sensors-logo

Journal Browser

Journal Browser

Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1322 KiB  
Article
Facial Expression Recognition Based on Squeeze Vision Transformer
by Sangwon Kim, Jaeyeal Nam and Byoung Chul Ko
Sensors 2022, 22(10), 3729; https://doi.org/10.3390/s22103729 - 13 May 2022
Cited by 14 | Viewed by 3411
Abstract
In recent image classification approaches, a vision transformer (ViT) has shown an excellent performance beyond that of a convolutional neural network. A ViT achieves a high classification for natural images because it properly preserves the global image features. Conversely, a ViT still has [...] Read more.
In recent image classification approaches, a vision transformer (ViT) has shown an excellent performance beyond that of a convolutional neural network. A ViT achieves a high classification for natural images because it properly preserves the global image features. Conversely, a ViT still has many limitations in facial expression recognition (FER), which requires the detection of subtle changes in expression, because it can lose the local features of the image. Therefore, in this paper, we propose Squeeze ViT, a method for reducing the computational complexity by reducing the number of feature dimensions while increasing the FER performance by concurrently combining global and local features. To measure the FER performance of Squeeze ViT, experiments were conducted on lab-controlled FER datasets and a wild FER dataset. Through comparative experiments with previous state-of-the-art approaches, we proved that the proposed method achieves an excellent performance on both types of datasets. Full article
(This article belongs to the Special Issue Sensors-Based Human Action and Emotion Recognition)
Show Figures

Figure 1

19 pages, 6069 KiB  
Article
Design of a Deployable Helix Antenna at L-Band for a 1-Unit CubeSat: From Theoretical Analysis to Flight Model Results
by Lara Fernandez, Marco Sobrino, Joan Adria Ruiz-de-Azua, Anna Calveras and Adriano Camps
Sensors 2022, 22(10), 3633; https://doi.org/10.3390/s22103633 - 10 May 2022
Cited by 6 | Viewed by 3641
Abstract
The 3Cat-4 mission aims at demonstrating the capabilities of a CubeSat to perform Earth Observation (EO) by integrating a combined GNSS-R and Microwave Radiometer payload into a 1-Unit CubeSat. One of the greatest challenges is the design of an antenna that respects [...] Read more.
The 3Cat-4 mission aims at demonstrating the capabilities of a CubeSat to perform Earth Observation (EO) by integrating a combined GNSS-R and Microwave Radiometer payload into a 1-Unit CubeSat. One of the greatest challenges is the design of an antenna that respects the 1-Unit CubeSat envelope while operating at the different frequency bands: Global Positioning System (GPS) L1 and Galileo E1 band (1575 MHz), GPS L2 band (1227 MHz), and the microwave radiometry band (1400–1427 MHz). Moreover, it requires between 8 and 12 dB of directivity depending on the band whilst providing at least 10 dB of front-to-back lobe ratio in L1 and L2 GPS bands. After a trade-off analysis on the type of antenna that could be used, a helix antenna was found to be the most suitable option to comply with the requirements, since it can be stowed during launch and deployed once in orbit. This article presents the antenna design from a radiation performance point of view starting with a theoretical analysis, then presenting the numerical simulations, the measurements in an Engineering Model (EM), and finally the final design and performance of the Flight Model (FM). Full article
(This article belongs to the Special Issue Antennas for Integrated Sensors Systems)
Show Figures

Figure 1

10 pages, 1294 KiB  
Brief Report
Wearable Immersive Virtual Reality Device for Promoting Physical Activity in Parkinson’s Disease Patients
by Pablo Campo-Prieto, José Mª Cancela-Carral and Gustavo Rodríguez-Fuentes
Sensors 2022, 22(9), 3302; https://doi.org/10.3390/s22093302 - 26 Apr 2022
Cited by 16 | Viewed by 4071
Abstract
Parkinson’s disease (PD) is a neurological disorder that usually appears in the 6th decade of life and affects up to 2% of older people (65 years and older). Its therapeutic management is complex and includes not only pharmacological therapies but also physiotherapy. Exercise [...] Read more.
Parkinson’s disease (PD) is a neurological disorder that usually appears in the 6th decade of life and affects up to 2% of older people (65 years and older). Its therapeutic management is complex and includes not only pharmacological therapies but also physiotherapy. Exercise therapies have shown good results in disease management in terms of rehabilitation and/or maintenance of physical and functional capacities, which is important in PD. Virtual reality (VR) could promote physical activity in this population. We explore whether a commercial wearable head-mounted display (HMD) and the selected VR exergame could be suitable for people with mild–moderate PD. In all, 32 patients (78.1% men; 71.50 ± 11.80 years) were a part of the study. Outcomes were evaluated using the Simulator Sickness Questionnaire (SSQ), the System Usability Scale (SUS), the Game Experience Questionnaire (GEQ post-game module), an ad hoc satisfaction questionnaire, and perceived effort. A total of 60 sessions were completed safely (without adverse effects (no SSQ symptoms) and with low scores in the negative experiences of the GEQ (0.01–0.09/4)), satisfaction opinions were positive (88% considered the training “good” or “very good”), and the average usability of the wearable HMD was good (75.16/100). Our outcomes support the feasibility of a boxing exergame combined with a wearable commercial HMD as a suitable physical activity for PD and its applicability in different environments due to its safety, usability, low cost, and small size. Future research is needed focusing on postural instability, because it seems to be a symptom that could have an impact on the success of exergaming programs aimed at PD. Full article
Show Figures

Figure 1

26 pages, 5275 KiB  
Review
Colorimetric Paper-Based Sensors against Cancer Biomarkers
by Mariana C. C. G. Carneiro, Ligia R. Rodrigues, Felismina T. C. Moreira and Maria Goreti F. Sales
Sensors 2022, 22(9), 3221; https://doi.org/10.3390/s22093221 - 22 Apr 2022
Cited by 21 | Viewed by 4719
Abstract
Cancer is a major cause of mortality and morbidity worldwide. Detection and quantification of cancer biomarkers plays a critical role in cancer early diagnosis, screening, and treatment. Clinicians, particularly in developing countries, deal with high costs and limited resources for diagnostic systems. Using [...] Read more.
Cancer is a major cause of mortality and morbidity worldwide. Detection and quantification of cancer biomarkers plays a critical role in cancer early diagnosis, screening, and treatment. Clinicians, particularly in developing countries, deal with high costs and limited resources for diagnostic systems. Using low-cost substrates to develop sensor devices could be very helpful. The interest in paper-based sensors with colorimetric detection increased exponentially in the last decade as they meet the criteria for point-of-care (PoC) devices. Cellulose and different nanomaterials have been used as substrate and colorimetric probes, respectively, for these types of devices in their different designs as spot tests, lateral-flow assays, dipsticks, and microfluidic paper-based devices (μPADs), offering low-cost and disposable devices. However, the main challenge with these devices is their low sensitivity and lack of efficiency in performing quantitative measurements. This review includes an overview of the use of paper for the development of sensing devices focusing on colorimetric detection and their application to cancer biomarkers. We highlight recent works reporting the use of paper in the development of colorimetric sensors for cancer biomarkers, such as proteins, nucleic acids, and others. Finally, we discuss the main advantages of these types of devices and highlight their major pitfalls. Full article
(This article belongs to the Special Issue Paper-Based Biosensing Platforms)
Show Figures

Figure 1

21 pages, 4623 KiB  
Article
Anomaly Detection Using Autoencoder Reconstruction upon Industrial Motors
by Sean Givnan, Carl Chalmers, Paul Fergus, Sandra Ortega-Martorell and Tom Whalley
Sensors 2022, 22(9), 3166; https://doi.org/10.3390/s22093166 - 20 Apr 2022
Cited by 22 | Viewed by 2943
Abstract
Rotary machine breakdown detection systems are outdated and dependent upon routine testing to discover faults. This is costly and often reactive in nature. Real-time monitoring offers a solution for detecting faults without the need for manual observation. However, manual interpretation for threshold anomaly [...] Read more.
Rotary machine breakdown detection systems are outdated and dependent upon routine testing to discover faults. This is costly and often reactive in nature. Real-time monitoring offers a solution for detecting faults without the need for manual observation. However, manual interpretation for threshold anomaly detection is often subjective and varies between industrial experts. This approach is ridged and prone to a large number of false positives. To address this issue, we propose a machine learning (ML) approach to model normal working operations and detect anomalies. The approach extracts key features from signals representing a known normal operation to model machine behaviour and automatically identify anomalies. The ML learns generalisations and generates thresholds based on fault severity. This provides engineers with a traffic light system where green is normal behaviour, amber is worrying and red signifies a machine fault. This scale allows engineers to undertake early intervention measures at the appropriate time. The approach is evaluated on windowed real machine sensor data to observe normal and abnormal behaviour. The results demonstrate that it is possible to detect anomalies within the amber range and raise alarms before machine failure. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

35 pages, 7799 KiB  
Article
Digital Transformation in Smart Farm and Forest Operations Needs Human-Centered AI: Challenges and Future Directions
by Andreas Holzinger, Anna Saranti, Alessa Angerschmid, Carl Orge Retzlaff, Andreas Gronauer, Vladimir Pejakovic, Francisco Medel-Jimenez, Theresa Krexner, Christoph Gollob and Karl Stampfer
Sensors 2022, 22(8), 3043; https://doi.org/10.3390/s22083043 - 15 Apr 2022
Cited by 48 | Viewed by 8898
Abstract
The main impetus for the global efforts toward the current digital transformation in almost all areas of our daily lives is due to the great successes of artificial intelligence (AI), and in particular, the workhorse of AI, statistical machine learning (ML). The intelligent [...] Read more.
The main impetus for the global efforts toward the current digital transformation in almost all areas of our daily lives is due to the great successes of artificial intelligence (AI), and in particular, the workhorse of AI, statistical machine learning (ML). The intelligent analysis, modeling, and management of agricultural and forest ecosystems, and of the use and protection of soils, already play important roles in securing our planet for future generations and will become irreplaceable in the future. Technical solutions must encompass the entire agricultural and forestry value chain. The process of digital transformation is supported by cyber-physical systems enabled by advances in ML, the availability of big data and increasing computing power. For certain tasks, algorithms today achieve performances that exceed human levels. The challenge is to use multimodal information fusion, i.e., to integrate data from different sources (sensor data, images, *omics), and explain to an expert why a certain result was achieved. However, ML models often react to even small changes, and disturbances can have dramatic effects on their results. Therefore, the use of AI in areas that matter to human life (agriculture, forestry, climate, health, etc.) has led to an increased need for trustworthy AI with two main components: explainability and robustness. One step toward making AI more robust is to leverage expert knowledge. For example, a farmer/forester in the loop can often bring in experience and conceptual understanding to the AI pipeline—no AI can do this. Consequently, human-centered AI (HCAI) is a combination of “artificial intelligence” and “natural intelligence” to empower, amplify, and augment human performance, rather than replace people. To achieve practical success of HCAI in agriculture and forestry, this article identifies three important frontier research areas: (1) intelligent information fusion; (2) robotics and embodied intelligence; and (3) augmentation, explanation, and verification for trusted decision support. This goal will also require an agile, human-centered design approach for three generations (G). G1: Enabling easily realizable applications through immediate deployment of existing technology. G2: Medium-term modification of existing technology. G3: Advanced adaptation and evolution beyond state-of-the-art. Full article
Show Figures

