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Abstract: In recent years, bacterial infections have become a major global concern, causing significant
morbidity and mortality. Unfortunately, the development and commercialization of new antibacterial
drugs have been slow, while pathogens continue to rapidly adapt and evolve. To address this
challenge, nanotechnology offers a promising strategy by protecting, targeting, and releasing active
compounds to fight against these emerging strains. The aim of this study was to explore the
antibacterial potential of nanoemulsions (NEs), as reported in the scientific literature. A literature
review was carried out utilizing the keywords “nanoemulsion”, “antibiotic activity”, “antibacterial
activity”, and “antimicrobial activity”. All of the scientific articles that were related to the area of
health and published in the last 5 years were included. All of the studies indicated that oil-based
NEs with inherent antibacterial activity, even without the presence of drugs, had superior action
against strains compared to non-emulsified oil, as well as other systems incorporating drugs or
actives. Although the results are promising, further investigations and testing of formulations against
resistant bacterial strains are necessary. This review aims to provide valuable insights for researchers
and contribute to future advancements in this field.
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1. Introduction

Bacterial infections have been causes of morbidity and mortality and have experi-
enced alarming growth in recent years. This scenario is the result of the rapid adaptation
and evolution of pathogens through various strategies, such as by means of antibiotic
destruction or reflux and the modification of the target structure [1]. On the other hand,
the development and commercialization of new antimicrobials to combat these emerging
bacterial strains is extremely slow [2].

In this context, nanotechnology emerges as a promising area of research in the search
for innovative antimicrobial solutions. This strategy, characterized as nanoscale drug
delivery systems, has aroused considerable interest due to its capabilities to improve the
availability and targeted efficacy of drugs, being an attractive proposal to mitigate several
problems [3,4]. Under this perspective, several innovative nanosystems can be listed, such
as liposomes, solid lipid nanoparticles, polymeric nanoparticles, and metallic nanoparticles.

These nanoformulations offer the opportunity to improve therapeutic performance
by modifying their composition, particle size, and surface characteristics, aiming to in-
crease their efficacy, reduce side effects, and overcome drug resistance [5]. At this juncture,
nanoemulsions (NE) can also be listed, which have been recognized as an advantageous
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approach for drug delivery, due to their ability to improve solubility, stability, and bioavail-
ability, as well as their potential for targeting organs and cells [3–6].

2. Methodology

The scientific literature was reviewed, following the steps set out in accordance with
the methodological protocol described by Almeida et al. [7]. For this purpose, the acronym
PICo was adopted to write the inquiry, as shown in Table 1.

Table 1. Definition of search terms based on the PICo acronym.

Acronym Definition Corresponding Term

P Population Scientific Bibliography
I Interest Antibacterial Activity

co Context Nanoemulsion
Source: Research data.

Thus, this study question was presented: “what does the scientific literature (P)
present about the antibacterial activity (I) of nanoemulsified systems (Co)?”. Then, the
bibliographic search began in May 2023 in PubMed, Web of Science, and Scopus. The search
terms “nanoemulsion”, “antibiotic activity”, “antibacterial activity”, and “antimicrobial
activity” were used, and studies published in the last five years were prioritized. We
selected studies that explicitly stated in their abstract or title that the text referred to
the activity of NE systems against bacterial strains. The inclusion criteria were studies
published in the form of scientific articles. Duplicate articles, studies published in events,
editorials, and literature reviews that did not deal with applications for health sciences,
reporting gels, membranes, or freeze-dried formulations were excluded from the sample.

Data collection took place after the individual study. From this point onwards, a
construction of the state-of-the-art strategy began to answer the guiding question. There
was no need to appeal to ethics committees. All of the consulted authors were made
available, guaranteeing the due ethical principles implicit.

3. Results and Discussion

Nanotechnology is used in the field of health for the development of diagnostics
and delivery of drugs to improve therapeutic efficacy. This type of technology is very
attractive because it can obtain nanosystems, which can reach and be specific to active sites,
in addition to causing fewer adverse effects. From the perspective of antibiotic therapy, this
strategy arouses interest among researchers, given the chaotic scenario related to the global
need for innovative antimicrobial therapies [1,3,4,6]. From this brief review of the scientific
literature, it was observed that 100% (n = 20) of the studies analyzed developed NE with
biological activity against various pathogenic bacterial strains.

These formulations can be prepared by methods that provide low energy or high
energy for the formation of nanometer-scale droplets. Both have their advantages and
specific applications. Among the studies analyzed, 60% (n = 12) used high-energy methods
to obtain the systems. The high-energy method most cited in the articles was ultrasound,
which generates high-frequency mechanical waves, resulting in cycles of compression and
expansion in the liquid, which causes cavitation, which in turn creates strong shear forces
and turbulence, breaking the larger oil droplets into smaller sizes, forming an NE [8,9].
Despite the ease of obtaining nanometric droplets through this procedure, the large amount
of energy that the system requires makes this method expensive.

