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Abstract: The construction industry is among the most prominent contributors to global resource
consumption, waste production, and greenhouse gas emissions. A pivotal step toward mitigating
these sectoral impacts lies in the adoption of a circular production and consumption system. The
use of alternative waste materials can mitigate landfill accumulation and the associated detrimental
environmental effects. To highlight unconventional materials, this study began with a bibliometric
assessment via a bibliography analyzis software called “Bibliometrix” (version 4.1.3). The outputs
from the analyzis can assist in identifying research trends, gaps in literature and benchmark research
performance. The search engine used for sourcing publications was Scopus, using the main criteria
as “Waste materials used in building and construction”. The time-period analysed was from 2013 to
2023. The results included publications obtained in journal articles, book chapters and conference
proceedings. The assessment reviewed 6238 documents from 1482 sources. The results revealed
an array of waste materials; however, rubber, textiles, and ceramics had a significant reduction in
research attention. Rubber waste presents promising opportunities in civil concrete construction
methods. The preparatory steps of textile fibres in composite materials are frequently disregarded,
resulting in structural issues for the end-product. Obstacles persist in ceramic technology due to the
absence of transparency, primarily because industry entities closely safeguard proprietary information.
While sustainability research often emphasizes emissions, practical trials commonly revolve around
integrating materials into current systems. A more comprehensive approach, contemplating the
complete lifecycle of materials, could provide deeper insights into fostering sustainable construction
practices. Researchers can use these findings when determining trends, research gaps, and future
research directions.

Keywords: building and construction; ceramics; circular economy; rubber; textiles; waste materials

1. Introduction

A substantial portion of materials used in the building construction industry currently
follows a linear economic model. This means that raw materials are extracted, processed
through manufacturing, utilised for their intended purpose, and ultimately discarded at
the end of their lifecycle [1]. This linear approach gives rise to various cross-generational
and cross-governmental issues, including challenges related to landfill, waste disposal and
resource depletion [2]. In response to these concerns, the concept of a circular economy
(CE) has emerged as a countermeasure to challenge and transform the prevailing linear
production and consumption patterns within the building construction industry [3]. The
concept of a CE presents a chance to decrease the utilization of primary materials and the
environmental consequences linked to them. This can be achieved through a variety of
strategies, including alternative systems to the traditional end of life disposal. However, the
alteration of strategies such as material reduction, reuse, and the recycling processes must
happen during the production and distribution when material consumption is required.
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Inefficient resource management within the building and construction industry leads
to the generation of significant quantities of construction and demolition waste each year.
Consequently, the building and construction industry is the largest waste generator within
the economy [4]. This is shown in the United States where building and construction
waste accounts for approximately 40% of total waste generated. Moreover, 30% of solid
waste generated in Europe is derived from building and construction related activities [5].
Future projections indicate that by the year 2025, the global volume of building and
construction related waste will reach approximately 2.2 billion tones [6]. In the pursuit of
addressing climate change and environmental deterioration, local governments across the
world are reviewing their policies and procedures related to environmentally detrimental
areas of their economy. For example, the European Green Deal endeavours to reshape the
European Union into a contemporary, resource-efficient, and competitive economy. This
transformation aims to achieve several objectives, including net-zero greenhouse gas (GHG)
emissions by 2050 and the detachment of economic growth from resource consumption. In
alignment with the updated EU circular economy action plan, particular emphasis should
be placed on low carbon emitting materials utilised in construction [7]. However, cost
related concerns and the research development of unconventional materials pose risk to
current building and construction standards and practices. For example, utilization of
waste in structural elements can pose potential unknown material durability risks [8].

Identifying potential waste materials for further use in the building and construction
is a step toward the CE approach. This has been shown in published literature with the
utilization of waste materials such as fly ash (FA), ground blast furnace slag (GBFS) and
silica fume (SF) within concrete and cement-based materials [9–11]. These materials are
known as supplementary cementitious materials (SCMs) and have an ease of transferability
when integrated with cement-based applications [12]. However, not all waste materials
can be transferred directly or create additional benefits when added into other materials
or systems. Researchers have focused on alternative waste materials to supplement the
requirement of natural resource extraction as well as reduce waste accumulation in landfill
areas [13–15]. This has been especially critical to assist in the research toward the reduction
of climate change and adhere to the sustainability development goals (SDG) set out by
the United Nations (UN) in 2015 [16]. Waste materials such as plastics, glass and steel
have been a prominent research focus due to the abundance created in the economy and
the negative impact the material has on the environment [17–19]. Although glass has
a high recyclability rate, contamination, and high energy recycling requirement often
leave the material disposed of in landfill areas [20]. Moreover, this is further shown
with other waste such as paper and cardboard that have a 60% recycling rate with the
remaining 40% disposed of in landfill due to contamination [21]. As the CE principles
become more prominent in the construction industry and the research develops, it is
important to identify current waste materials that have a potential to be utilised further.
This study will aim to highlight the current trends, and limitations of specific waste
materials that are not commonly used. The findings will demonstrate potential areas
to research when using unconventional waste materials that could be used in the building
and construction industry.