Graphical abstract

21 pages, 1245 KiB  
Review
Applications of Online UV-Vis Spectrophotometer for Drinking Water Quality Monitoring and Process Control: A Review
by Zhining Shi, Christopher W. K. Chow, Rolando Fabris, Jixue Liu and Bo Jin
Sensors 2022, 22(8), 2987; https://doi.org/10.3390/s22082987 - 13 Apr 2022
Cited by 35 | Viewed by 10964
Abstract
Water quality monitoring is an essential component of water quality management for water utilities for managing the drinking water supply. Online UV-Vis spectrophotometers are becoming popular choices for online water quality monitoring and process control, as they are reagent free, do not require [...] Read more.
Water quality monitoring is an essential component of water quality management for water utilities for managing the drinking water supply. Online UV-Vis spectrophotometers are becoming popular choices for online water quality monitoring and process control, as they are reagent free, do not require sample pre-treatments and can provide continuous measurements. The advantages of the online UV-Vis sensors are that they can capture events and allow quicker responses to water quality changes compared to conventional water quality monitoring. This review summarizes the applications of online UV-Vis spectrophotometers for drinking water quality management in the last two decades. Water quality measurements can be performed directly using the built-in generic algorithms of the online UV-Vis instruments, including absorbance at 254 nm (UV254), colour, dissolved organic carbon (DOC), total organic carbon (TOC), turbidity and nitrate. To enhance the usability of this technique by providing a higher level of operations intelligence, the UV-Vis spectra combined with chemometrics approach offers simplicity, flexibility and applicability. The use of anomaly detection and an early warning was also discussed for drinking water quality monitoring at the source or in the distribution system. As most of the online UV-Vis instruments studies in the drinking water field were conducted at the laboratory- and pilot-scale, future work is needed for industrial-scale evaluation with ab appropriate validation methodology. Issues and potential solutions associated with online instruments for water quality monitoring have been provided. Current technique development outcomes indicate that future research and development work is needed for the integration of early warnings and real-time water treatment process control systems using the online UV-Vis spectrophotometers as part of the water quality management system. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

19 pages, 1029 KiB  
Review
Surface Plasmon Resonance (SPR) Spectroscopy and Photonic Integrated Circuit (PIC) Biosensors: A Comparative Review
by Patrick Steglich, Giulia Lecci and Andreas Mai
Sensors 2022, 22(8), 2901; https://doi.org/10.3390/s22082901 - 9 Apr 2022
Cited by 19 | Viewed by 6330
Abstract
Label-free direct-optical biosensors such as surface-plasmon resonance (SPR) spectroscopy has become a gold standard in biochemical analytics in centralized laboratories. Biosensors based on photonic integrated circuits (PIC) are based on the same physical sensing mechanism: evanescent field sensing. PIC-based biosensors can play an [...] Read more.
Label-free direct-optical biosensors such as surface-plasmon resonance (SPR) spectroscopy has become a gold standard in biochemical analytics in centralized laboratories. Biosensors based on photonic integrated circuits (PIC) are based on the same physical sensing mechanism: evanescent field sensing. PIC-based biosensors can play an important role in healthcare, especially for point-of-care diagnostics, if challenges for a transfer from research laboratory to industrial applications can be overcome. Research is at this threshold, which presents a great opportunity for innovative on-site analyses in the health and environmental sectors. A deeper understanding of the innovative PIC technology is possible by comparing it with the well-established SPR spectroscopy. In this work, we shortly introduce both technologies and reveal similarities and differences. Further, we review some latest advances and compare both technologies in terms of surface functionalization and sensor performance. Full article
(This article belongs to the Special Issue Advances in Silicon Photonic Sensors)
Show Figures

Figure 1

15 pages, 2631 KiB  
Article
An Aptasensor Based on a Flexible Screen-Printed Silver Electrode for the Rapid Detection of Chlorpyrifos
by A. K. M. Sarwar Inam, Martina Aurora Costa Angeli, Ali Douaki, Bajramshahe Shkodra, Paolo Lugli and Luisa Petti
Sensors 2022, 22(7), 2754; https://doi.org/10.3390/s22072754 - 2 Apr 2022
Cited by 19 | Viewed by 3820
Abstract
In this work, we propose a novel disposable flexible and screen-printed electrochemical aptamer-based sensor (aptasensor) for the rapid detection of chlorpyrifos (CPF). To optimize the process, various characterization procedures were employed, including Fourier transform infrared spectroscopy (FT-IR), electrochemical impedance spectroscopy (EIS), and cyclic [...] Read more.
In this work, we propose a novel disposable flexible and screen-printed electrochemical aptamer-based sensor (aptasensor) for the rapid detection of chlorpyrifos (CPF). To optimize the process, various characterization procedures were employed, including Fourier transform infrared spectroscopy (FT-IR), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). Initially, the aptasensor was optimized in terms of electrolyte pH, aptamer concentration, and incubation time for chlorpyrifos. Under optimal conditions, the aptasensor showed a wide linear range from 1 to 105 ng/mL with a calculated limit of detection as low as 0.097 ng/mL and sensitivity of 600.9 µA/ng. Additionally, the selectivity of the aptasensor was assessed by identifying any interference from other pesticides, which were found to be negligible (with a maximum standard deviation of 0.31 mA). Further, the stability of the sample was assessed over time, where the reported device showed high stability over a period of two weeks at 4 °C. As the last step, the ability of the aptasensor to detect chlorpyrifos in actual samples was evaluated by testing it on banana and grape extracts. As a result, the device demonstrated sufficient recovery rates, which indicate that it can find application in the food industry. Full article
(This article belongs to the Special Issue Electrochemical Sensors in the Food Industry)
Show Figures

Figure 1

14 pages, 2703 KiB  
Article
Nanoporous Cauliflower-like Pd-Loaded Functionalized Carbon Nanotubes as an Enzyme-Free Electrocatalyst for Glucose Sensing at Neutral pH: Mechanism Study
by Abdelghani Ghanam, Naoufel Haddour, Hasna Mohammadi, Aziz Amine, Andrei Sabac and François Buret
Sensors 2022, 22(7), 2706; https://doi.org/10.3390/s22072706 - 1 Apr 2022
Cited by 12 | Viewed by 3077
Abstract
In this work, we propose a novel functionalized carbon nanotube (f-CNT) supporting nanoporous cauliflower-like Pd nanostructures (PdNS) as an enzyme-free interface for glucose electrooxidation reaction (GOR) in a neutral medium (pH 7.4). The novelty resides in preparing the PdNS/f-CNT biomimetic nanocatalyst using a [...] Read more.
In this work, we propose a novel functionalized carbon nanotube (f-CNT) supporting nanoporous cauliflower-like Pd nanostructures (PdNS) as an enzyme-free interface for glucose electrooxidation reaction (GOR) in a neutral medium (pH 7.4). The novelty resides in preparing the PdNS/f-CNT biomimetic nanocatalyst using a cost-effective and straightforward method, which consists of drop-casting well-dispersed f-CNTs over the Screen-printed carbon electrode (SPCE) surface, followed by the electrodeposition of PdNS. Several parameters affecting the morphology, structure, and catalytic properties toward the GOR of the PdNS catalyst, such as the PdCl2 precursor concentration and electrodeposition conditions, were investigated during this work. The electrochemical behavior of the PdNS/f-CNT/SPCE toward GOR was investigated through Cyclic Voltammetry (CV), Linear Sweep Voltammetry (LSV), and amperometry. There was also a good correlation between the morphology, structure, and electrocatalytic activity of the PdNS electrocatalyst. Furthermore, the LSV response and potential-pH diagram for the palladium–water system have enabled the proposal for a mechanism of this GOR. The proposed mechanism would be beneficial, as the basis, to achieve the highest catalytic activity by selecting the suitable potential range. Under the optimal conditions, the PdNS/f-CNT/SPCE-based biomimetic sensor presented a wide linear range (1–41 mM) with a sensitivity of 9.3 µA cm−2 mM−1 and a detection limit of 95 µM (S/N = 3) toward glucose at a detection potential of +300 mV vs. a saturated calomel electrode. Furthermore, because of the fascinating features such as fast response, low cost, reusability, and poison-free characteristics, the as-proposed electrocatalyst could be of great interest in both detection systems (glucose sensors) and direct glucose fuel cells. Full article
(This article belongs to the Special Issue Game Changer Nanomaterials: A New Concept for Biosensing Applications)
Show Figures

Figure 1

24 pages, 9920 KiB  
Article
Indoor Positioning of Low-Cost Narrowband IoT Nodes: Evaluation of a TDoA Approach in a Retail Environment
by Daniel Neunteufel, Stefan Grebien and Holger Arthaber
Sensors 2022, 22(7), 2663; https://doi.org/10.3390/s22072663 - 30 Mar 2022
Cited by 8 | Viewed by 1971
Abstract
The localization of internet of things (IoT) nodes in indoor scenarios with strong multipath channel components is challenging. All methods using radio signals, such as received signal strength (RSS) or angle of arrival (AoA), are inherently prone to multipath fading. Especially for time [...] Read more.
The localization of internet of things (IoT) nodes in indoor scenarios with strong multipath channel components is challenging. All methods using radio signals, such as received signal strength (RSS) or angle of arrival (AoA), are inherently prone to multipath fading. Especially for time of flight (ToF) measurements, the low available transmit bandwidth of the used transceiver hardware is problematic. In our previous work on this topic we showed that wideband signal generation on narrowband low-power transceiver chips is feasible without any changes to existing hardware. Together with a fixed wideband receiving anchor infrastructure, this facilitates time difference of arrival (TDoA) and AoA measurements and allows for localization of the fully asynchronously transmitting nodes. In this paper, we present a measurement campaign using a receiver infrastructure based on software-defined radio (SDR) platforms. This proves the actual usability of the proposed method within the limitations of the bandwidth available in the ISM band at 2.4 GHz. We use the results to analyze the effects of possible anchor placement schemes and scenario geometries. We further demonstrate how this node-to-infrastructure-based localization scheme can be supported by additional node-to-node RSS measurements using a simple clustering approach. In the considered scenario, an overall positioning root-mean-square error (RMSE) of 2.19 m is achieved. Full article
(This article belongs to the Special Issue Advances in Indoor Positioning and Indoor Navigation)
Show Figures

Figure 1

17 pages, 3229 KiB  
Article
Performance Evaluation of a Smart Bed Technology against Polysomnography
by Farzad Siyahjani, Gary Garcia Molina, Shawn Barr and Faisal Mushtaq
Sensors 2022, 22(7), 2605; https://doi.org/10.3390/s22072605 - 29 Mar 2022
Cited by 13 | Viewed by 6029
Abstract
The Sleep Number smart bed uses embedded ballistocardiography, together with network connectivity, signal processing, and machine learning, to detect heart rate (HR), breathing rate (BR), and sleep vs. wake states. This study evaluated the performance of the smart bed relative to polysomnography (PSG) [...] Read more.
The Sleep Number smart bed uses embedded ballistocardiography, together with network connectivity, signal processing, and machine learning, to detect heart rate (HR), breathing rate (BR), and sleep vs. wake states. This study evaluated the performance of the smart bed relative to polysomnography (PSG) in estimating epoch-by-epoch HR, BR, sleep vs. wake, mean overnight HR and BR, and summary sleep variables. Forty-five participants (aged 22–64 years; 55% women) slept one night on the smart bed with standard PSG. Smart bed data were compared to PSG by Bland–Altman analysis and Pearson correlation for epoch-by-epoch HR and epoch-by-epoch BR. Agreement in sleep vs. wake classification was quantified using Cohen’s kappa, ROC analysis, sensitivity, specificity, accuracy, and precision. Epoch-by-epoch HR and BR were highly correlated with PSG (HR: r = 0.81, |bias| = 0.23 beats/min; BR: r = 0.71, |bias| = 0.08 breaths/min), as were estimations of mean overnight HR and BR (HR: r = 0.94, |bias| = 0.15 beats/min; BR: r = 0.96, |bias| = 0.09 breaths/min). Calculated agreement for sleep vs. wake detection included kappa (prevalence and bias-adjusted) = 0.74 ± 0.11, AUC = 0.86, sensitivity = 0.94 ± 0.05, specificity = 0.48 ± 0.18, accuracy = 0.86 ± 0.11, and precision = 0.90 ± 0.06. For all-night summary variables, agreement was moderate to strong. Overall, the findings suggest that the Sleep Number smart bed may provide reliable metrics to unobtrusively characterize human sleep under real life-conditions. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

