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Abstract: Aim: In the present study, we performed an in silico study on the triterpenoid compounds
from the mangrove plant as potential COVID-19 main protease (Mpro) inhibitors, which can be
used as a potential medicine target. Methods: In this study we performed molecular docking using
AutoDock software. Results: The binding energies obtained through the docking of 6LU7 with beta-
amyrin, betulin, germanicol, taraxerol, lupeol, lupane, simiarenol, tirucallol, ursolic acid, oleanolic
acid, and alpha-amyrin were -8.37, −8.73, −8.06, −7.71, −8.32, −8.49, −8.16, −8.99, −9.24, −8.87, and
−8.89 kcal/mol, respectively. Further, these results were also confirmed with drug-likeness properties
by using Swiss ADME software. Conclusion: This study showed that triterpenoid compounds seemed
to have the best potential to act as COVID-19 Mpro inhibitors, and that they contain a potential lead
compound for the development of drugs, which can be used against SARS-CoV-2.

Keywords: SARS-CoV-2; molecular docking; 6LU7; mangrove; triterpenoids; drug likeness

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of COVID-
19, a highly contagious illness that affects several sections of the respiratory system, and
particularly the lungs [1,2]. There is not a specific treatment for COVID-19 at the moment [3].
Computationally aided drug design (CADD) methodologies have revealed significant
implications for current research, and these procedures are quicker and more affordable [4].
In order to reduce the risk of wasting time and money, in silico approaches are used
early on in the drug development process [5]. To manage SARS-CoV-2 infection, lead
compounds derived from natural sources are thought to have fewer adverse effects and
are considered to be inexpensive nutraceuticals [6]. The major subject of this investigation
was mangrove-derived triterpenoid chemicals. Mangroves are either little trees or plants
that thrive in rocky or muddy soils near brackish or salty coastal waters. Mangroves are
facultative halophytes because they can tolerate salt and easily adapt to the harsh coastal
environment [7]. Mangrove plants are abundant in new chemical compounds and natural
products, which is becoming more common knowledge. Mangroves have received a great
deal of scientific attention because of their strong ability to combat numerous ailments.
Terpenoids make up more than 16% of the phytoconstituents in mangroves. Triterpenoids,
which have 30 carbon atoms and are polymerized to create six isoprene units, are the
most typical class of phytochemicals. In nature, triterpenoids are extensively dispersed.
The variety of triterpenes and their extensive spectrum of pharmacological actions are
closely connected. Triterpenes are conventionally used as anti-inflammatory, analgesic,
hepatoprotective, cardiotonic, and sedative drugs in Asian countries [8]. Using molecular
docking, we looked at triterpenoid chemicals that had been previously identified as being
found in mangroves as potential inhibitors of the COVID-19 primary protease Mpro. The
process of creating drugs to combat COVID-19 will benefit from these discoveries.
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2. Materials and Methods
2.1. Protein Preparation

The main protease of SARS COVID-19 is Mpro, and its 3D structure was obtained from
the Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) in
PDB format. The PDB is a library for the crystal structures of biological macromolecules [9]
(PDB ID: 6LU7).

2.2. Ligand Preparation

The 3D structures of triterpenoid compounds from mangroves were obtained from the
PubChem website in SDF format. Triterpenoid compounds like beta-amyrin (CID_73145),
betulin (CID_72326), germanicol (CID_122857), taraxerol (CID_92097), lupeol (CID_259846),
lupane (CID_9548715), simiarenol (CID_12442794), tirucallol (CID_101257), ursolic acid
(CID_64945), oleanolic acid (CID_10494), and alpha-amyrin (CID_73170) were used in
this study.

Drug-like properties were calculated using Lipinski’s rule of five [10,11]. Adherence
to Lipinski’s rule of five was calculated using SWISSADME prediction.

2.3. Molecular Docking

The study was supported by tools like AutoDock, MGL, and Rasmol. The docking
analyses were performed using AutoDock, Pymol, and Biovia Discovery Studio.

3. Results
3.1. Selection of Phytochemicals

A total of 12 compounds were selected based on adherence to Lipinski’s rule of five.
They can be used in molecular docking experiments with the target protein 6LU7. The drug
scanning results (Table 1) showed that all tested compounds in this study were accepted
by Lipinski’s rule of five. The 2D diagrammatic representations (Table 1) of the selected
triterpenoid compounds demonstrate interactions with the target protein Mpro. The 2D
visualization of docking analysis results, including the H-bonds that interact with 6LU7
amino acids, is mentioned in Table 1.

Table 1. Properties of COVID-19 Mpro potential inhibitor candidates.