2. Research Significance and Methodologies

Embracing the principles of a CE represents a sustainable and profitable alternative
that promotes the efficient utilization of resources and delivers socio-economic advantages,
including heightened gross domestic product and expanded employment prospects [22].
It is important to recognize that various definitions of a CE exist, and in the construction
industry, a clear and universally accepted definition remains elusive [23]. Consequently, CE
initiatives in the construction sector appear to be heading in diverse directions, encompass-
ing areas such as innovative design for deconstruction, the hierarchy of construction and
demolition waste, secondary materials markets, building information modelling and urban
mining. This fragmented development and the presence of misconceptions pose challenges
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to advancing the concept of a CE within the sector [24]. Therefore, the integration of
unconventional waste materials relies upon promotion of the sustainability aspects and
discovery of the utilization in the building and construction industry [25].

The findings of this review aim to enhance the understanding of current trends, and
priorities associated with utilising different waste materials and their associated final out-
puts in the building and construction industry. Additionally, stakeholders will gain insights
into the factors to consider when selecting suitable waste materials for the development
of sustainable building materials. This research will begin with a focus on current waste
materials and associated trends when integrating them further in the building and construc-
tion industry via bibliometric assessment. A bibliometric assessment is a comprehensive
quantitative science mapping analyzis of published literature. The bibliometric assessment
is conducted via a bibliography analyzis software called “Bibliometrix” (version 4.1.3).
The outputs from the analyzis can assist to identify research trends, gaps in literature and
benchmark research performance [26]. The search engine used for sourcing publications
was Scopus, using the main criteria as “Waste materials used in building and construc-
tion”. Scopus is a comprehensive abstract and citation database, widely used for research
evaluation. The database has extensive coverage, global content, citation tracking and
metric and analyzis tools. The time-period analysed was the last decade from 2013 to
2023. The results included publications obtained in journal articles, book chapters and
conference proceedings. The PRISMA (preferred reporting items for systematic review
and meta-analyzis) framework was used in conjunction with the bibliometric assessment.
The PRISMA methodology is primarily designed for systematic reviews that focus on
summarizing and synthesizing evidence from primary research studies. While PRISMA
itself may not directly apply to bibliometric analyzis, it can offer a structured and trans-
parent reporting structure, especially when combined with bibliometric studies or used
to report the systematic review of bibliometric research. This methodology is shown in
Figure 1. The final output of this research is a systematic approach of current literature as
well as the observations obtained from the bibliometric assessment. The review aims to
highlight waste materials that are less research focused and determine optimal applications
for further research and integration with the building and construction industry.
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3. Bibliometric Assessment Findings

The main information derived from the bibliometric assessment is shown in Table 1.
The assessment reviewed 6238 documents from 1482 sources. The average number of
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authors per document is represented at 3.93. This is calculated via author appearance
and documents. Total number of authors was 17,022, demonstrating the topic is a highly
researched focus area with multiple co-authors. Journal articles were the predominant
source of publications with 3775 however, conference papers and review papers were
1738 and 432, respectively. Figure 2 graphically depicts the annual scientific publications
from 2013 to 2023. As shown, there is a steeper rise of publications since 2019. From 2013,
there has been a 71% increase of publications on waste materials used in the building and
construction industry. This corresponds to the adoption of the United Nations sustainable
development goals (SDGs) in 2015 [16]. Moreover, since 2020, there has also been a 22%
increase on publications. In 2020, the UN secretary general addressed the acceleration
of the SDGs with a decade of action, urging countries and local Governments to act [27].
This was adopted with the European Union’s Green Deal, aiming to be climate neutral by
2050 [27].

Table 1. Main information derived from the bibliometric assessment.

Description Results

Timespan 2013:2024
Sources (Journals, Books, etc.) 1482

Documents 6238
Document Average Age 3.75

Average citations per doc 14.68
References 1

Authors 17,022
Authors of single-authored docs 384

Single-authored docs 561
Co-Authors per Doc 3.93

Document types
Article 3775
Book 20

Book chapter 273
Conference paper 1738

Review 432
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Figure 3 illustrates the most frequently published sources of publications from the
analysed time-period of ten years. The Journal of Building and construction materials is
the most prominent source of publications in the last decade. The Journal scope welcomes
a research focus toward experimental research, demonstrating alternative methods to
improve the building and construction industry. There is further indication of the bespoke
methods with the proceeding of high publications in the material focused publication
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sources. The scope of these publication sources is highly focused on experimental material
designs and alternative materials.
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Figures 4 and 5 illustrate the research focus areas and thematic word occurrences,
respectively. As shown in Figure 4, the most prominent research focus areas are divided
into three main categories. This includes experimental, computer modelling and sources of
material procurement with the colours of red, blue and green, respectively. The dimensions
of the corresponding areas are relative to the publications on that chosen topic. For example,
FA is a heavy experimentally researched material. This is further shown in the red pattern
with compressive strength and durability analysis. Moreover, computer modelling has been
a prominent research focus for life cycle assessment and analysing energy efficiency when
using waste materials. This is demonstrated in the blue configuration when relating the
findings to circular economy principles and sustainability benchmarks. Figure 5 illustrates
the waste material thematic keyword occurrences from the 6238 documents analysed.
As shown, concrete materials have been the most prominent research area with high
publications focusing on waste related concrete materials. This is demonstrated with high
occurrences of FA, aggregates, GBFS and cement waste materials. Demolition waste is
also a prominent material however, the specifics of those materials could be shown with
the less common occurrences. For example, bricks, glass, steel, wood, and gypsum are
all building materials and could be recovered from the demolition process. There have
been less research publications on municipal solid waste materials such as textiles, rubber,
and ceramics.