18 pages, 4196 KiB  
Review
Liquid Metal Based Nano-Composites for Printable Stretchable Electronics
by Dan Xu, Jinwei Cao, Fei Liu, Shengbo Zou, Wenjuan Lei, Yuanzhao Wu, Yiwei Liu, Jie Shang and Run-Wei Li
Sensors 2022, 22(7), 2516; https://doi.org/10.3390/s22072516 - 25 Mar 2022
Cited by 12 | Viewed by 6084
Abstract
Liquid metal (LM) has attracted prominent attention for stretchable and elastic electronics applications due to its exceptional fluidity and conductivity at room temperature. Despite progress in this field, a great disparity remains between material fabrication and practical applications on account of the high [...] Read more.
Liquid metal (LM) has attracted prominent attention for stretchable and elastic electronics applications due to its exceptional fluidity and conductivity at room temperature. Despite progress in this field, a great disparity remains between material fabrication and practical applications on account of the high surface tension and unavoidable oxidation of LM. Here, the composition and nanolization of liquid metal can be envisioned as effective solutions to the processibility–performance dilemma caused by high surface tension. This review aims to summarize the strategies for the fabrication, processing, and application of LM-based nano-composites. The intrinsic mechanism and superiority of the composition method will further extend the capabilities of printable ink. Recent applications of LM-based nano-composites in printing are also provided to guide the large-scale production of stretchable electronics. Full article
(This article belongs to the Special Issue Flexible Sensitive Magnetic/Electronic Materials and Sensors)
Show Figures

Figure 1

16 pages, 3065 KiB  
Article
Tuning the Sensing Properties of N and S Co-Doped Carbon Dots for Colorimetric Detection of Copper and Cobalt in Water
by Ramanand Bisauriya, Simonetta Antonaroli, Matteo Ardini, Francesco Angelucci, Antonella Ricci and Roberto Pizzoferrato
Sensors 2022, 22(7), 2487; https://doi.org/10.3390/s22072487 - 24 Mar 2022
Cited by 14 | Viewed by 2866
Abstract
In this study, nitrogen and sulfur co-doped carbon dots (NS-CDs) were investigated for the detection of heavy metals in water through absorption-based colorimetric response. NS-CDs were synthesized by a simple one-pot hydrothermal method and characterized by TEM, STEM-coupled with energy dispersive X-ray analysis, [...] Read more.
In this study, nitrogen and sulfur co-doped carbon dots (NS-CDs) were investigated for the detection of heavy metals in water through absorption-based colorimetric response. NS-CDs were synthesized by a simple one-pot hydrothermal method and characterized by TEM, STEM-coupled with energy dispersive X-ray analysis, NMR, and IR spectroscopy. Addition of Cu(II) ions to NS-CD aqueous solutions gave origin to a distinct absorption band at 660 nm which was attributed to the formation of cuprammonium complexes through coordination with amino functional groups of NS-CDs. Absorbance increased linearly with Cu(II) concentration in the range 1–100 µM and enabled a limit of detection of 200 nM. No response was observed with the other tested metals, including Fe(III) which, however, appreciably decreased sensitivity to copper. Increase of pH of the NS-CD solution up to 9.5 greatly reduced this interference effect and enhanced the response to Cu(II), thus confirming the different nature of the two interactions. In addition, a concurrent response to Co(II) appeared in a different spectral region, thus suggesting the possibility of dual-species multiple sensitivity. The present method neither requires any other reagents nor any previous assay treatment and thus can be a promising candidate for low-cost monitoring of copper onsite and by unskilled personnel. Full article
(This article belongs to the Collection Optical Chemical Sensors: Design and Applications)
Show Figures

Figure 1

28 pages, 3180 KiB  
Article
Blockchain-Based Security Mechanisms for IoMT Edge Networks in IoMT-Based Healthcare Monitoring Systems
by Filippos Pelekoudas-Oikonomou, Georgios Zachos, Maria Papaioannou, Marcus de Ree, José C. Ribeiro, Georgios Mantas and Jonathan Rodriguez
Sensors 2022, 22(7), 2449; https://doi.org/10.3390/s22072449 - 22 Mar 2022
Cited by 50 | Viewed by 4308
Abstract
Despite the significant benefits that the rise of Internet of Medical Things (IoMT) can bring into citizens’ quality of life by enabling IoMT-based healthcare monitoring systems, there is an urgent need for novel security mechanisms to address the pressing security challenges of IoMT [...] Read more.
Despite the significant benefits that the rise of Internet of Medical Things (IoMT) can bring into citizens’ quality of life by enabling IoMT-based healthcare monitoring systems, there is an urgent need for novel security mechanisms to address the pressing security challenges of IoMT edge networks in an effective and efficient manner before they gain the trust of all involved stakeholders and reach their full potential in the market of next generation IoMT-based healthcare monitoring systems. In this context, blockchain technology has been foreseen by the industry and research community as a disruptive technology that can be integrated into novel security solutions for IoMT edge networks, as it can play a significant role in securing IoMT devices and resisting unauthorized access during data transmission (i.e., tamper-proof transmission of medical data). However, despite the fact that several blockchain-based security mechanisms have already been proposed in the literature for different types of IoT edge networks, there is a lack of blockchain-based security mechanisms for IoMT edge networks, and thus more effort is required to be put on the design and development of security mechanisms relying on blockchain technology for such networks. Towards this direction, the first step is the comprehensive understanding of the following two types of blockchain-based security mechanisms: (a) the very few existing ones specifically designed for IoMT edge networks, and (b) those designed for other types of IoT networks but could be possibly adopted in IoMT edge networks due to similar capabilities and technical characteristics. Therefore, in this paper, we review the state-of-the-art of the above two types of blockchain-based security mechanisms in order to provide a foundation for organizing research efforts towards the design and development of reliable blockchain-based countermeasures, addressing the pressing security challenges of IoMT edge networks in an effective and efficient manner. Full article
(This article belongs to the Special Issue Blockchain for Internet of Things Applications)
Show Figures

Figure 1

19 pages, 7281 KiB  
Article
Research on the Applicability of Vibration Signals for Real-Time Train and Track Condition Monitoring
by Ireneusz Celiński, Rafał Burdzik, Jakub Młyńczak and Maciej Kłaczyński
Sensors 2022, 22(6), 2368; https://doi.org/10.3390/s22062368 - 18 Mar 2022
Cited by 10 | Viewed by 2204
Abstract
The purpose of this research was to analyze the possibilities for the application of vibration signals in real-time train and track control. Proper experiments must be performed for the validation of the methods. Research on vibration in the context of transport must entail [...] Read more.
The purpose of this research was to analyze the possibilities for the application of vibration signals in real-time train and track control. Proper experiments must be performed for the validation of the methods. Research on vibration in the context of transport must entail many of the different nonlinear dynamic forces that may occur while driving. Therefore, the paper addresses two research cases. The developed application contains the identification of movement and dynamics and the evaluation of the technical state of the rail track. The statistics and resultant vector methods are presented. The paper presents other useful metrics to describe the dynamical properties of the driving train. The angle of the resultant horizontal and vertical accelerations is defined for the evaluation of the current position of cabin. It is calculated as an inverse tangent function of current longitudinal and transverse, longitudinal and vertical, transverse, and vertical accelerations. Additionally, the resultant vectors of accelerations are calculated. Full article
Show Figures

Figure 1

20 pages, 4708 KiB  
Review
Sensors and Instruments for Brix Measurement: A Review
by Swapna A. Jaywant, Harshpreet Singh and Khalid Mahmood Arif
Sensors 2022, 22(6), 2290; https://doi.org/10.3390/s22062290 - 16 Mar 2022
Cited by 30 | Viewed by 9201
Abstract
Quality assessment of fruits, vegetables, or beverages involves classifying the products according to the quality traits such as, appearance, texture, flavor, sugar content. The measurement of sugar content, or Brix, as it is commonly known, is an essential part of the quality analysis [...] Read more.
Quality assessment of fruits, vegetables, or beverages involves classifying the products according to the quality traits such as, appearance, texture, flavor, sugar content. The measurement of sugar content, or Brix, as it is commonly known, is an essential part of the quality analysis of the agricultural products and alcoholic beverages. The Brix monitoring of fruit and vegetables by destructive methods includes sensory assessment involving sensory panels, instruments such as refractometer, hydrometer, and liquid chromatography. However, these techniques are manual, time-consuming, and most importantly, the fruits or vegetables are damaged during testing. On the other hand, the traditional sample-based methods involve manual sample collection of the liquid from the tank in fruit/vegetable juice making and in wineries or breweries. Labour ineffectiveness can be a significant drawback of such methods. This review presents recent developments in different destructive and nondestructive Brix measurement techniques focused on fruits, vegetables, and beverages. It is concluded that while there exist a variety of methods and instruments for Brix measurement, traits such as promptness and low cost of analysis, minimal sample preparation, and environmental friendliness are still among the prime requirements of the industry. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

15 pages, 2252 KiB  
Article
Effect of the Dynamic Response of a Side-Wall Pressure Measurement System on Determining the Pressure Step Signal in a Shock Tube Using a Time-of-Flight Method
by Andrej Svete, Francisco Javier Hernández Castro and Jože Kutin
Sensors 2022, 22(6), 2103; https://doi.org/10.3390/s22062103 - 9 Mar 2022
Cited by 16 | Viewed by 2000
Abstract
Technological progress demands accurate measurements of rapidly changing pressures. This, in turn, requires the use of dynamically calibrated pressure meters. The shock tube enables the dynamic characterization by applying an almost ideal pressure step change to the pressure sensor under calibration. This paper [...] Read more.
Technological progress demands accurate measurements of rapidly changing pressures. This, in turn, requires the use of dynamically calibrated pressure meters. The shock tube enables the dynamic characterization by applying an almost ideal pressure step change to the pressure sensor under calibration. This paper evaluates the effect of the dynamic response of a side-wall pressure measurement system on the detection of shock wave passage times over the side-wall pressure sensors installed along the shock tube. Furthermore, it evaluates this effect on the reference pressure step signal determined at the end-wall of the driven section using a time-of-flight method. To determine the errors in the detection of the shock front passage times over the centers of the side-wall sensors, a physical model for simulating the dynamic response of the complete measurement chain to the passage of the shock wave was developed. Due to the fact that the use of the physical model requires information about the effective diameter of the pressure sensor, special attention was paid to determining the effective diameter of the side-wall pressure sensors installed along the shock tube. The results show that the relative systematic errors in the pressure step amplitude at the end-wall of the shock tube due to the errors in the detection of the shock front passage times over the side-wall pressure sensors are less than 0.0003%. On the other hand, the systematic errors in the phase lag of the end-wall pressure signal in the calibration frequency range appropriate for high-frequency dynamic pressure applications are up to a few tens of degrees. Since the target phase measurement uncertainty of the pressure sensors used in high-frequency dynamic pressure applications is only a few degrees, the corrections for the systematic errors in the detection of the shock front passage times over the side-wall pressure sensors with the use of the developed physical dynamic model are, therefore, necessary when performing dynamic calibrations of pressure sensors with a shock tube. Full article
(This article belongs to the Special Issue Metrology of Shock Waves)
Show Figures