S. No. Compound
Name

Molecular
Formula

Molecular Structure and Interaction
with 6LU7

Lipinski’s Rule of Five

Properties Value

1. Nelfinavir C32H45N3O4S
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Table 1. Cont.

S. No. Compound
Name

Molecular
Formula

Molecular Structure and Interaction with
6LU7

Lipinski’s Rule of Five

Properties Value

3. Betulin C30H50O2
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Properties Value
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3.2. Molecular Docking of Selected Compounds

Table 2 shows the molecular docking analysis results for the standard drug and
11 triterpenoid compounds against the main protease of SARS COVID-19 (6LU7). The
binding energies obtained from the docking of 6LU7 with nelfinavir, beta-amyrin, betulin,
germanicol, taraxerol, lupeol, lupane, simiarenol, tirucallol, ursolic acid, oleanolic acid,
and alpha-amyrin were −6.21, −8.37, −8.73, −8.06, −7.71, −8.32, −8.49, −8.16, −8.99,
−9.24, −8.87, and −8.89 kcal/mol, respectively. The visualization of 6LU7 binding with
the selected triterpenoid compounds from the mangrove, including beta-amyrin, betulin,
germanicol, taraxerol, lupeol, lupane, simiarenol, tirucallol, ursolic acid, oleanolic acid, and
alpha-amyrin, as well as with nelfinavir (standard drug), is represented in Figure 1A to 1 L
as potential inhibitors of the COVID-19 Mpro.

Table 2. Molecular docking analyses of triterpenoid compounds against 6LU7.

Protein Ligand Lowest Binding
Energy (kcal/mol) Ligand Efficiency Inhibition Constant Intermolecular Energy

(kcal/mol)
VDW-H Bond Desolvation
Energy (kcal/mol)

6lu7

Nelfinavir −6.21 −9.709 27.83 uM −9.79 −9.77

beta-Amyrin −8.08 −4.445 1.20 µM −8.37 −8.33

Betulin −7.54 −6.161 2.96 µM −8.73 −8.70

Germanicol −7.76 −4.229 2.04 µM −8.06 −8.02

Taraxerol −7.41 −25.601 3.68 µM −7.71 −7.43

Lupeol −7.73 −10.786 2.17 µM −8.32 −8.31

Lupane −8.19 −9.698 996.23 nM −8.49 −8.48

Simiarenol −7.56 −10.006 2.87 µM −8.16 −8.15

Tirucallol −8.99 −4.998 255.21 nM −10.49 −10.46

Ursolic acid −9.24 −3.784 168.90 nM −10.13 −10.05

Oleanolic acid −8.87 −5.134 314.36 nM −9.77 −9.69

alpha-Amyrin −8.89 −11.721 306.52 nM −9.18 −9.14
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Figure 1. 3D visualization of 6LU7 binding with beta-amyrin (A), betulin (B), germanicol (C),
taraxerol (D), lupeol (E), lupine (F), simiarenol (G), tirucallol (H), ursolic acid (I), oleanolic acid (J),
alpha-amyrin (K), and nelfinavir (L) using Biovia Discover Studio. The green and pink colors
represent H-bond acceptor and donor regions, respectively.

4. Discussion

With 6LU7, nelfinavir creates several chemical connections, such as hydrogen and
hydrophobic bonds. These triterpenoid chemicals have been abandoned in mangroves,
according to several studies (Table 3). Similar to nelfinavir, the triterpenoid molecules from
this study also created many chemical connections. The results show that compared to other
molecules, ursolic acid bonds have a stronger affinity. According to their affinity, ursolic
acid, tirucallol, alpha-amyrin, oleanolic acid, lupane, beta-amyrin, germanicol, simiarenol,
betulin, taraxerol, and nelfinavir were the compounds with the greatest potential for
inhibition in the current study’s docking analysis. The chemicals that are most suggested
as potential COVID-19 Mpro inhibitors are mangrove triterpenoids, which should be
investigated in further studies.

Table 3. Triterpenoids compounds from mangrove.

Compounds Species Name Parts References

beta-Amyrin Rhizophora mucronata Bark Rohini, R.M et al., 2009

Betulin Rhizophora mucronata Leaf Ghosh A et al., 1985

Germanicol Rhizophora sp. Leaf Koch, B.P et al., 2003

Taraxerol Avicennia marina Root Mahera, S.A et al., 2011

Lupeol Rhizophora mucronata Bark Rohini, R.M et al., 2009

Lupane Ceriops decandra Leaf Ponglimanont, C. and Thongdeeying, P., 2005

Simiarenol Rhizophora mucronata Bark Rohini, R.M et al., 2009

Tirucallol Excoecaria agallocha Leaf Zou, J.H et al., 2006

Ursolic acid Brugurera gymnorhiza Leaf Ghosh, A et al., 1985

Oleanolic acid Acanthus ilicifolius Leaf Ghosh, A et al., 1985

alpha-Amyrin Ceriops decandra Leaf Ghosh, A et al., 1985

5. Conclusions

This investigation looked at a number of mangrove-derived triterpenoid chemicals
that might be used to block the COVID-19 infection pathway. The compounds with the
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best binding energies and inhibition constants are beta-amyrin, betulin, germanicol, taraxe-
rol, lupeol, lupane, simiarenol, tirucallol, ursolic acid, oleanolic acid, and alpha-amyrin.
Compared to other molecules, ursolic acid bonds have a stronger affinity. Triterpenoids
were therefore the substances found in mangroves that are most recommended as potential
COVID-19 Mpro inhibitors. For the development of medicine from mangroves, additional
clinical trials examining the potential of terpenoid chemicals against viral infection must be
conducted, and should be followed by in vitro and in vivo research.
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