Figure 6 illustrates the research trends corresponding with the publication years over
the last decade. As shown, the larger the dimension of the circle corresponds to the
frequency of the research topic. This image shows three dominant research areas that
are focused on. As the years progress, trends and limitations change and thus research
focus also pivots to adjust with the changing world. As shown, machine learning, cements
and alkali-activated binders are the current trending topics. Research utilising machine
learning correlates with the availability of artificial intelligence among local communities.
New systems propel innovative techniques and thus can adjust how research is conducted.
Moreover, as shown, concrete is a highly researched building and construction material
that has been heavily researched over the decade. Concrete materials contribute significant
carbon emissions via the use of cement materials and the depletion of natural resources.
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Summary of Bibliometric Assessment

The bibliometric assessment revealed the following key findings and observations.

• Rubber was the least researched waste material.
• Mechanical testing of compressive, tensile, and flexural is a key research focus.
• Fly Ash and slags are the dominant additives in concrete materials.
• Sustainability is a key driver of waste material research.
• Glass, steel, and plastics are heavy research focused.
• Gypsum, ceramics, and wood had similar trends of research focus.

The bibliometric assessment results have enabled upcoming researchers to pinpoint
influential journal sources and concentrate their research efforts on areas with higher po-
tential impact. Based on the findings, it was shown that major research has been conducted
on steel, plastics, glass, and recycled aggregates. Whereas in comparison, textile and rubber
waste had minimal research focus. Due to the array of waste products, this review will
systematically focus on the less researched focused municipal solid waste materials includ-
ing rubber, textiles, and ceramics. The results will determine common research focus areas
and discuss the sustainability benefits when using these materials in various building and
construction applications.

4. Waste Materials
4.1. Rubber Waste

Rubber waste is primarily sourced from truck and passenger vehicle tires, with a
smaller percentage derived from manufacturing and miscellaneous products. The dura-
bility requirement for tire products make them difficult to reuse or recycle, this creates
complex composite rubber products. Transport tires are made from natural rubber (19%),
synthetic polymer (24%), textiles (4%), reinforcing steel wire (12%), and carbon black or
silica filler (26%). Other products such as antioxidants and antiozonants (14%) are also
applied for degradation resistance [28]. In Australia, there are approximately eighty-five
million tires in use annually, which equates to the generation of 459,000 tonnes of waste
each year. Following the SDGs, the National Tire Product Stewardship Scheme recovers
and recycles tire derived products with the aim to reduce negative environmental, health
and safety impacts. However, only 330,000 tonnes of tire waste is recovered and recycled,
which equates to approximately 70% of tire waste generated [29]. The increase of the
population creates a higher tire demand in the United States, where 246 million tire waste
is created equating to four million tonnes produced annually [30]. Although this number
is significant, it is only equal to 3.1% of municipal solid waste produced annually [31].
Due to this low percentage, research has been focused on the investigation of other waste
materials. This has been shown with the use of fossil fuel by-products such as FA [32].
Although the generation of tire waste is significant, research industries are partnering with
tire companies to produce renewable tire products and recycle up to 88% of the waste
material generated [33].

4.1.1. Sustainability Aspects of Using Rubber Waste

Reducing the amount of waste created from tire and rubber products is critical for
the sustainability of the material. This coincides with the design of the product to ensure
maximum usage and enhanced longevity. To measure the sustainability of a product,
researchers often use life cycle analysis (LCA) and optimization techniques to investigate a
materials impact. This has been shown with other municipal solid waste materials such
as cardboard, plastics, and glass materials [34–36]. The sustainability of reusing waste
rubber is dependent on the recycling technique. For example, the pyrolysis technique to
burn rubber tires for energy can create additional detrimental gases and chemicals within
the local environment [37]. Moreover, granulizing tire rubber can be an effective method
to further integrate the material within composite materials. However, it is critical to
ensure leaching of the particles does not interfere with relative water tables and bodies of
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water. This has been shown to create additional dangers and pollute the local areas [38].
Despite the natural rubber in tires, the additional materials required to create tires have
been problematic when recycling. Therefore, researchers have been repurposing the tire
products into non-structural applications and eco-friendly systems [39,40]. For example,
the divergence of crumb rubber from landfill into asphalt systems has been shown to
reduce carbon emissions by 71% [41]. Moreover, when 466,000 tonnes of crumb rubber
sourced from waste tires is utilised for road base surfaces, there is a potential saving
of 16.1 million USD. This is a significant saving when diverting from natural resources
and using waste products. The re-processing methods of tires into useable products can
be costly, therefore burning tires for fuel consumption has been shown to be a viable
option [42]. This method can assist in lowering fossil fuel derived energy requirements and
ultimately lower carbon emissions.