Figure 1

39 pages, 1357 KiB  
Review
Recent Advances in Internet of Things Solutions for Early Warning Systems: A Review
by Marco Esposito, Lorenzo Palma, Alberto Belli, Luisiana Sabbatini and Paola Pierleoni
Sensors 2022, 22(6), 2124; https://doi.org/10.3390/s22062124 - 9 Mar 2022
Cited by 55 | Viewed by 9696
Abstract
Natural disasters cause enormous damage and losses every year, both economic and in terms of human lives. It is essential to develop systems to predict disasters and to generate and disseminate timely warnings. Recently, technologies such as the Internet of Things solutions have [...] Read more.
Natural disasters cause enormous damage and losses every year, both economic and in terms of human lives. It is essential to develop systems to predict disasters and to generate and disseminate timely warnings. Recently, technologies such as the Internet of Things solutions have been integrated into alert systems to provide an effective method to gather environmental data and produce alerts. This work reviews the literature regarding Internet of Things solutions in the field of Early Warning for different natural disasters: floods, earthquakes, tsunamis, and landslides. The aim of the paper is to describe the adopted IoT architectures, define the constraints and the requirements of an Early Warning system, and systematically determine which are the most used solutions in the four use cases examined. This review also highlights the main gaps in literature and provides suggestions to satisfy the requirements for each use case based on the articles and solutions reviewed, particularly stressing the advantages of integrating a Fog/Edge layer in the developed IoT architectures. Full article
(This article belongs to the Special Issue Sensors Application on Early Warning System)
Show Figures

Figure 1

21 pages, 9230 KiB  
Article
Tree Trunk Recognition in Orchard Autonomous Operations under Different Light Conditions Using a Thermal Camera and Faster R-CNN
by Ailian Jiang, Ryozo Noguchi and Tofael Ahamed
Sensors 2022, 22(5), 2065; https://doi.org/10.3390/s22052065 - 7 Mar 2022
Cited by 18 | Viewed by 3835
Abstract
In an orchard automation process, a current challenge is to recognize natural landmarks and tree trunks to localize intelligent robots. To overcome low-light conditions and global navigation satellite system (GNSS) signal interruptions under a dense canopy, a thermal camera may be used to [...] Read more.
In an orchard automation process, a current challenge is to recognize natural landmarks and tree trunks to localize intelligent robots. To overcome low-light conditions and global navigation satellite system (GNSS) signal interruptions under a dense canopy, a thermal camera may be used to recognize tree trunks using a deep learning system. Therefore, the objective of this study was to use a thermal camera to detect tree trunks at different times of the day under low-light conditions using deep learning to allow robots to navigate. Thermal images were collected from the dense canopies of two types of orchards (conventional and joint training systems) under high-light (12–2 PM), low-light (5–6 PM), and no-light (7–8 PM) conditions in August and September 2021 (summertime) in Japan. The detection accuracy for a tree trunk was confirmed by the thermal camera, which observed an average error of 0.16 m for 5 m, 0.24 m for 15 m, and 0.3 m for 20 m distances under high-, low-, and no-light conditions, respectively, in different orientations of the thermal camera. Thermal imagery datasets were augmented to train, validate, and test using the Faster R-CNN deep learning model to detect tree trunks. A total of 12,876 images were used to train the model, 2318 images were used to validate the training process, and 1288 images were used to test the model. The mAP of the model was 0.8529 for validation and 0.8378 for the testing process. The average object detection time was 83 ms for images and 90 ms for videos with the thermal camera set at 11 FPS. The model was compared with the YOLO v3 with same number of datasets and training conditions. In the comparisons, Faster R-CNN achieved a higher accuracy than YOLO v3 in tree truck detection using the thermal camera. Therefore, the results showed that Faster R-CNN can be used to recognize objects using thermal images to enable robot navigation in orchards under different lighting conditions. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

16 pages, 4092 KiB  
Article
The Movesense Medical Sensor Chest Belt Device as Single Channel ECG for RR Interval Detection and HRV Analysis during Resting State and Incremental Exercise: A Cross-Sectional Validation Study
by Bruce Rogers, Marcelle Schaffarczyk, Martina Clauß, Laurent Mourot and Thomas Gronwald
Sensors 2022, 22(5), 2032; https://doi.org/10.3390/s22052032 - 5 Mar 2022
Cited by 18 | Viewed by 6059
Abstract
The value of heart rate variability (HRV) in the fields of health, disease, and exercise science has been established through numerous investigations. The typical mobile-based HRV device simply records interbeat intervals, without differentiation between noise or arrythmia as can be done with an [...] Read more.
The value of heart rate variability (HRV) in the fields of health, disease, and exercise science has been established through numerous investigations. The typical mobile-based HRV device simply records interbeat intervals, without differentiation between noise or arrythmia as can be done with an electrocardiogram (ECG). The intent of this report is to validate a new single channel ECG device, the Movesense Medical sensor, against a conventional 12 channel ECG. A heterogeneous group of 21 participants performed an incremental cycling ramp to failure with measurements of HRV, before (PRE), during (EX), and after (POST). Results showed excellent correlations between devices for linear indexes with Pearson’s r between 0.98 to 1.0 for meanRR, SDNN, RMSSD, and 0.95 to 0.97 for the non-linear index DFA a1 during PRE, EX, and POST. There was no significant difference in device specific meanRR during PRE and POST. Bland–Altman analysis showed high agreement between devices (PRE and POST: meanRR bias of 0.0 and 0.4 ms, LOA of 1.9 to −1.8 ms and 2.3 to −1.5; EX: meanRR bias of 11.2 to 6.0 ms; LOA of 29.8 to −7.4 ms during low intensity exercise and 8.5 to 3.5 ms during high intensity exercise). The Movesense Medical device can be used in lieu of a reference ECG for the calculation of HRV with the potential to differentiate noise from atrial fibrillation and represents a significant advance in both a HR and HRV recording device in a chest belt form factor for lab-based or remote field-application. Full article
(This article belongs to the Special Issue Sensors for Heart Rate Monitoring)
Show Figures

Figure 1

11 pages, 1695 KiB  
Article
A Low-Cost Metamaterial Sensor Based on DS-CSRR for Material Characterization Applications
by Waseem Shahzad, Weidong Hu, Qasim Ali, Hamid Raza, Syed Muzahir Abbas and Leo P. Ligthart
Sensors 2022, 22(5), 2000; https://doi.org/10.3390/s22052000 - 4 Mar 2022
Cited by 27 | Viewed by 2534
Abstract
This paper presents a metamaterial sensor using a double slit complementary square ring resonator (DS-CSRR) that has been utilized for the measurement of dielectric materials, especially coal powder. The design is optimized for best performance of deep notch depth in transmission coefficient (Magnitude [...] Read more.
This paper presents a metamaterial sensor using a double slit complementary square ring resonator (DS-CSRR) that has been utilized for the measurement of dielectric materials, especially coal powder. The design is optimized for best performance of deep notch depth in transmission coefficient (Magnitude of S21). Sensitivity analysis of transmission coefficient with respect to structure dimensions has been carried out. Metamaterial properties of double negative permitivity and permeability were extracted from the S–parameters of this sensor. The optimized structure is fabricated using low cost FR-4 PCB board. Measured result shows resonance frequency of 4.75 GHz with a deep notch up to −41 dB. Simulated and measured results show good agreement in desired frequency band. For material characterization, first, two known materials are characterized using this metamaterial sensor. Their respective resonances and dielectric constants are known, so the transcendental equation of the sensor is formulated. Afterwards, the proposed sensor is used for dielectric measurement of two types of coal powder, i.e., Anthracite and Bituminous. The measured value of dielectric constant of Anthracite coal is 3.5 and of Bituminous coal is 2.52. This is a simple and effective nondestructive measurement technique for material testing applications. Full article
(This article belongs to the Special Issue Microwave Sensing and Applications)
Show Figures

Figure 1

15 pages, 5032 KiB  
Article
Integrating GEDI and Landsat: Spaceborne Lidar and Four Decades of Optical Imagery for the Analysis of Forest Disturbances and Biomass Changes in Italy
by Saverio Francini, Giovanni D’Amico, Elia Vangi, Costanza Borghi and Gherardo Chirici
Sensors 2022, 22(5), 2015; https://doi.org/10.3390/s22052015 - 4 Mar 2022
Cited by 41 | Viewed by 7698
Abstract
Forests play a prominent role in the battle against climate change, as they absorb a relevant part of human carbon emissions. However, precisely because of climate change, forest disturbances are expected to increase and alter forests’ capacity to absorb carbon. In this context, [...] Read more.
Forests play a prominent role in the battle against climate change, as they absorb a relevant part of human carbon emissions. However, precisely because of climate change, forest disturbances are expected to increase and alter forests’ capacity to absorb carbon. In this context, forest monitoring using all available sources of information is crucial. We combined optical (Landsat) and photonic (GEDI) data to monitor four decades (1985–2019) of disturbances in Italian forests (11 Mha). Landsat data were confirmed as a relevant source of information for forest disturbance mapping, as forest harvestings in Tuscany were predicted with omission errors estimated between 29% (in 2012) and 65% (in 2001). GEDI was assessed using Airborne Laser Scanning (ALS) data available for about 6 Mha of Italian forests. A good correlation (r2 = 0.75) between Above Ground Biomass Density GEDI estimates (AGBD) and canopy height ALS estimates was reported. GEDI data provided complementary information to Landsat. The Landsat mission is capable of mapping disturbances, but not retrieving the three-dimensional structure of forests, while our results indicate that GEDI is capable of capturing forest biomass changes due to disturbances. GEDI acquires useful information not only for biomass trend quantification in disturbance regimes but also for forest disturbance discrimination and characterization, which is crucial to further understanding the effect of climate change on forest ecosystems. Full article
(This article belongs to the Special Issue Feature Papers in the Remote Sensors Section 2022)
Show Figures

Graphical abstract

16 pages, 4470 KiB  
Article
A Dual-Mode 303-Megaframes-per-Second Charge-Domain Time-Compressive Computational CMOS Image Sensor
by Keiichiro Kagawa, Masaya Horio, Anh Ngoc Pham, Thoriq Ibrahim, Shin-ichiro Okihara, Tatsuki Furuhashi, Taishi Takasawa, Keita Yasutomi, Shoji Kawahito and Hajime Nagahara
Sensors 2022, 22(5), 1953; https://doi.org/10.3390/s22051953 - 2 Mar 2022
Cited by 12 | Viewed by 5240
Abstract
An ultra-high-speed computational CMOS image sensor with a burst frame rate of 303 megaframes per second, which is the fastest among the solid-state image sensors, to our knowledge, is demonstrated. This image sensor is compatible with ordinary single-aperture lenses and can operate in [...] Read more.
An ultra-high-speed computational CMOS image sensor with a burst frame rate of 303 megaframes per second, which is the fastest among the solid-state image sensors, to our knowledge, is demonstrated. This image sensor is compatible with ordinary single-aperture lenses and can operate in dual modes, such as single-event filming mode or multi-exposure imaging mode, by reconfiguring the number of exposure cycles. To realize this frame rate, the charge modulator drivers were adequately designed to suppress the peak driving current taking advantage of the operational constraint of the multi-tap charge modulator. The pixel array is composed of macropixels with 2 × 2 4-tap subpixels. Because temporal compressive sensing is performed in the charge domain without any analog circuit, ultrafast frame rates, small pixel size, low noise, and low power consumption are achieved. In the experiments, single-event imaging of plasma emission in laser processing and multi-exposure transient imaging of light reflections to extend the depth range and to decompose multiple reflections for time-of-flight (TOF) depth imaging with a compression ratio of 8× were demonstrated. Time-resolved images similar to those obtained by the direct-type TOF were reproduced in a single shot, while the charge modulator for the indirect TOF was utilized. Full article
(This article belongs to the Special Issue Recent Advances in CMOS Image Sensor)
Show Figures

