remotesensing-logo

Journal Browser

Journal Browser

Space-Geodetic Techniques (Third Edition)

A special issue of Remote Sensing (ISSN 2072-4292). This special issue belongs to the section "Satellite Missions for Earth and Planetary Exploration".

Deadline for manuscript submissions: 31 August 2024 | Viewed by 443

Special Issue Editors


E-Mail Website
Guest Editor
Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai, China
Interests: astronomy; orbit determination; spacecraft
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Institute of Geodesy and Cartography, 27 Modzelewski St., 02-679 Warsaw, Poland
Interests: GNSS data for geodynamics process; satellite gravity modelling; terrestrial (relative/absolute) gravity measurements; reference system/frame; height system
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Thank you all for your efforts and support that made our previous two Special Issues: ‘Space-Geodetic Techniques I’ and Space-Geodetic Techniques II’ a success. We have published a number of excellent studies and contributed to a reprint of articles in the open access journal Remote Sensing. Now, we are pleased to announce the release of this third volume to continue tracking the latest improvements in the field of space geodesy.

Space-geodetic techniques, such as very long baseline interferometry (VLBI), global navigation satellite systems (GNSSs), satellite laser ranging (SLR), interferometric synthetic aperture radar (InSAR), Doppler orbitography and radio positioning integrated by satellite (DORIS), and satellite altimetry and gravimetry, etc., have played an increasingly significant role in Earth exploration and geodetic research. Benefiting from the rapid development of satellite techniques and the creation of ground- and space-based observing systems, the establishment and maintenance of the Earth’s reference frame, the Earth’s rotation and geodynamics, high-precision navigation and positioning, gravity fields, geodetic observation, and the remote sensing and modeling of the Earth’s atmosphere and ionosphere, as well as deep-space exploration, are facilitated with more accurate and dense data and are attracting more and more attention focused on solving challenging scientific problems.

This third Special Issue welcomes all studies related to applications of different space-geodetic techniques in space and ground observations across the fields of planetary and Earth sciences. The topics may cover anything from the classical estimation of high-precision Earth observation, to more comprehensive aims and scales. Articles may address, but are not limited to, these topics:

  • Global and regional gravity field modeling;
  • Satellite gravimetry and applications in global change;
  • Satellite altimetry and oceanography;
  • Geodetic remote sensing;
  • Applications of remote sensing in the global water cycle;
  • Next-generation positioning;
  • Techniques and applications in high-precision GNSS;
  • Atmosphere modeling and monitoring;
  • Space weather research;
  • GNSS reflectometry;
  • Geodetic observations and geodynamics;
  • Crust deformation and natural hazard monitoring;
  • Earth rotation;
  • Planetary geodesy.

Dr. Xiaogong Hu
Dr. Walyeldeen Godah
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Remote Sensing is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • ground and satellite gravimetry
  • satellite altimetry
  • positioning
  • orbit determination
  • atmosphere
  • space weather
  • global climate change
  • geodynamics
  • natural hazard monitoring
  • earth rotation
  • planetary geodesy
  • GNSS-R

Related Special Issue

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 3230 KiB  
Article
SLR Validation and Evaluation of BDS-3 MEO Satellite Precise Orbits
by Ran Li, Chen Wang, Hongyang Ma, Yu Zhou, Chengpan Tang, Ziqian Wu, Guang Yang and Xiaolin Zhang
Remote Sens. 2024, 16(11), 2016; https://doi.org/10.3390/rs16112016 - 4 Jun 2024
Viewed by 160
Abstract
Starting from February 2023, the International Laser Ranging Service (ILRS) began releasing satellite laser ranging (SLR) data for all BeiDou global navigation satellite system (BDS-3) medium earth orbit (MEO) satellites. SLR data serve as the best external reference for validating satellite orbits, providing [...] Read more.
Starting from February 2023, the International Laser Ranging Service (ILRS) began releasing satellite laser ranging (SLR) data for all BeiDou global navigation satellite system (BDS-3) medium earth orbit (MEO) satellites. SLR data serve as the best external reference for validating satellite orbits, providing a basis for comprehensive evaluation of the BDS-3 satellite orbit. We utilized the SLR data from February to May 2023 to comprehensively evaluate the orbits of BDS-3 MEO satellites from different analysis centers (ACs). The results show that, whether during the eclipse season or the yaw maneuver season, the accuracy was not significantly decreased in the BDS-3 MEO orbit products released from the Center for Orbit Determination in Europe (CODE), Wuhan University (WHU), and the Deutsches GeoForschungsZentrum (GFZ) ACs, and the STD (Standard Deviation) of SLR residuals of those three ACs are all less than 5 cm. Among these, CODE had the smallest SLR residuals, with 9% and 12% improvement over WHU and GFZ, respectively. Moreover, the WHU precise orbits exhibit the smallest systematic biases, whether during non-eclipse seasons, eclipse seasons, or satellite yaw maneuver seasons. Additionally, we found some BDS-3 satellites (C32, C33, C34, C35, C45, and C46) exhibit orbit errors related to the Sun elongation angle, which indicates that continued effort for the refinement of the non-conservative force model further to improve the orbit accuracy of BDS-3 MEO satellites are in need. Full article
(This article belongs to the Special Issue Space-Geodetic Techniques (Third Edition))
Show Figures

Figure 1

Back to TopTop