4.1.2. Applications and Viability of Using Waste Rubber

For many years, rubber tire waste has been incorporated as a ground stabilization
technique in decaying land erosion areas [43]. This has been due to the materials ability to
withstand pressure based on the density and materials composition. Moreover, because
of the durability requirements for transportation vehicles, tire waste slowly decomposes
when entrenched in soil. However, as researchers have discovered, particles of tire waste
have been found in waterways and in the ocean [44]. Other applications of tire waste
have been within playgrounds, sporting fields, and artificial turf for domestic use [45].
In civil construction, tire waste powder has been used in modified asphalt due to the
elasticity and absorption characteristics of the material [46]. The use of waste rubber in road
applications has shown to increase the life span of road surfaces, increase the safety in wet
road conditions and reduce noise pollution [47]. Although there are positive benefits when
using waste tires in civil construction, the material has not been commonly adopted across
the world. This has been due to the complex shredding techniques and machinery required
to complete the transition from tire products into ready-made waste derived materials for
future use. The economic feasibility to complete the transition often hinders the concepts
of a CE in developing countries [48]. Other issues when utilising tires for future use are
the dangers associated with the product. For example, using waste tires within building
and construction systems can pose risks to associated fire hazards. This has been shown
when stockpiles of tires are being burned or used as a fuel system, creating toxic chemicals.
This technique produces health and safety concerns, as hydrocarbons, chromium, mercury,
arsenic cadmium and organic compounds pollute the local atmosphere [49]. Therefore, the
utilization of waste tires in building and construction systems must be within protected
areas that cannot harm or create further risks for human life. Because of the potential
hazards using waste tires, derivatives of tire waste are created. This has been shown with
crumb rubber aggregates, chipped rubber aggregates, rubber powder and ternary blends
of fibre composites. Current literature of rubber waste focuses on the integration of waste
tires within concrete and cementitious composites [50]. The workability of rubberized
concrete diminishes as the percentages of rubber aggregate replacements and their size
increase. Additionally, it is observed that mechanically ground rubber yields lower slump
values compared to cryogenically ground tire rubber. To mitigate these challenges, various
pre-treatment methods can be employed, in conjunction with superplasticizers. Moreover,
substituting traditional aggregates with rubber granules results in notable reduction in the
compressive strength of rubberized concrete. However, when integrating rubber fibre as
a reinforcement agent, it increases the compressive strength. Fibres possessing a higher
elastic modulus facilitate the efficient dispersion of stress throughout the concrete mix,
thereby constraining the development of cracks and ultimately improving the load-carrying
capacity. Table 2 is a systematic review of published research on various rubber materials
within building and construction applications. The research studies vary; however, the
predominant focus has been toward experimental applications.
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Table 2. Rubber waste in building and construction materials.

Material Type Material Application Main Study Focus Ref.

Tire rubber and steel fibres Geopolymer concrete
Mechanical, microstructure,

environmental and
economical

[51]

Rubber fibres Cement Mechanical and
microstructure [52]

Crumb rubber Geopolymer concrete Mechanical and
microstructure [53]

Rubber Concrete
Optimisation, economic,

environmental, and
mechanical

[54]

Crumb rubber Geopolymer concrete Mechanical [55]
Crumb rubber Concrete Mechanical [56]

Tire rubber High strength concrete Mechanical and
microstructure [57]

Rubber granules Concrete Mechanical [58]
Tire rubber Asphalt Economic and environmental [59]

Tire rubber Concrete Mechanical, environmental,
and economical [60]

Tire rubber and Fly Ash Composite Mechanical and
microstructure [61]

Tire rubber and waste glass Concrete Mechanical and
microstructure [62]

Tire rubber Composite Mechanical and
microstructure [63]

Tire rubber Syntactic foam Mechanical and
microstructure [64]

Tire rubber, steel fibre and porcelain Concrete Mechanical and
microstructure [65]

Rubber tube and cow dung ash Concrete Mechanical and
microstructure [66]

Tire rubber Clay soil-rubber Mechanical and
microstructure [67]

Tire rubber and recycled aggregate Pavement Mechanical and
microstructure [68]

Rubber fibre and recycled aggregate Concrete Machine learning modelling [69]

Tire rubber Composite Mechanical and
microstructure [70]

Tire rubber and agricultural waste Composite Mechanical [71]

Tire rubber powder Asphalt Mechanical and
microstructure [47]

Polyvinyl alcohol and rubber Cement paste Mechanical [72]

Tire rubber Pavement Mechanical and
microstructure [73]

Tire rubber and fly ash Composite Mechanical and
microstructure [74]

Tire rubber Cement mortar Mechanical and
microstructure [75]

Tire rubber Self-compacting concrete Mechanical and
microstructure [76]

Crumb rubber and quarry dust Concrete Mechanical [77]

Tire rubber and plastic waste Concrete blocks Mechanical, economical,
and environmental [78]

Crumb rubber and recycled aggregates Mortar Mechanical and
microstructure [79]

Rubber particles Self-compacting concrete Mechanical and
microstructure [80]

Rubber tire, waste paint and silica Cement paste Microstructure [81]
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Table 2. Cont.

Material Type Material Application Main Study Focus Ref.