Figure 1

15 pages, 10200 KiB  
Article
A New In Situ Coaxial Capacitive Sensor Network for Debris Monitoring of Lubricating Oil
by Yishou Wang, Tingwei Lin, Diheng Wu, Ling Zhu, Xinlin Qing and Wendong Xue
Sensors 2022, 22(5), 1777; https://doi.org/10.3390/s22051777 - 24 Feb 2022
Cited by 18 | Viewed by 2325
Abstract
Wear debris monitoring of lubricant oil is an important method to determine the health and failure mode of key components such as bearings and gears in rotatory machines. The permittivity of lubricant oil can be changed when the wear debris enters the oil. [...] Read more.
Wear debris monitoring of lubricant oil is an important method to determine the health and failure mode of key components such as bearings and gears in rotatory machines. The permittivity of lubricant oil can be changed when the wear debris enters the oil. Capacitive sensing methods showed potential in monitoring debris in lubricant due to the simple structure and good response. In order to improve the detection sensitivity and reliability, this study proposes a new coaxial capacitive sensor network featured with parallel curved electrodes and non-parallel plane electrodes. As a kind of through-flow sensor, the proposed capacitive sensor network can be in situ integrated into the oil pipeline. The theoretical models of sensing mechanisms were established to figure out the relationship between the two types of capacitive sensors in the sensor network. The intensity distributions of the electric field in the coaxial capacitive sensor network are simulated to verify the theoretical analysis, and the effects of different debris sizes and debris numbers on the capacitance values were also simulated. Finally, the theoretical model and simulation results were experimentally validated to verify the feasibility of the proposed sensor network. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

24 pages, 8161 KiB  
Article
The Transition from MODIS to VIIRS for Global Volcano Thermal Monitoring
by Adele Campus, Marco Laiolo, Francesco Massimetti and Diego Coppola
Sensors 2022, 22(5), 1713; https://doi.org/10.3390/s22051713 - 22 Feb 2022
Cited by 12 | Viewed by 3253
Abstract
The Moderate Resolution Imaging Spectroradiometer (MODIS) is one of the most-used sensors for monitoring volcanoes and has been providing time series of Volcanic Radiative Power (VRP) on a global scale for two decades now. In this work, we analyzed the data provided by [...] Read more.
The Moderate Resolution Imaging Spectroradiometer (MODIS) is one of the most-used sensors for monitoring volcanoes and has been providing time series of Volcanic Radiative Power (VRP) on a global scale for two decades now. In this work, we analyzed the data provided by the Visible Infrared Imaging Radiometer Suite (VIIRS) by using the Middle Infrared Observation of Volcanic Activity (MIROVA) algorithm, originally developed to analyze MODIS data. The resulting VRP is compared with both the MIROVAMODIS data as well as with the Fire Radiative Power (FRP), distributed by the Fire Information for Resource Management System (FIRMS). The analysis on 9 active volcanoes reveals that VIIRS data analyzed with the MIROVA algorithm allows detecting ~60% more alerts than MODIS, due to a greater number of overpasses (+30%) and improved quality of VIIRS radiance data. Furthermore, the comparison with the nighttime FIRMS database indicates greater effectiveness of the MIROVA algorithm in detecting low-intensity (<10 MW) thermal anomalies (up to 90% more alerts than FIRMS). These results confirm the great potential of VIIRS to complement, replace and improve MODIS capabilities for global volcano thermal monitoring, because of the future end of Terra and Aqua Earth-observing satellite mission of National Aeronautics and Space Administration’s (NASA). Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

15 pages, 3028 KiB  
Communication
Machine Learning-Based Classification of Human Behaviors and Falls in Restroom via Dual Doppler Radar Measurements
by Kenshi Saho, Sora Hayashi, Mutsuki Tsuyama, Lin Meng and Masao Masugi
Sensors 2022, 22(5), 1721; https://doi.org/10.3390/s22051721 - 22 Feb 2022
Cited by 17 | Viewed by 2444
Abstract
This study presents a radar-based remote measurement system for classification of human behaviors and falls in restrooms without privacy invasion. Our system uses a dual Doppler radar mounted onto a restroom ceiling and wall. Machine learning methods, including the convolutional neural network (CNN), [...] Read more.
This study presents a radar-based remote measurement system for classification of human behaviors and falls in restrooms without privacy invasion. Our system uses a dual Doppler radar mounted onto a restroom ceiling and wall. Machine learning methods, including the convolutional neural network (CNN), long short-term memory, support vector machine, and random forest methods, are applied to the Doppler radar data to verify the model’s efficiency and features. Experimental results from 21 participants demonstrated the accurate classification of eight realistic behaviors, including falling. Using the Doppler spectrograms (time–velocity distribution) as the inputs, CNN showed the best results with an overall classification accuracy of 95.6% and 100% fall classification accuracy. We confirmed that these accuracies were better than those achieved by conventional restroom monitoring techniques using thermal sensors and radars. Furthermore, the comparison results of various machine learning methods and cases using each radar’s data show that the higher-order derivative parameters of acceleration and jerk, and the motion information in the horizontal direction are the efficient features for behavior classification in a restroom. These findings indicate that daily restroom monitoring using the proposed radar system accurately recognizes human behaviors and allows early detection of fall accidents. Full article
(This article belongs to the Special Issue Wireless Smart Sensors for Digital Healthcare and Assisted Living)
Show Figures

Figure 1

20 pages, 1720 KiB  
Article
Multi-Agent Reinforcement Learning for Joint Cooperative Spectrum Sensing and Channel Access in Cognitive UAV Networks
by Weiheng Jiang, Wanxin Yu, Wenbo Wang and Tiancong Huang
Sensors 2022, 22(4), 1651; https://doi.org/10.3390/s22041651 - 20 Feb 2022
Cited by 5 | Viewed by 1967
Abstract
This paper studies the problem of distributed spectrum/channel access for cognitive radio-enabled unmanned aerial vehicles (CUAVs) that overlay upon primary channels. Under the framework of cooperative spectrum sensing and opportunistic transmission, a one-shot optimization problem for channel allocation, aiming to maximize the expected [...] Read more.
This paper studies the problem of distributed spectrum/channel access for cognitive radio-enabled unmanned aerial vehicles (CUAVs) that overlay upon primary channels. Under the framework of cooperative spectrum sensing and opportunistic transmission, a one-shot optimization problem for channel allocation, aiming to maximize the expected cumulative weighted reward of multiple CUAVs, is formulated. To handle the uncertainty due to the lack of prior knowledge about the primary user activities as well as the lack of the channel-access coordinator, the original problem is cast into a competition and cooperation hybrid multi-agent reinforcement learning (CCH-MARL) problem in the framework of Markov game (MG). Then, a value-iteration-based RL algorithm, which features upper confidence bound-Hoeffding (UCB-H) strategy searching, is proposed by treating each CUAV as an independent learner (IL). To address the curse of dimensionality, the UCB-H strategy is further extended with a double deep Q-network (DDQN). Numerical simulations show that the proposed algorithms are able to efficiently converge to stable strategies, and significantly improve the network performance when compared with the benchmark algorithms such as the vanilla Q-learning and DDQN algorithms. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

16 pages, 24763 KiB  
Article
Vegetable Size Measurement Based on Stereo Camera and Keypoints Detection
by Bowen Zheng, Guiling Sun, Zhaonan Meng and Ruili Nan
Sensors 2022, 22(4), 1617; https://doi.org/10.3390/s22041617 - 18 Feb 2022
Cited by 13 | Viewed by 3758
Abstract
This work focuses on the problem of non-contact measurement for vegetables in agricultural automation. The application of computer vision in assisted agricultural production significantly improves work efficiency due to the rapid development of information technology and artificial intelligence. Based on object detection and [...] Read more.
This work focuses on the problem of non-contact measurement for vegetables in agricultural automation. The application of computer vision in assisted agricultural production significantly improves work efficiency due to the rapid development of information technology and artificial intelligence. Based on object detection and stereo cameras, this paper proposes an intelligent method for vegetable recognition and size estimation. The method obtains colorful images and depth maps with a binocular stereo camera. Then detection networks classify four kinds of common vegetables (cucumber, eggplant, tomato and pepper) and locate six points for each object. Finally, the size of vegetables is calculated using the pixel position and depth of keypoints. Experimental results show that the proposed method can classify four kinds of common vegetables within 60 cm and accurately estimate their diameter and length. The work provides an innovative idea for solving the vegetable’s non-contact measurement problems and can promote the application of computer vision in agricultural automation. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

52 pages, 13341 KiB  
Review
Non-Destructive Techniques for the Condition and Structural Health Monitoring of Wind Turbines: A Literature Review of the Last 20 Years
by Marco Civera and Cecilia Surace
Sensors 2022, 22(4), 1627; https://doi.org/10.3390/s22041627 - 18 Feb 2022
Cited by 60 | Viewed by 9940
Abstract
A complete surveillance strategy for wind turbines requires both the condition monitoring (CM) of their mechanical components and the structural health monitoring (SHM) of their load-bearing structural elements (foundations, tower, and blades). Therefore, it spans both the civil and mechanical engineering fields. Several [...] Read more.
A complete surveillance strategy for wind turbines requires both the condition monitoring (CM) of their mechanical components and the structural health monitoring (SHM) of their load-bearing structural elements (foundations, tower, and blades). Therefore, it spans both the civil and mechanical engineering fields. Several traditional and advanced non-destructive techniques (NDTs) have been proposed for both areas of application throughout the last years. These include visual inspection (VI), acoustic emissions (AEs), ultrasonic testing (UT), infrared thermography (IRT), radiographic testing (RT), electromagnetic testing (ET), oil monitoring, and many other methods. These NDTs can be performed by human personnel, robots, or unmanned aerial vehicles (UAVs); they can also be applied both for isolated wind turbines or systematically for whole onshore or offshore wind farms. These non-destructive approaches have been extensively reviewed here; more than 300 scientific articles, technical reports, and other documents are included in this review, encompassing all the main aspects of these survey strategies. Particular attention was dedicated to the latest developments in the last two decades (2000–2021). Highly influential research works, which received major attention from the scientific community, are highlighted and commented upon. Furthermore, for each strategy, a selection of relevant applications is reported by way of example, including newer and less developed strategies as well. Full article
(This article belongs to the Special Issue Artificial Intelligence for Fault Diagnostics and Prognostics)
Show Figures

Figure 1

15 pages, 3303 KiB  
Article
A Method for Pipeline Leak Detection Based on Acoustic Imaging and Deep Learning
by Sajjad Ahmad, Zahoor Ahmad, Cheol-Hong Kim and Jong-Myon Kim
Sensors 2022, 22(4), 1562; https://doi.org/10.3390/s22041562 - 17 Feb 2022
Cited by 26 | Viewed by 5437
Abstract
This paper proposes a reliable technique for pipeline leak detection using acoustic emission signals. The acoustic emission signal of a pipeline contains leak-related information. However, the noise in the signal often obscures the leak-related information, making traditional acoustic emission features, such as count [...] Read more.
This paper proposes a reliable technique for pipeline leak detection using acoustic emission signals. The acoustic emission signal of a pipeline contains leak-related information. However, the noise in the signal often obscures the leak-related information, making traditional acoustic emission features, such as count and peaks, less effective. To obtain leak-related features, first, acoustic images were obtained from the time series acoustic emission signals using continuous wavelet transform. The acoustic images (AE images) were the wavelet scalograms that represent the time–frequency scales of the acoustic emission signal in the form of an image. The acoustic images carried enough information about the leak, as the leak-related information had a high-energy representation in the scalogram compared to the noise. To extract leak-related discriminant features from the acoustic images, they were provided as input into the convolutional autoencoder and convolutional neural network. The convolutional autoencoder extracts global features, while the convolutional neural network extracts local features. The local features represent changes in the energy at a finer level, whereas the global features are the overall characteristics of the acoustic signal in the acoustic image. The global and local features were merged into a single feature vector. To identify the pipeline leak state, the feature vector was fed into a shallow artificial neural network. The proposed method was validated by utilizing a data set obtained from the industrial pipeline testbed. The proposed algorithm yielded a high classification accuracy in detecting leaks under different leak sizes and fluid pressures. Full article
(This article belongs to the Special Issue Sensing Technologies for Fault Diagnostics and Prognosis)
Show Figures

