, Sérgio Ivan Lopes and Tiago M. Fernández-Caramés
Sensors 2021, 21(17), 5745; https://doi.org/10.3390/s21175745 - 26 Aug 2021
Cited by 127 | Viewed by 16947
Abstract
Internet of Things (IoT) can help to pave the way to the circular economy and to a more sustainable world by enabling the digitalization of many operations and processes, such as water distribution, preventive maintenance, or smart manufacturing. Paradoxically, IoT technologies and paradigms [...] Read more.
Internet of Things (IoT) can help to pave the way to the circular economy and to a more sustainable world by enabling the digitalization of many operations and processes, such as water distribution, preventive maintenance, or smart manufacturing. Paradoxically, IoT technologies and paradigms such as edge computing, although they have a huge potential for the digital transition towards sustainability, they are not yet contributing to the sustainable development of the IoT sector itself. In fact, such a sector has a significant carbon footprint due to the use of scarce raw materials and its energy consumption in manufacturing, operating, and recycling processes. To tackle these issues, the Green IoT (G-IoT) paradigm has emerged as a research area to reduce such carbon footprint; however, its sustainable vision collides directly with the advent of Edge Artificial Intelligence (Edge AI), which imposes the consumption of additional energy. This article deals with this problem by exploring the different aspects that impact the design and development of Edge-AI G-IoT systems. Moreover, it presents a practical Industry 5.0 use case that illustrates the different concepts analyzed throughout the article. Specifically, the proposed scenario consists in an Industry 5.0 smart workshop that looks for improving operator safety and operation tracking. Such an application case makes use of a mist computing architecture composed of AI-enabled IoT nodes. After describing the application case, it is evaluated its energy consumption and it is analyzed the impact on the carbon footprint that it may have on different countries. Overall, this article provides guidelines that will help future developers to face the challenges that will arise when creating the next generation of Edge-AI G-IoT systems. Full article
(This article belongs to the Special Issue Wireless Sensing and Networking for the Internet of Things)
Show Figures

Figure 1

17 pages, 4639 KiB  
Article
Enhanced Breathing Pattern Detection during Running Using Wearable Sensors
by Eric Harbour, Michael Lasshofer, Matteo Genitrini and Hermann Schwameder
Sensors 2021, 21(16), 5606; https://doi.org/10.3390/s21165606 - 20 Aug 2021
Cited by 20 | Viewed by 3953
Abstract
Breathing pattern (BP) is related to key psychophysiological and performance variables during exercise. Modern wearable sensors and data analysis techniques facilitate BP analysis during running but are lacking crucial validation steps in their deployment. Thus, we sought to evaluate a wearable garment with [...] Read more.
Breathing pattern (BP) is related to key psychophysiological and performance variables during exercise. Modern wearable sensors and data analysis techniques facilitate BP analysis during running but are lacking crucial validation steps in their deployment. Thus, we sought to evaluate a wearable garment with respiratory inductance plethysmography (RIP) sensors in combination with a custom-built algorithm versus a reference spirometry system to determine its concurrent validity in detecting flow reversals (FR) and BP. Twelve runners completed an incremental running protocol to exhaustion with synchronized spirometry and RIP sensors. An algorithm was developed to filter, segment, and enrich the RIP data for FR and BP estimation. The algorithm successfully identified over 99% of FR with an average time lag of 0.018 s (−0.067,0.104) after the reference system. Breathing rate (BR) estimation had low mean absolute percent error (MAPE = 2.74 [0.00,5.99]), but other BP components had variable accuracy. The proposed system is valid and practically useful for applications of BP assessment in the field, especially when measuring abrupt changes in BR. More studies are needed to improve BP timing estimation and utilize abdominal RIP during running. Full article
Show Figures

Figure 1

13 pages, 3904 KiB  
Article
Distinguishing Drones from Birds in a UAV Searching Laser Scanner Based on Echo Depolarization Measurement
by Jacek Wojtanowski, Marek Zygmunt, Tadeusz Drozd, Marcin Jakubaszek, Marek Życzkowski and Michał Muzal
Sensors 2021, 21(16), 5597; https://doi.org/10.3390/s21165597 - 19 Aug 2021
Cited by 12 | Viewed by 2570
Abstract
Widespread availability of drones is associated with many new fascinating possibilities, which were reserved in the past for few. Unfortunately, this technology also has many negative consequences related to illegal activities (surveillance, smuggling). For this reason, particularly sensitive areas should be equipped with [...] Read more.
Widespread availability of drones is associated with many new fascinating possibilities, which were reserved in the past for few. Unfortunately, this technology also has many negative consequences related to illegal activities (surveillance, smuggling). For this reason, particularly sensitive areas should be equipped with sensors capable of detecting the presence of even miniature drones from as far away as possible. A few techniques currently exist in this field; however, all have significant drawbacks. This study addresses a novel approach for small (<5 kg) drones detection technique based on a laser scanning and a method to discriminate UAVs from birds. The latter challenge is fundamental in minimizing the false alarm rate in each drone monitoring equipment. The paper describes the developed sensor and its performance in terms of drone vs. bird discrimination. The idea is based on simple cross-polarization ratio analysis of the optical echo received as a result of laser backscattering on the detected object. The obtained experimental results show that the proposed method does not always guarantee 100 percent discrimination efficiency, but provides certain confidence level distribution. Nevertheless, due to the hardware simplicity, this approach seems to be a valuable addition to the developed anti-drone laser scanner. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

11 pages, 1818 KiB  
Article
Non-Layered Gold-Silicon and All-Silicon Frequency-Selective Metasurfaces for Potential Mid-Infrared Sensing Applications
by Octavian Dănilă, Doina Mănăilă-Maximean, Ana Bărar and Valery A. Loiko
Sensors 2021, 21(16), 5600; https://doi.org/10.3390/s21165600 - 19 Aug 2021
Cited by 20 | Viewed by 2163
Abstract
We report simulations on the spectral behavior of non-layered gold-silicon and all-silicon frequency-selective metasurfaces in an asymmetric element configuration in the mid-infrared spectral window of 5–5.8 μm. The non-layered layout is experimentally feasible due to recent technological advances such as nano-imprint and [...] Read more.
We report simulations on the spectral behavior of non-layered gold-silicon and all-silicon frequency-selective metasurfaces in an asymmetric element configuration in the mid-infrared spectral window of 5–5.8 μm. The non-layered layout is experimentally feasible due to recent technological advances such as nano-imprint and nano-stencil lithography, and the spectral window was chosen due to the multitude of applications in sensing and imaging. The architecture exhibits significant resonance in the window of interest as well as extended tunability by means of variation of cell element sizes and relative coordinates. The results indicate that the proposed metasurface architecture is a viable candidate for mid-infrared absorbers, sensors and imaging systems. Full article
(This article belongs to the Section Sensor Materials)
Show Figures

Figure 1

Back to TopTop