Tire rubber Asphalt Mechanical and
microstructure [82]

Tire rubber and recycled concrete Concrete Mechanical and
microstructure [83]

Rubber powder and polypropylene fibre Concrete Mechanical and
microstructure [84]

Tire rubber Concrete blocks Mechanical [85]
Tire rubber Asphalt Mechanical [86]

Rubber powder granules Asphalt Thermal [87]

Tire rubber Composite Mechanical and
microstructure [88]

Tire rubber Pervious concrete Mechanical and simulation [89]

Tire rubber Composite Mechanical and
microstructure [90]

Tire rubber Concrete Mechanical and
environmental [91]

The research investigations indicate that rubber tire waste pose significant challenge
when used in proximity to water tables or waterways. The porous nature of rubber can lead
to leaching of toxic chemicals and pollutants into the surrounding environment, posing
risks to aquatic ecosystems and human health. Proper containment and management are
crucial to prevent such contamination. Moreover, the disposal of rubber tire waste can
give rise to the production of toxic by-products. When subjected to heat or combustion,
rubber tires release harmful substances into the air, including carcinogenic compounds
like benzene and toluene. This not only jeopardizes the environment but also endangers
the well-being of individuals living nearby. To address these concerns, it is imperative
to incorporate rubber waste into safe building and construction systems. Implementing
stringent regulations and guidelines can help ensure that rubber tire waste is used responsi-
bly, minimizing its adverse environmental and health impacts. Nonetheless, rubber waste
presents promising opportunities in civil construction methods. Innovative approaches,
such as using rubber as an additive in concrete, can lead to improvements in both material
performance and sustainability. As discussed, fibre-reinforced concrete with rubber waste,
exhibits enhanced mechanical properties, offering a potential avenue for environmentally
friendly construction practices.

4.2. Textile Waste

The textile industry holds a prominent position in the global economy, generating
$3 trillion in revenue worldwide and accounting for approximately 2% of the global gross
domestic product [92]. The industry creates upward of 80 billion new garments annually,
resulting with the additional generation of 92 million tonnes of waste [93]. The production
of textile materials is a significant contributor to pollution and environmentally detrimental
effects worldwide. This is shown across the lifecycle of the materials with 1.2 billion tonnes
of carbon dioxide (CO2) produced annually [94]. Moreover, this equates to approximately
8% of the global total of CO2 produced. Each year, 108 million non-renewable resources
including oil, fertilisers and chemicals are consumed for the creation of textile materials [94].
This is shown with the requirement for synthetic counterparts such as polyester, nylon
and acrylic which is derived from plastics. Industrial water contamination is also a high
concern, with an estimated 17–20% of water contamination is due to the textile dyeing
and treatment processes [95]. The production rate of textile materials has doubled over
the last two decades. In 2000, global textile fibre production was approximately 58 million
tonnes, whereas in 2020 the production rate was 109 million tonnes. This figure is expected
to increase to 145 million tonnes by 2030 [96]. As the rate of material production increases,
waste accumulation will also follow. As shown in the United States, 14.5 million tonnes of
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textiles were landfilled in 2018 [97]. Moreover, in Australia, approximately 800,000 tonnes of
textiles are sent to landfill annually and historically more have been exported overseas [98].
With the current rate of textile waste, it is imperative to investigate alternative systems to
incorporate textiles and reduce the material ending its life cycle in landfilled areas.

4.2.1. Sustainability Aspects of Using Textile Waste

The environmental impacts of textile materials vary depending on the fibre type. For
example, it has been shown that the production and manufacturing of natural fibre have a
lower negative effect on the environment compared to their synthetic counterpart [99]. On
the basis of emissions created energy and water requirements during the production stages,
flax fibre has the lowest impact whereas acrylic has the highest [100]. Natural fibres such as
flax, are derived from renewable sources and are biodegradable. This equates to less energy
consumption during the manufacturing process compared to synthetic materials. However,
cotton fibre textile materials require 2700 litres of water to produce one t-shirt, as well as the
large requirement of pesticides and fertilisers [101]. Therefore, the utilisation of recycled
textiles is the most prominent answer to reduce further negative effects of the environment.
Although there are production requirements to reprocess textile materials, there are savings
of approximately 60% of the emitted CO2 emissions, 80% water requirement and a reduction
of 11% of oil consumption [102]. The resource savings combined with the diversion of
materials being sent to landfill, recycling and repurposing textiles is a sustainable option
for future researchers. However, barriers remain for the rapid conversion of waste textile
materials into ready-made products. For example, there remains a lack of capabilities for
the separation of fibre types between blended textile materials [103]. This is shown with
interwoven blends such as polyester and cotton that are dominant in the textile industry.
Advancements in sustainable textile recycling technologies are required, particularly those
capable of efficiently handling intricate blends. These technologies have the potential to
broaden the range of textile waste materials that can undergo reprocessing, thus would
diminish the volume of textile waste destined for landfills or incineration. Other issues
with the recycling process are the additional materials associated with textiles, such as
buttons, zippers, plastic prints and impurities [104]. Often these materials can reduce the
service life of machinery when being shredded or additionally require significant human
resources to separate before thermal and chemical processing [105,106].