Figure 1

32 pages, 1294 KiB  
Article
Electronic Noses and Their Applications for Sensory and Analytical Measurements in the Waste Management Plants—A Review
by Justyna Jońca, Marcin Pawnuk, Adalbert Arsen and Izabela Sówka
Sensors 2022, 22(4), 1510; https://doi.org/10.3390/s22041510 - 15 Feb 2022
Cited by 20 | Viewed by 6472
Abstract
Waste management plants are one of the most important sources of odorants that may cause odor nuisance. The monitoring of processes involved in the waste treatment and disposal as well as the assessment of odor impact in the vicinity of this type of [...] Read more.
Waste management plants are one of the most important sources of odorants that may cause odor nuisance. The monitoring of processes involved in the waste treatment and disposal as well as the assessment of odor impact in the vicinity of this type of facilities require two different but complementary approaches: analytical and sensory. The purpose of this work is to present these two approaches. Among sensory techniques dynamic and field olfactometry are considered, whereas analytical methodologies are represented by gas chromatography–mass spectrometry (GC-MS), single gas sensors and electronic noses (EN). The latter are the core of this paper and are discussed in details. Since the design of multi-sensor arrays and the development of machine learning algorithms are the most challenging parts of the EN construction a special attention is given to the recent advancements in the sensitive layers development and current challenges in data processing. The review takes also into account relatively new EN systems based on mass spectrometry and flash gas chromatography technologies. Numerous examples of applications of the EN devices to the sensory and analytical measurements in the waste management plants are given in order to summarize efforts of scientists on development of these instruments for constant monitoring of chosen waste treatment processes (composting, anaerobic digestion, biofiltration) and assessment of odor nuisance associated with these facilities. Full article
(This article belongs to the Special Issue Gas Sensors and Gas Chromatography for Analytical Applications)
Show Figures

Graphical abstract

21 pages, 4596 KiB  
Article
Coordinated Multi-Robotic Vehicles Navigation and Control in Shop Floor Automation
by Gregor Klančar and Marija Seder
Sensors 2022, 22(4), 1455; https://doi.org/10.3390/s22041455 - 14 Feb 2022
Cited by 9 | Viewed by 2317
Abstract
In this paper, we propose a global navigation function applied to model predictive control (MPC) for autonomous mobile robots, with application to warehouse automation. The approach considers static and dynamic obstacles and generates smooth, collision-free trajectories. The navigation function is based on a [...] Read more.
In this paper, we propose a global navigation function applied to model predictive control (MPC) for autonomous mobile robots, with application to warehouse automation. The approach considers static and dynamic obstacles and generates smooth, collision-free trajectories. The navigation function is based on a potential field derived from an E* graph search algorithm on a discrete occupancy grid and by bicubic interpolation. It has convergent behavior from anywhere to the target and is computed in advance to increase computational efficiency. The novel optimization strategy used in MPC combines a discrete set of velocity candidates with randomly perturbed candidates from particle swarm optimization. Adaptive horizon length is used to improve performance. The efficiency of the proposed approaches is validated using simulations and experimental results. Full article
(This article belongs to the Special Issue Advanced Sensors Technologies Applied in Mobile Robot)
Show Figures

Figure 1

45 pages, 92265 KiB  
Review
P-Type Metal Oxide Semiconductor Thin Films: Synthesis and Chemical Sensor Applications
by Abderrahim Moumen, Gayan C. W. Kumarage and Elisabetta Comini
Sensors 2022, 22(4), 1359; https://doi.org/10.3390/s22041359 - 10 Feb 2022
Cited by 44 | Viewed by 10224
Abstract
This review focuses on the synthesis of p-type metal-oxide (p-type MOX) semiconductor thin films, such as CuO, NiO, Co3O4, and Cr2O3, used for chemical-sensing applications. P-type MOX thin films exhibit several advantages over n-type MOX, [...] Read more.
This review focuses on the synthesis of p-type metal-oxide (p-type MOX) semiconductor thin films, such as CuO, NiO, Co3O4, and Cr2O3, used for chemical-sensing applications. P-type MOX thin films exhibit several advantages over n-type MOX, including a higher catalytic effect, low humidity dependence, and improved recovery speed. However, the sensing performance of CuO, NiO, Co3O4, and Cr2O3 thin films is strongly related to the intrinsic physicochemical properties of the material and the thickness of these MOX thin films. The latter is heavily dependent on synthesis techniques. Many techniques used for growing p-MOX thin films are reviewed herein. Physical vapor-deposition techniques (PVD), such as magnetron sputtering, thermal evaporation, thermal oxidation, and molecular-beam epitaxial (MBE) growth were investigated, along with chemical vapor deposition (CVD). Liquid-phase routes, including sol–gel-assisted dip-and-spin coating, spray pyrolysis, and electrodeposition, are also discussed. A review of each technique, as well as factors that affect the physicochemical properties of p-type MOX thin films, such as morphology, crystallinity, defects, and grain size, is presented. The sensing mechanism describing the surface reaction of gases with MOX is also discussed. The sensing characteristics of CuO, NiO, Co3O4, and Cr2O3 thin films, including their response, sensor kinetics, stability, selectivity, and repeatability are reviewed. Different chemical compounds, including reducing gases (such as volatile organic compounds (VOCs), H2, and NH3) and oxidizing gases, such as CO2, NO2, and O3, were analyzed. Bulk doping, surface decoration, and heterostructures are some of the strategies for improving the sensing capabilities of the suggested pristine p-type MOX thin films. Future trends to overcome the challenges of p-type MOX thin-film chemical sensors are also presented. Full article
(This article belongs to the Special Issue Thin Film Gas Sensors)
Show Figures

Figure 1

30 pages, 65176 KiB  
Review
Respiratory Monitoring by Ultrafast Humidity Sensors with Nanomaterials: A Review
by Shinya Kano, Nutpaphat Jarulertwathana, Syazwani Mohd-Noor, Jerome K. Hyun, Ryota Asahara and Harutaka Mekaru
Sensors 2022, 22(3), 1251; https://doi.org/10.3390/s22031251 - 7 Feb 2022
Cited by 29 | Viewed by 4759
Abstract
Respiratory monitoring is a fundamental method to understand the physiological and psychological relationships between respiration and the human body. In this review, we overview recent developments on ultrafast humidity sensors with functional nanomaterials for monitoring human respiration. Key advances in design and materials [...] Read more.
Respiratory monitoring is a fundamental method to understand the physiological and psychological relationships between respiration and the human body. In this review, we overview recent developments on ultrafast humidity sensors with functional nanomaterials for monitoring human respiration. Key advances in design and materials have resulted in humidity sensors with response and recovery times reaching 8 ms. In addition, these sensors are particularly beneficial for respiratory monitoring by being portable and noninvasive. We systematically classify the reported sensors according to four types of output signals: impedance, light, frequency, and voltage. Design strategies for preparing ultrafast humidity sensors using nanomaterials are discussed with regard to physical parameters such as the nanomaterial film thickness, porosity, and hydrophilicity. We also summarize other applications that require ultrafast humidity sensors for physiological studies. This review provides key guidelines and directions for preparing and applying such sensors in practical applications. Full article
Show Figures

Figure 1

25 pages, 8093 KiB  
Article
Cuffless Blood Pressure Estimation Based on Monte Carlo Simulation Using Photoplethysmography Signals
by Chowdhury Azimul Haque, Tae-Ho Kwon and Ki-Doo Kim
Sensors 2022, 22(3), 1175; https://doi.org/10.3390/s22031175 - 4 Feb 2022
Cited by 9 | Viewed by 2949
Abstract
Blood pressure measurements are one of the most routinely performed medical tests globally. Blood pressure is an important metric since it provides information that can be used to diagnose several vascular diseases. Conventional blood pressure measurement systems use cuff-based devices to measure the [...] Read more.
Blood pressure measurements are one of the most routinely performed medical tests globally. Blood pressure is an important metric since it provides information that can be used to diagnose several vascular diseases. Conventional blood pressure measurement systems use cuff-based devices to measure the blood pressure, which may be uncomfortable and sometimes burdensome to the subjects. Therefore, in this study, we propose a cuffless blood pressure estimation model based on Monte Carlo simulation (MCS). We propose a heterogeneous finger model for the MCS at wavelengths of 905 nm and 940 nm. After recording the photon intensities from the MCS over a certain range of blood pressure values, the actual photoplethysmography (PPG) signals were used to estimate blood pressure. We used both publicly available and self-made datasets to evaluate the performance of the proposed model. In case of the publicly available dataset for transmission-type MCS, the mean absolute errors are 3.32 ± 6.03 mmHg for systolic blood pressure (SBP), 2.02 ± 2.64 mmHg for diastolic blood pressure (DBP), and 1.76 ± 2.8 mmHg for mean arterial pressure (MAP). The self-made dataset is used for both transmission- and reflection-type MCSs; its mean absolute errors are 2.54 ± 4.24 mmHg for SBP, 1.49 ± 2.82 mmHg for DBP, and 1.51 ± 2.41 mmHg for MAP in the transmission-type case as well as 3.35 ± 5.06 mmHg for SBP, 2.07 ± 2.83 mmHg for DBP, and 2.12 ± 2.83 mmHg for MAP in the reflection-type case. The estimated results of the SBP and DBP satisfy the requirements of the Association for the Advancement of Medical Instrumentation (AAMI) standards and are within Grade A according to the British Hypertension Society (BHS) standards. These results show that the proposed model is efficient for estimating blood pressures using fingertip PPG signals. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

10 pages, 2988 KiB  
Article
Flexible Inkjet-Printed Heaters Utilizing Graphene-Based Inks
by Dimitris Barmpakos, Vassiliki Belessi, Nikolaos Xanthopoulos, Christoforos A. Krontiras and Grigoris Kaltsas
Sensors 2022, 22(3), 1173; https://doi.org/10.3390/s22031173 - 3 Feb 2022
Cited by 10 | Viewed by 2670
Abstract
Thermal sensors are mainly based on the selective heating of specific areas, which in most cases is a critical feature for both the operation and the performance of the thermal device. In this work, we evaluate the thermoelectrical response of two graphitic materials, [...] Read more.
Thermal sensors are mainly based on the selective heating of specific areas, which in most cases is a critical feature for both the operation and the performance of the thermal device. In this work, we evaluate the thermoelectrical response of two graphitic materials, namely (a) a commercial 2.4%wt graphene–ethyl cellulose dispersion in cycloxehanone and terpineol (G) and (b) a custom functionalized reduced graphene oxide (f-rGO) ink in the range of −40 to 100 °C. Both inks were printed on a flexible polyimide substrate and the Thermal Coefficients of Resistance (TCR) were extracted as TCRG = −1.05 × 10−3 °C−1 (R2 = 0.9938) and TCRf-rGO = −3.86 × 10−3 °C−1 (R2 = 0.9967). Afterward, the inkjet-printed devices were evaluated as microheaters, in order to exploit their advantage for cost-effective production with minimal material waste. f-rGO and G printed heaters reached a maximum temperature of 97.5 °C at 242 mW and 89.9 °C at 314 mW, respectively, applied by a constant current source and monitored by an infrared camera. Repeatability experiments were conducted, highlighting the high robustness in long-term use. The power–temperature behavior was extracted by self-heating experiments to demonstrate the ability of the devices to serve as heaters. Both static and dynamic evaluation were performed in order to study the device behaviors and extract the corresponding parameters. After all the experimental processes, the resistance of the samples was again evaluated and found to differ less than 13% from the initial value. In this work, fabrication via inkjet printing and demonstration of efficient and stable microheaters utilizing a custom ink (f-rGO) and a commercial graphene ink are presented. This approach is suitable for fabricating selectively heated geometries on non-planar substrate with high repeatability and endurance in heat cycles. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