Only 8 of the 20 studies analyzed mentioned a low-energy supply to obtain antibac-
terial nanoformulations. NEs obtained using low-energy consumption present economic
advantages for large-scale production. The low-energy methods mentioned in the articles
were spontaneous emulsification (n = 5; 25%) and phase inversion (n = 3; 15%), using
constant magnetic stirring. Spontaneous emulsification is a natural process in which there
is a variation in the amount of surfactants, which can be combined with changes in temper-
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ature. These variations alter the surface energy of the interface between the phases, leading
to the spontaneous formation of an NE [10,11]. The phase inversion method involves
gradually adding water or another solvent to the oil–water or water–oil mixture. As the
amount of water increases, the emulsion inverts, transforming an oil-in-water emulsion
into a water-in-oil emulsion (or vice versa), forming an NE [12–16].

The oily phase of the systems was predominantly composed of essential oils (EO) in
70% of the articles consulted (n = 14). In these studies, the incorporation of bioactives or
additional drugs into the system was not identified [17–22]. Only 30% (n = 6) of the authors
added some type of bioactive molecule to the nanosystem. This fact is inferred because the
authors used other types of compounds to compose the NE matrix, such as vegetable oils
and oleic acid. Only one study incorporated antibiotics into the NE (clindamycin, linezolid,
and doxycycline). The other studies added natural bioactive molecules: scalene, green tea
catechins, 1,8-cineol, curcumin extract, and green coffee extract (Figure 1) [23–30].
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Figure 1. Bioactive compounds, microbiological methods, and nanotechnology summarized. Source:
Research data.

As for microbiological tests, 50% (n = 10) of the studies used diffusion in the medium
as a method to evaluate the sensitivity of the strains. This type of test is economical, quick,
and consists of verifying the inhibition halo. Diffusion can occur using filter paper discs or
perforation of the agar, in which the compound to be investigated is deposited after the
bacteria have been seeded. The serial dilution method was used in 9 investigated studies,
with plate microdilution being the most prevalent. Regarding strains, Gram-positive
strains of the genus Staphylococcus have been extensively evaluated for their sensitivity to
nanocarriers [30–37].

An attempt was made to establish some relationship between droplet size and the
antibacterial activity identified. This size/activity relationship had already been discussed
in other studies, as described by Álvarez-Chimal et al. [38], concerning greater bacterial
inhibition in Gram-positive strains with smaller nanoparticles (up to 10 nm). A similar
result was observed in the study by Naqvi et al. [39].

According to Ali et al. [40], the antibacterial action optimized by nanocarriers with
smaller particle sizes would be related to the increase in intracellular oxidative stress. This
is because the smaller the size of the particles, the greater the interaction between the
electron-donating and electron-accepting active sites, generating the activation of several
molecular cascades and an increase in reactive oxygen species. The hydrodynamic sizes of
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the droplets present in the NEs varied, and all were reported to have antimicrobial action
(Figure 2), especially depending on the concentration of the active ingredient. However,
the composition of NEs has a great influence on their outstanding antibiotic action, as
well as aspects related to solubility [41,42]. This argument about the influence of the
physicochemical on improving the delivery of the active ingredient properties of the NE
can be validated by its antibiotic potential.
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This is exemplified in data from the chamomile EO-NE, with a hydrodynamic size close
to 300 nm, presenting a minimum inhibitory concentration against several strains: E. coli:
2.19 µg/mL and P. aeruginosa: 1.02 µg/mL, as well as fungal strains, namely: S. pombe:
1.28 µg/mL; C. albicans: 2.65 µg/mL; and C. tropicalis: 1.69 µg/mL [34]. Here the highlight
is the demonstration of antimicrobial activity of the NE at an average concentration that
is 14 times lower compared to the free EO in ethanol. Another larger NE was that of
Cymbopogon pendulus EO, with around 500 nm [32], which resulted in inhibition zones of
3.5 cm for S. aureus and complete inhibition for E. coli strains, B. subtilis, and P. aeruginosa.

Furthermore, we highlight the study of Mohamed et al. [26] who developed a nanobi-
otics NE (an NE loaded with antibiotics) and tested them on strains of resistant bacterial
isolates. The study, in addition to showing greater safety (in cytotoxicity tests) than tra-
ditional drugs, managed to overcome the barrier of bacterial resistance. The authors
justify this response by the ability of nanostructures loaded with antibiotics to deliver high
concentrations of antibiotics to their target sites. However, further investigations from
this perspective are necessary to obtain greater conclusions about the potential of these
nanocarriers to overcome antibiotic resistance.

4. Conclusions

The data from this preliminary review indicate that NEs may be promising routes
for the development of antibacterial drugs, including resistant strains. However, further
evaluations are needed regarding the use of antibacterial drugs and their incorporation
into nanosystems, as well as further elucidation regarding the relationship between droplet
size and the antimicrobial effect.
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