4.2.2. Applications and Viability of Using Textile Waste

Closing the loop on textiles has been a difficult task due to the complex blended and
interwoven materials often associated with them. The degradability of the fibres can vary
greatly, thus reducing service life of the chosen applications. This is especially shown in
concrete and cementitious composite materials [107]. Natural fibres are more susceptible to
degradation due to the high alkalinity of cement. Calcium hydroxide (Ca(OH)2) within
cement, attacks the outer lumen on the fibre walls, reducing the mechanical strength of the
material [107]. However, synthetic fibres such as polyester and nylon, pose a viable option
when integrated within those cementitious materials. This has been shown when there is a
reduction of degradation on the synthetic fibres causing enhanced mechanical properties of
the composite materials [108]. For example, the addition of 1% cotton fibres derived from
denim within concrete increased the flexural strength by 7%. Additionally, the compressive
strength also increased by 40% [109]. It is important to note that a pre-treatment of the
cotton fibres was undertaken by gamma radiation. Other research including nylon fibres
within cement mortar increased the tensile and toughness capacity by 35% and a multitude
of 13 times, respectively [110]. Rahman et al. (2022) [111], explored the utilization of
various pre-consumer waste materials to enhance the stability of weak soils. They observed
a 170% increase in compressive strength through the introduction of fabric reinforcement.
Echeverria et al. (2019) [112] researched the use of textile fibre-reinforced particleboards.
The materials consisted of sandwiched panels crafted from recycled polypropylene fibres
on both sides, with a core of multi-material blended waste textiles. These boards exhibited
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notable resistance to moisture and substantial improvements in mechanical and load-
bearing properties when compared to conventional wood-based boards available in the
market. Other waste textile applications demonstrating promising results are kemafil ropes.
This rope system is where non-woven materials are bound together and sheathed with
polypropylene twine. They are arranged in a grid-like pattern beneath a layer of vegetation
to prevent topsoil erosion, enhancing stability [113]. Similarly, multi-material blended waste
textiles can contribute to enhancing the thermal and acoustic insulation properties of a soil
mass, provided they are maintained in a fabric state. It is important to note that the specific
spinning technique used for each fabric will play a critical role in determining key physical
characteristics such as bulk density, porosity, and air permeability of the mass [114]. Table 3
is a systematic review of textile waste in building and construction material applications.
As shown, the prominent research focus has been toward experimental studies. The fibre
types vary as textile materials pertain both natural and synthetic variations.

Table 3. Textile waste in building and construction materials.

Material Type Material Application Main Study Focus Ref.

Jute yarn, flax yarn Reinforced polyester bars Mechanical, [115]

Multifilament carbon yarns Fabric cement-based
composite Mechanical, microstructure [116]

Carbon fibre yarn Geopolymer concrete
composites Mechanical, thermal [117]

Textile yarn Alkali resistant glass textile
reinforced concrete Mechanical, physical [118]

Poly-acrylonitrile based carbon fibre yarn Concrete Mechanical, microstructure,
thermal [119]

Textile carbon mesh yarn Textile reinforced concrete Mechanical, physical [120]

Glass fibre yarn Reinforced cementitious
composite Mechanical [121]

Textile carbon fibre yarn Fibre reinforced cementitious
matrices Mechanical, microstructure, [122]

Glass fibre yarn Composite reinforced mortar Mechanical [123]
Basalt, AR-glass, carbon fibre and PP filament yarn Textile reinforced concrete Mechanical [124]

Textile carbon yarns Reinforced concrete beams Mechanical [125]
Carbon multifilament yarn Cement based composites Mechanical, microstructure [126]

Textile carbon multifilament yarn Fibre reinforced concrete Mechanical, microstructure [127]
AR-glass multifilament yarn Cement based composites Mechanical, microstructure [128]

AR-glass and basalt yarn Cement based composites Mechanical, [129]
Glass and polyester fibre Polymer concrete Mechanical, durability [130]

Polyester fibres Concrete Mechanical, physical [131]
Polyester fibres Asphalt concrete Mechanical, durability [132]

Polypropylene and polyester
fibre Asphalt Physical [133]

Waste denim jeans Concrete Mechanical, thermal,
microstructure [109]

Glass fibre reinforced polyester Concrete Mechanical [134]
Polyester fibres Concrete Mechanical [135]

Steel and polyester fibres Concrete Mechanical [136]

Polypropylene and polyester fibres Concrete Mechanical, microstructure,
thermal [108]

Polyester and polyurethane Concrete Mechanical [137]
Polyester waste fibres Asphalt Mechanical [138]

Rayon textile fibre Polyhydroxy butyrate
nanocomposites

Mechanical and
microstructure [139]

Bamboo, cotton, and rayon fibre Composites Mechanical [140]
Rayon based carbon fibres Fibre investigations Microstructure [141]

Polypropylene, PET, and rayon fibres Hybrid composites Mechanical [142]
Rayon fabric and glass epoxy Polymeric composites Mechanical [143]

Sheep wool Insulation Thermal, acoustic [144]
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Table 3. Cont.

Material Type Material Application Main Study Focus Ref.