15 pages, 4698 KiB  
Article
Quantitative Evaluation System of Upper Limb Motor Function of Stroke Patients Based on Desktop Rehabilitation Robot
by Mingliang Zhang, Jing Chen, Zongquan Ling, Bochao Zhang, Yanxin Yan, Daxi Xiong and Liquan Guo
Sensors 2022, 22(3), 1170; https://doi.org/10.3390/s22031170 - 3 Feb 2022
Cited by 15 | Viewed by 3065
Abstract
Rehabilitation training and movement evaluation after stroke have become a research hotspot as stroke has become a very common and harmful disease. However, traditional rehabilitation training and evaluation are mainly conducted under the guidance of rehabilitation doctors. The evaluation process is time-consuming and [...] Read more.
Rehabilitation training and movement evaluation after stroke have become a research hotspot as stroke has become a very common and harmful disease. However, traditional rehabilitation training and evaluation are mainly conducted under the guidance of rehabilitation doctors. The evaluation process is time-consuming and the evaluation results are greatly influenced by doctors. In this study, a desktop upper limb rehabilitation robot was designed and a quantitative evaluation system of upper limb motor function for stroke patients was proposed. The kinematics and dynamics data of stroke patients during active training were collected by sensors. Combined with the scores of patients’ upper limb motor function by rehabilitation doctors using the Wolf Motor Function Test (WMFT) scale, three different quantitative evaluation models of upper limb motor function based on Back Propagation Neural Network (BPNN), K-Nearest Neighbors (KNN), and Support Vector Regression (SVR) algorithms were established. To verify the effectiveness of the quantitative evaluation system, 10 healthy subjects and 21 stroke patients were recruited for experiments. The experimental results show that the BPNN model has the best evaluation performance among the three quantitative evaluation models. The scoring accuracy of the BPNN model reached up to 87.1%. Moreover, there was a significant correlation between the models′ scores and the doctors′ scores. The proposed system can help doctors to quantitatively evaluate the upper limb motor function of stroke patients and accurately master the rehabilitation progress of patients. Full article
(This article belongs to the Special Issue Rehabilitation Robots and Sensors)
Show Figures

Figure 1

14 pages, 3971 KiB  
Article
Connected Vehicles: V2V and V2I Road Weather and Traffic Communication Using Cellular Technologies
by Muhammad Naeem Tahir, Pekka Leviäkangas and Marcos Katz
Sensors 2022, 22(3), 1142; https://doi.org/10.3390/s22031142 - 2 Feb 2022
Cited by 40 | Viewed by 10606
Abstract
There is a continuous need to design and develop wireless technologies to meet the increasing demands for high-speed wireless data transfer to incorporate advanced intelligent transport systems. Different wireless technologies are continuously evolving including short-range and long-range (WiMAX, LTE, and 5G) cellular standards. [...] Read more.
There is a continuous need to design and develop wireless technologies to meet the increasing demands for high-speed wireless data transfer to incorporate advanced intelligent transport systems. Different wireless technologies are continuously evolving including short-range and long-range (WiMAX, LTE, and 5G) cellular standards. These emerging technologies can considerably enhance the operational performance of communication between vehicles and road-side infrastructure. This paper analyzes the performance of cellular-based long-term evolution (LTE) and 5GTN (5G Test Network) in pilot field measurements (i.e., vehicle-to-vehicle and vehicle-to-infrastructure) when delivering road weather and traffic information in real-time environments. Measurements were conducted on a test track operated and owned by the Finnish Meteorological Institute (FMI), Finland. The results showed that 5GTN outperformed LTE when exchanging road weather and traffic data messages in V2V and V2I scenarios. This comparison was made by mainly considering bandwidth, throughput, packet loss, and latency. The safety critical messages were transmitted at a transmission frequency of 10 Hz. The performance of both compared technologies (i.e., LTE and 5GTN) fulfilled the minimum requirements of the ITS-Assisted Road weather and traffic platform to offer reliable communication for enhanced road traffic safety. The field measurement results also illustrate the advantage of cellular networks (LTE and 5GTN) with a clear potential to use it heterogeneously in future field tests with short-range protocols, e.g., IEEE 802.11p. Full article
(This article belongs to the Special Issue Vehicle-to-Everything (V2X) Communications)
Show Figures

Figure 1

15 pages, 3630 KiB  
Article
Pre-Anodized Graphite Pencil Electrode Coated with a Poly(Thionine) Film for Simultaneous Sensing of 3-Nitrophenol and 4-Nitrophenol in Environmental Water Samples
by Vijaya Gopalan Sree, Jung Inn Sohn and Hyunsik Im
Sensors 2022, 22(3), 1151; https://doi.org/10.3390/s22031151 - 2 Feb 2022
Cited by 14 | Viewed by 2137
Abstract
A very simple, as well as sensitive and selective, sensing protocol was developed on a pre-anodized graphite pencil electrode surface coated using poly(thionine) (APGE/PTH). The poly(thionine) coated graphite pencil was then used for simultaneous sensing of 3-nitrophenol (3-NP) and 4-nitrophenol (4-NP). The poly(thionine) [...] Read more.
A very simple, as well as sensitive and selective, sensing protocol was developed on a pre-anodized graphite pencil electrode surface coated using poly(thionine) (APGE/PTH). The poly(thionine) coated graphite pencil was then used for simultaneous sensing of 3-nitrophenol (3-NP) and 4-nitrophenol (4-NP). The poly(thionine) coated electrode exhibited an enhanced electrocatalytic property towards nitrophenol (3-NP and 4-NP) reduction. Redox peak potential and current of both nitrophenols were found well resolved and their simultaneous analysis was studied. Under optimized experimental conditions, APGE/PTH showed a long linear concentration range from 20 to 230 nM and 15 nM to 280 nM with a calculated limit of detection (LOD) of 4.5 and 4 nM and a sensitivity of 22.45 µA/nM and 27.12 µA/nM for 3-NP and 4-NP, respectively. Real sample analysis using the prepared sensor was tested with different environmental water samples and the sensors exhibited excellent recovery results in the range from 98.16 to 103.43%. Finally, the sensor exposed an promising selectivity, stability, and reproducibility towards sensing of 3-NP and 4-NP. Full article
Show Figures

Figure 1

45 pages, 3862 KiB  
Review
Quantification of Movement in Stroke Patients under Free Living Conditions Using Wearable Sensors: A Systematic Review
by Mariano Bernaldo de Quirós, E.H. Douma, Inge van den Akker-Scheek, Claudine J. C. Lamoth and Natasha M. Maurits
Sensors 2022, 22(3), 1050; https://doi.org/10.3390/s22031050 - 28 Jan 2022
Cited by 9 | Viewed by 4058
Abstract
Stroke is a main cause of long-term disability worldwide, placing a large burden on individuals and health care systems. Wearable technology can potentially objectively assess and monitor patients outside clinical environments, enabling a more detailed evaluation of their impairment and allowing individualization of [...] Read more.
Stroke is a main cause of long-term disability worldwide, placing a large burden on individuals and health care systems. Wearable technology can potentially objectively assess and monitor patients outside clinical environments, enabling a more detailed evaluation of their impairment and allowing individualization of rehabilitation therapies. The aim of this review is to provide an overview of setups used in literature to measure movement of stroke patients under free living conditions using wearable sensors, and to evaluate the relation between such sensor-based outcomes and the level of functioning as assessed by existing clinical evaluation methods. After a systematic search we included 32 articles, totaling 1076 stroke patients from acute to chronic phases and 236 healthy controls. We summarized the results by type and location of sensors, and by sensor-based outcome measures and their relation with existing clinical evaluation tools. We conclude that sensor-based measures of movement provide additional information in relation to clinical evaluation tools assessing motor functioning and both are needed to gain better insight in patient behavior and recovery. However, there is a strong need for standardization and consensus, regarding clinical assessments, but also regarding the use of specific algorithms and metrics for unsupervised measurements during daily life. Full article
(This article belongs to the Special Issue Intelligent Systems for Clinical Care and Remote Patient Monitoring)
Show Figures

Figure 1

28 pages, 2715 KiB  
Article
Quantitative Evaluation for Magnetoelectric Sensor Systems in Biomagnetic Diagnostics
by Eric Elzenheimer, Christin Bald, Erik Engelhardt, Johannes Hoffmann, Patrick Hayes, Johan Arbustini, Andreas Bahr, Eckhard Quandt, Michael Höft and Gerhard Schmidt
Sensors 2022, 22(3), 1018; https://doi.org/10.3390/s22031018 - 28 Jan 2022
Cited by 28 | Viewed by 3459
Abstract
Dedicated research is currently being conducted on novel thin film magnetoelectric (ME) sensor concepts for medical applications. These concepts enable a contactless magnetic signal acquisition in the presence of large interference fields such as the magnetic field of the Earth and are operational [...] Read more.
Dedicated research is currently being conducted on novel thin film magnetoelectric (ME) sensor concepts for medical applications. These concepts enable a contactless magnetic signal acquisition in the presence of large interference fields such as the magnetic field of the Earth and are operational at room temperature. As more and more different ME sensor concepts are accessible to medical applications, the need for comparative quality metrics significantly arises. For a medical application, both the specification of the sensor itself and the specification of the readout scheme must be considered. Therefore, from a medical user’s perspective, a system consideration is better suited to specific quantitative measures that consider the sensor readout scheme as well. The corresponding sensor system evaluation should be performed in reproducible measurement conditions (e.g., magnetically, electrically and acoustically shielded environment). Within this contribution, an ME sensor system evaluation scheme will be described and discussed. The quantitative measures will be determined exemplarily for two ME sensors: a resonant ME sensor and an electrically modulated ME sensor. In addition, an application-related signal evaluation scheme will be introduced and exemplified for cardiovascular application. The utilized prototype signal is based on a magnetocardiogram (MCG), which was recorded with a superconducting quantum-interference device. As a potential figure of merit for a quantitative signal assessment, an application specific capacity (ASC) is introduced. In conclusion, this contribution highlights metrics for the quantitative characterization of ME sensor systems and their resulting output signals in biomagnetism. Finally, different ASC values and signal-to-noise ratios (SNRs) could be clearly presented for the resonant ME sensor (SNR: 90 dB, ASC: 9.8×107 dB Hz) and also the electrically modulated ME sensor (SNR: 11 dB, ASC: 23 dB Hz), showing that the electrically modulated ME sensor is better suited for a possible MCG application under ideal conditions. The presented approach is transferable to other magnetic sensors and applications. Full article
(This article belongs to the Special Issue Magnetoelectric Sensor Systems and Applications)
Show Figures

Figure 1

14 pages, 35197 KiB  
Review
Wearable Sensing Systems for Monitoring Mental Health
by Mijeong Kang and Kyunghwan Chai
Sensors 2022, 22(3), 994; https://doi.org/10.3390/s22030994 - 27 Jan 2022
Cited by 16 | Viewed by 7819
Abstract
Wearable systems for monitoring biological signals have opened the door to personalized healthcare and have advanced a great deal over the past decade with the development of flexible electronics, efficient energy storage, wireless data transmission, and information processing technologies. As there are cumulative [...] Read more.
Wearable systems for monitoring biological signals have opened the door to personalized healthcare and have advanced a great deal over the past decade with the development of flexible electronics, efficient energy storage, wireless data transmission, and information processing technologies. As there are cumulative understanding of mechanisms underlying the mental processes and increasing desire for lifetime mental wellbeing, various wearable sensors have been devised to monitor the mental status from physiological activities, physical movements, and biochemical profiles in body fluids. This review summarizes the recent progress in wearable healthcare monitoring systems that can be utilized in mental healthcare, especially focusing on the biochemical sensors (i.e., biomarkers associated with mental status, sensing modalities, and device materials) and discussing their promises and challenges. Full article
Show Figures