Sheep wool Concrete composites Mechanical, acoustic [145]

Flax wool twine Mortar composites Mechanical, microstructure,
durability [146]

Sheep wool Concrete composites Mechanical, microstructure, [147]
Sheep wool Fibre reinforced concrete Mechanical [148]
Sheep wool Mechanical insulation Thermal [149]
Sheep wool Hybrid bio-composites Thermal, acoustic [150]

Sheep wool Insulation Thermal, acoustic,
microstructure [151]

Sheep wool, shell pinecone and paper Thermal insulation Mechanical, thermal,
microstructure, absorptivity [152]

Sheep wool Thermal insulation Mechanical, thermal,
microstructure [153]

Sheep wool Reinforced concrete Mechanical, thermal, [154]
Wool Mortar Mechanical, microstructure [155]

Hemp wool External wall panels Thermal, economic [156]

Textile reprocessing is a complex challenge. Integrating textiles into construction mate-
rials, particularly concrete, is hindered by difficulties in managing degradation properties
and achieving adequate bonding. Pre-treatment of textile fibres is often overlooked, leading
to issues in the structural integrity of the final product. While composites are commonly
explored for textile recycling, there may be more viable alternatives outside of composite
materials. Exploring diverse avenues for textile waste utilization, such as insulation or
acoustic materials, could yield more practical solutions.

4.3. Ceramic Waste

Ceramic materials are used across the economy within both building and construction
and residential purposes. Often, the materials are linked to toilets, kitchen utensils, floor,
and wall tiles. Approximately 65% of that raw material waste is recycled back into the
manufacturing process however, 35% of tile manufacturing is pure waste and ends up
in landfills or as a filler in other materials [157]. It is difficult to reuse the raw materials
because the waste contains soluble salts in the form of polishing sludge and kiln filter waste.
These materials cannot be processed as a raw material thus, ending up in landfill. However,
technological advancements in the ceramic industry are beginning to close the loop on the
ceramic waste problem. This has been shown with the Italian ceramic tile industry where
their production process now reuses all waste products and wastewater [158]. Italy is one
of the largest producers and exporters of ceramic tiles. In 2021, Italy exported 367 million
square metres of tiles with domestic sales reaching 91 million square metres [159]. For this
reason, Italy can invest significant resources in the sustainability of the industry. In devel-
oping countries, the technology to increase sustainable measures remains economically
challenging. This is shown in India where the production of ceramic waste is approxi-
mately 100 million tonnes annually, with 15–30% resulting in landfill [160]. Nonetheless,
ceramic composites are being researched to integrate other waste materials such as, FA,
rice husk ash, GBFS and glass waste [161]. Ceramic materials possess a unique standpoint
for building and construction purposes where the material is not required to be structural.
Therefore, ensuring durability and toughness is a key component of ceramics which is
less challenging than concrete and cementitious materials. For this reason, ceramic waste
materials remain unique where there are opportunities for ceramic waste to be utilised but
also other waste materials to be integrated within the industries current production and
manufacturing systems.
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4.3.1. Sustainability Aspects of Using Ceramic Waste

The sustainability of ceramic waste has progressed significantly over the last 25 years.
Specifically, within the EU, where the industry has halved its energy consumption as a re-
sult of switching fuel usage [162]. However, there are still environmental concerns with the
negative environmental emissions and waste materials created. The production of refracto-
ries, walls and floor tiles, roof riles, and bricks emit approximately 19 million tonnes of CO2
whereas globally brick manufacturing accounts for 2.7% of total carbon emissions [163].
In China, the energy-intensive manufacturing process accounted for 37.58 million tonnes
of carbon emissions in 2020 [164]. Although leading industries are navigating sustainable
practices with recycling waste in their manufactured products, many companies around the
world do not have the capacity to compete with their technologies. The ceramic industry
still relies on natural resources such as clay and minerals that are energy intensive during
the extraction process [165]. As the drive toward sustainable energy becomes more promi-
nent by 2050 [166], negative environmental effects caused by energy consumption will
reduce the industries impact. This will enhance the sustainability of the ceramic industry.
However, the issue remains for raw materials and waste creation. Construction and demoli-
tion activities create additional ceramic waste that are not often accounted for and are often
separate to the quantifiable waste created from the ceramic industry [167–169]. For this
reason, it is difficult to quantify the total life cycle and impact of ceramic waste within the
building and construction industry. Ceramic waste is typically non-biodegradable and once
derived from construction activities often has various contamination elements attached
such as glues and substrate sheeting attachment. This creates additional challenges when
attempting to recycling the material for further use.

4.3.2. Applications and Viability of Using Ceramic Waste

The material composition of ceramic waste contains high amounts of silica and alu-
mina, which is like other natural pozzolans that can substitute as a partial cement within
composite materials [170]. For this reason, extensive research has been applied to integrate
ceramic waste within concrete materials. For example, ceramic waste powder has been
applied as a cementitious blend in self-compacting concrete [171]. Joshi and Parekh [171],
discovered the use of ceramic waste provided a better flowability without loss in strength.
This was observed due to the increased amount of powder content. Other studies have
focused on using brick waste as aggregates or as partial replacement of raw materials in
concretes and mortars [172,173]. Tiles, solid and hollow bricks have been used in ceramic-
based geopolymers, with promising results demonstrating 40 MPa after 7 days [174,175].
Researchers utilising polyethylene glycol 6000 (PEG) as an internal curing material with
crushed ceramics demonstrated both enhanced mechanical and durability properties [176].
The results indicated an optimum amount of 50% coarse aggregate replacement with
crushed ceramics used in conjunction with 1% PEG increased the compressive, tensile, and
flexural strength by 55.6%, 54.47% and 28%, respectively. Research studies by Iravanian
and Saber [177] investigated the use of ceramic waste as a soil stabilization technique.
Approximately 30% of the waste material can be used as pavement subgrade in civil con-
struction applications. The use of the material reduces other natural resource requirements
and increases the bearing capacity of the localised soil. Table 4 demonstrates ceramic
waste research used in building and construction materials. As shown, the main research
focus has been toward experimental applications and largely focus on concrete material
applications. As discussed, ceramic waste has an ease of transferability within cementitious
materials based on the composition of the waste material.
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Table 4. Ceramic waste in building and construction materials.

Material Type Material Application Main Study Focus Ref.

Ceramic sanitary waste Geopolymer concrete Mechanical and microstructure [178]
Fired clay ceramics High performance concrete Mechanical and microstructure [179]

Ceramic tiles Geopolymer concrete Optimisation, mechanical
and microstructure [180]

Ceramic roof tiles Geopolymer concrete Mechanical [181]
Ceramic waste Concrete Machine learning and mechanical [182]

Ceramic waste and nylon fibre Concrete Machine learning and mechanical [183]
Ceramic foams Electrical insulating material Microstructure [184]

Ceramic powder Concrete beams Mechanical [185]
Tiles with waste glass particles Roof applications Mechanical and microstructure [186]

Ceramic powder Concrete Optimisation, mechanical
and environmental [187]

Ceramic powder Concrete Optimisation and mechanical [188]
Ceramic electrical insulator Concrete Mechanical [189]

Ceramic bricks Soil stabilization Mechanical and microstructure [190]
Ceramic mould shells Mortar Mechanical and microstructure [191]

Tile waste Concrete Mechanical [192]
Tile waste Concrete aggregates Mechanical [193]

Ceramic waste powder and sisal fibre Concrete Mechanical [194]
Ceramic and slag wastes Sandwich panels Environmental [195]

Ceramic waste Mortar Microstructure [196]
Tile powder Concrete Mechanical [197]

Ceramic waste powder Concrete Mechanical [198]
Tiles Self-compacting concrete Mechanical and microstructure [199]

Tiles Self-compacting concrete Mechanical, durability
and microstructure [200]

Ceramic waste powder Cement Mechanical [201]

Ceramic waste and polypropylene fibres Self-compacting concrete Mechanical, durability
and microstructure [202]

Tiles Mortar Mechanical and microstructure [203]

Tiles Self-compacting concrete Mechanical, durability
and microstructure [204]

Ceramic waste Geopolymer concrete Mechanical [205]
Ceramic waste and glass powder

silica fume Concrete Mechanical [206]

Ceramic waste, brick powder, marble
powder, glass powder and rice husk ash Composite Mechanical and microstructure [207]

Ceramic waste Geopolymer concrete Mechanical and microstructure [208]
Ceramic mould casting waste Lightweight concrete Mechanical and microstructure [209]

Ceramic materials, although known for their sustainability potential, present unique
complexities due to variations in production processes. Quantifying the overall environ-
mental impact of ceramic materials is challenging as different ceramics involve slightly
different manufacturing methods. The lack of transparency in ceramic technology remains
a hurdle, as proprietary information is closely guarded by industry bodies. This opacity
limits the ability to optimize ceramic materials with specific waste percentages, both in-
ternal and external. In sustainability research, many studies focus on emissions, while
practical experimentation often centres on integrating materials into existing systems. A
more holistic approach, considering the entire lifecycle of materials, could yield greater
insights into sustainable construction practices. Addressing these challenges and explor-
ing untapped opportunities is essential to harness the full potential of waste materials in
construction and contribute to a more sustainable future.

5. Conclusions, Limitations, and Future Research

The building and construction industry has long been a major contributor to the
generation of waste materials. Alongside the creation of building materials, the extraction
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process of raw materials places a significant environmental burden. This is shown from
the depletion of natural resources but also the high energy demands. In response, research
has focused on the utilization of waste materials to replace various material proportions
in construction materials. However, not all waste materials have been fully optimized,
and the potential valorisation of rubber, ceramics, and textiles, remain early in research
investigations. This current study seeks to address this research gap by examining the use of
unconventional waste materials used in building and construction. Initially, a bibliometric
analysis was conducted, reviewing 6238 documents from the years 2013 to 2023. The results
of this analysis have shed light on influential journal sources and highlighted the growth of
research in this field. Moreover, the study identified keywords associated with these articles
and sources, providing valuable insights into the current research focus areas and potential
gaps. However, it is essential to acknowledge the limitations and assumptions within this
review. While the bibliometric analysis offers valuable insights, it may not encompass
every relevant research article or capture past trends before the year 2013. Additionally,
the review may not cover every possible aspect of waste material utilised in building
and construction, and individual research studies may have unique methodologies and
limitations that should be considered in a comprehensive assessment. The findings from
this study can be invaluable for future researchers seeking to delve into this subject matter.
By identifying current research trends and focus areas, researchers can streamline their
efforts and conduct more targeted investigations. The implications of this study not only
facilitate a more efficient targeted research process, but also enhance the depth and quality
of potential future assessments and findings.
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