Figure 1

19 pages, 7338 KiB  
Article
Kinetic Electromagnetic Energy Harvester for Railway Applications—Development and Test with Wireless Sensor
by Zdenek Hadas, Ondrej Rubes, Filip Ksica and Jan Chalupa
Sensors 2022, 22(3), 905; https://doi.org/10.3390/s22030905 - 25 Jan 2022
Cited by 10 | Viewed by 3327
Abstract
This paper deals with a development and lab testing of energy harvesting technology for autonomous sensing in railway applications. Moving trains are subjected to high levels of vibrations and rail deformations that could be converted via energy harvesting into useful electricity. Modern maintenance [...] Read more.
This paper deals with a development and lab testing of energy harvesting technology for autonomous sensing in railway applications. Moving trains are subjected to high levels of vibrations and rail deformations that could be converted via energy harvesting into useful electricity. Modern maintenance solutions of a rail trackside typically consist of a large number of integrated sensing systems, which greatly benefit from autonomous source of energy. Although the amount of energy provided by conventional energy harvesting devices is usually only around several milliwatts, it is sufficient as a source of electrical power for low power sensing devices. The main aim of this paper is to design and test a kinetic electromagnetic energy harvesting system that could use energy from a passing train to deliver sufficient electrical power for sensing nodes. Measured mechanical vibrations of regional and express trains were used in laboratory testing of the developed energy harvesting device with an integrated resistive load and wireless transmission system, and based on these tests the proposed technology shows a high potential for railway applications. Full article
(This article belongs to the Special Issue Vibration Energy Harvesting for Wireless Sensors)
Show Figures

Figure 1

61 pages, 4074 KiB  
Review
Sensors and Actuation Technologies in Exoskeletons: A Review
by Monica Tiboni, Alberto Borboni, Fabien Vérité, Chiara Bregoli and Cinzia Amici
Sensors 2022, 22(3), 884; https://doi.org/10.3390/s22030884 - 24 Jan 2022
Cited by 46 | Viewed by 10349
Abstract
Exoskeletons are robots that closely interact with humans and that are increasingly used for different purposes, such as rehabilitation, assistance in the activities of daily living (ADLs), performance augmentation or as haptic devices. In the last few decades, the research activity on these [...] Read more.
Exoskeletons are robots that closely interact with humans and that are increasingly used for different purposes, such as rehabilitation, assistance in the activities of daily living (ADLs), performance augmentation or as haptic devices. In the last few decades, the research activity on these robots has grown exponentially, and sensors and actuation technologies are two fundamental research themes for their development. In this review, an in-depth study of the works related to exoskeletons and specifically to these two main aspects is carried out. A preliminary phase investigates the temporal distribution of scientific publications to capture the interest in studying and developing novel ideas, methods or solutions for exoskeleton design, actuation and sensors. The distribution of the works is also analyzed with respect to the device purpose, body part to which the device is dedicated, operation mode and design methods. Subsequently, actuation and sensing solutions for the exoskeletons described by the studies in literature are analyzed in detail, highlighting the main trends in their development and spread. The results are presented with a schematic approach, and cross analyses among taxonomies are also proposed to emphasize emerging peculiarities. Full article
(This article belongs to the Special Issue Sensor Technologies for Human Health Monitoring)
Show Figures

Figure 1

24 pages, 52875 KiB  
Article
Post-Earthquake Building Evaluation Using UAVs: A BIM-Based Digital Twin Framework
by Nathaniel M. Levine and Billie F. Spencer, Jr.
Sensors 2022, 22(3), 873; https://doi.org/10.3390/s22030873 - 24 Jan 2022
Cited by 44 | Viewed by 7203
Abstract
Computer vision has shown potential for assisting post-earthquake inspection of buildings through automatic damage detection in images. However, assessing the safety of an earthquake-damaged building requires considering this damage in the context of its global impact on the structural system. Thus, an inspection [...] Read more.
Computer vision has shown potential for assisting post-earthquake inspection of buildings through automatic damage detection in images. However, assessing the safety of an earthquake-damaged building requires considering this damage in the context of its global impact on the structural system. Thus, an inspection must consider the expected damage progression of the associated component and the component’s contribution to structural system performance. To address this issue, a digital twin framework is proposed for post-earthquake building evaluation that integrates unmanned aerial vehicle (UAV) imagery, component identification, and damage evaluation using a Building Information Model (BIM) as a reference platform. The BIM guides selection of optimal sets of images for each building component. Then, if damage is identified, each image pixel is assigned to a specific BIM component, using a GrabCut-based segmentation method. In addition, 3D point cloud change detection is employed to identify nonstructural damage and associate that damage with specific BIM components. Two example applications are presented. The first develops a digital twin for an existing reinforced concrete moment frame building and demonstrates BIM-guided image selection and component identification. The second uses a synthetic graphics environment to demonstrate 3D point cloud change detection for identifying damaged nonstructural masonry walls. In both examples, observed damage is tied to BIM components, enabling damage to be considered in the context of each component’s known design and expected earthquake performance. The goal of this framework is to combine component-wise damage estimates with a pre-earthquake structural analysis of the building to predict a building’s post-earthquake safety based on an external UAV survey. Full article
Show Figures

Figure 1

13 pages, 3057 KiB  
Article
Multi-Gas Detection System Based on Non-Dispersive Infrared (NDIR) Spectral Technology
by Manlin Xu, Bo Peng, Xiangyi Zhu and Yongcai Guo
Sensors 2022, 22(3), 836; https://doi.org/10.3390/s22030836 - 22 Jan 2022
Cited by 27 | Viewed by 4032
Abstract
Automobile exhaust gases, such as carbon dioxide (CO2), carbon monoxide (CO), and propane (C3H8), cause the greenhouse effect, photochemical smog, and haze, threatening the urban atmosphere and human health. In this study, a non-dispersive infrared (NDIR) multi-gas [...] Read more.
Automobile exhaust gases, such as carbon dioxide (CO2), carbon monoxide (CO), and propane (C3H8), cause the greenhouse effect, photochemical smog, and haze, threatening the urban atmosphere and human health. In this study, a non-dispersive infrared (NDIR) multi-gas detection system consisting of a single broadband light source, gas cell, and four-channel pyroelectric detector was developed. The system can be used to economically detect gas concentration in the range of 0–5000 ppm for C3H8, 0–14% for CO, and 0–20% for CO2. According to the experimental data, the concentration inversion model was established using the least squares between the voltage ratio and the concentration. Additionally, the interference coefficient between different gases was tested. Therefore, the interference models between the three gases were established by the least square method. The concentration inversion model was experimentally verified, and it was observed that the full-scale error of the sensor changed less than 3.5%, the detection repeatability error was lower than 4.5%, and the detection stability was less than 2.7%. Therefore, the detection system is economical and energy efficient and it is a promising method for the analysis of automobile exhaust gases. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

18 pages, 23878 KiB  
Article
Addressing Gaps in Small-Scale Fisheries: A Low-Cost Tracking System
by Anna Nora Tassetti, Alessandro Galdelli, Jacopo Pulcinella, Adriano Mancini and Luca Bolognini
Sensors 2022, 22(3), 839; https://doi.org/10.3390/s22030839 - 22 Jan 2022
Cited by 18 | Viewed by 4400
Abstract
During the last decade vessel-position-recording devices, such as the Vessel Monitoring System and the Automatic Identification System, have increasingly given accurate spatial and quantitative information of industrial fisheries. On the other hand, small-scale fisheries (vessels below 12 m) remain untracked and largely unregulated [...] Read more.
During the last decade vessel-position-recording devices, such as the Vessel Monitoring System and the Automatic Identification System, have increasingly given accurate spatial and quantitative information of industrial fisheries. On the other hand, small-scale fisheries (vessels below 12 m) remain untracked and largely unregulated even though they play an important socio-economic and cultural role in European waters and coastal communities and account for most of the total EU fishing fleet. The typically low-technological capacity of these small-scale fishing boats—for which space and power onboard are often limited—as well their reduced operative range encourage the development of efficient, low-cost, and low-burden tracking solutions. In this context, we designed a cost-effective and scalable prototypic architecture to gather and process positional data from small-scale vessels, making use of a LoRaWAN/cellular network. Data collected by our first installation are presented, as well as its preliminary processing. The emergence of a such low-cost and open-source technology coupled to artificial intelligence could open new opportunities for equipping small-scale vessels, collecting their trajectory data, and estimating their fishing effort (information which has historically not been present). It enables a new monitoring strategy that could effectively include small-scale fleets and support the design of new policies oriented to inform coastal resource and fisheries management. Full article
Show Figures

Figure 1

12 pages, 2786 KiB  
Communication
UHF RFID Temperature Sensor Tag Integrated into a Textile Yarn
by Sofia Benouakta, Florin Doru Hutu and Yvan Duroc
Sensors 2022, 22(3), 818; https://doi.org/10.3390/s22030818 - 21 Jan 2022
Cited by 12 | Viewed by 2741
Abstract
This paper presents the design of an ultra high-frequency (UHF) radio frequency identification (RFID) sensor tag integrated into a textile yarn and manufactured using the E-Thread® technology. The temperature detection concept is based on the modification of the impedance matching between RFID [...] Read more.
This paper presents the design of an ultra high-frequency (UHF) radio frequency identification (RFID) sensor tag integrated into a textile yarn and manufactured using the E-Thread® technology. The temperature detection concept is based on the modification of the impedance matching between RFID tag’s antenna and the chip. This modification is created by the change in the resistance of a thermistor integrated within the tag system due to a temperature variation. Moreover, in order to obtain an environment independent detection, a differential approach is proposed that avoids the use of a pre-calibration phase by the use of a reference tag. Experimental characterization demonstrates the RFID sensor’s potential of detecting a temperature variation or a temperature threshold between 25 and 70 °C through the variation of the transmitted differential activation power. Full article
(This article belongs to the Special Issue RF Sensors: Design, Optimization and Applications)
Show Figures

Figure 1

14 pages, 3219 KiB  
Article
Photonic Label-Free Biosensors for Fast and Multiplex Detection of Swine Viral Diseases
by Maribel Gómez-Gómez, Carles Sánchez, Sergio Peransi, David Zurita, Laurent Bellieres, Sara Recuero, Manuel Rodrigo, Santiago Simón, Alessandra Camarca, Alessandro Capo, Maria Staiano, Antonio Varriale, Sabato D’Auria, Georgios Manessis, Athnasios I. Gelasakis, Ioannis Bossis, Gyula Balka, Lilla Dénes, Maciej Frant, Lapo Nannucci, Matteo Bonasso, Alessandro Giusti and Amadeu Grioladd Show full author list remove Hide full author list
Sensors 2022, 22(3), 708; https://doi.org/10.3390/s22030708 - 18 Jan 2022
Cited by 8 | Viewed by 2978
Abstract
In this paper we present the development of photonic integrated circuit (PIC) biosensors for the label-free detection of six emerging and endemic swine viruses, namely: African Swine Fever Virus (ASFV), Classical Swine Fever Virus (CSFV), Porcine Reproductive and Respiratory Syndrome Virus (PPRSV), Porcine [...] Read more.
In this paper we present the development of photonic integrated circuit (PIC) biosensors for the label-free detection of six emerging and endemic swine viruses, namely: African Swine Fever Virus (ASFV), Classical Swine Fever Virus (CSFV), Porcine Reproductive and Respiratory Syndrome Virus (PPRSV), Porcine Parvovirus (PPV), Porcine Circovirus 2 (PCV2), and Swine Influenza Virus A (SIV). The optical biosensors are based on evanescent wave technology and, in particular, on Resonant Rings (RRs) fabricated in silicon nitride. The novel biosensors were packaged in an integrated sensing cartridge that included a microfluidic channel for buffer/sample delivery and an optical fiber array for the optical operation of the PICs. Antibodies were used as molecular recognition elements (MREs) and were selected based on western blotting and ELISA experiments to ensure the high sensitivity and specificity of the novel sensors. MREs were immobilized on RR surfaces to capture viral antigens. Antibody–antigen interactions were transduced via the RRs to a measurable resonant shift. Cell culture supernatants for all of the targeted viruses were used to validate the biosensors. Resonant shift responses were dose-dependent. The results were obtained within the framework of the SWINOSTICS project, contributing to cover the need of the novel diagnostic tools to tackle swine viral diseases. Full article
Show Figures

Figure 1

Back to TopTop