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Abstract: Uterine leiomyoma (UL) is the most common benign tumor causing considerable morbidity
during the reproductive years in women with contributions from environmental and genetic factors.
According to the GWAS studies, there are many genes and polymorphisms that are related with and
are somehow responsible for the UL pathogenesis, but the biological mechanisms underlying this
association remain unclear. This study aimed to investigate the published GWAS studies of UL to
recognize the significant functionality of TNRC6B polymorphism linked with UL. Six SNPs were
selected based on the seven GWAS published on their association with UL by PubMed database. For
their analyses, including their epigenetic effects, expression and splicing patterns, we used in silico
approach and bioinformatics tools (HaploReg, GTEx-portal and Gene Ontology Resource). Based
on HaploReg, several epigenetic effects regulating these SNPs were found as: rs12484776 (one motif
changed, sixteen enhancers and four DNAs histone markers), rs4821939 (three motifs changed, eleven
enhancers, four protein bounds and five DNAs histone markers), rs733381 (two motifs changed,
eleven enhancers, one protein bound and two DNAs histone markers), rs12484951 (one motif changed
histone markers), rs3830738 (five motifs changed histone markers) and rs17332320 (two motifs
changed and two DNAs histone markers). Based on on GTEx, it was inferred that rs12484776,
rs4821939, rs733381, rs3830738, rs12484951 and rs17332320 are associated with the expression of
genes/in tissues as 4/4, 4/4, 4/4, 3/3, 4/4 and 2/2, respectively. These loci do not regulate the
expression level of any genes in the UL pathophysiology important tissues, and are not associated
with the alternative splicing traits (sQTL) of any gene in any tissue. Gene Ontology Resource
indicated that no statistically significant biological pathways for genes associated with the studied
polymorphisms have been identified. The in silico analysis of GWAS TNRC6B gene polymorphisms
significant for fibroids have pronounced epigenetic effects and affect the expression of six genes
(RP51042K10.10, FAM83F, TNRC6B, RP51042K10.13, SLC25A17 and XPNPEP3), which may be the
basis of their involvement in the pathophysiology of fibroids.
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1. Introduction

The most frequent tumors of the female reproductive system are uterine leiomyomas
(ULs) [1,2]. They originate from the myometrium and are benign monoclonal uterine
smooth muscle tumors [3,4]. By menopause, more than 70% of women have uterine
fibroids. With a lifetime prevalence of 30% to 70% [5], they afflict 20% to 40% of women of
reproductive age [4] (they frequently regress after menopause). Around a quarter of women
with UL are aware of their symptoms, despite the fact that many of them are oblivious
of them [6], and are susceptible to possible reproductive disruption, in addition to other
indications of the overall effect of fibroids on health-related quality of life. Miscarriage is
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twice as prevalent in women with symptomatic UL, and complications affect 10% to 40%
of pregnancies with UL [7].

Uterine leiomyoma is a complicated condition caused by a number of demographic,
dietary, and hormonal risk factors [8–10] as well as biological, epigenetic, and genetic
causes [11], with the genetic component accounting for 40–50% [12] of the illness. The
genetic foundation for the formation, development and progression of ULs is now being
studied by a considerable number of academics and researchers.

Utilizing the whole genome association search (GWAS), researchers may investigate
how genetic factors contribute to the emergence and development of various multifactorial
diseases, including ULs [13]. On the basis of GWAS, several research teams are actively
researching the genetic basis of ULs. In addition, there is a lack of consistency in the findings
among various global groups and they are little repeated and sometimes contradictory. It
was suggested by many candidate gene association studies that TNRC6B was linked to UL in
several ethnic populations. However, the biological mechanisms behind these relationships
are still largely unclear. In addition to making it possible to choose genetic markers for a study
with greater accuracy and support, the exponential growth of biomolecular data and their
mining into databases have also made it possible through providing tools for comprehensive
analysis to gain deeper insights into the potential functions of candidate genetic variants and
the mechanisms by which they contribute to traits [14–16]. A thorough in silico analysis of
the TNRC6B polymorphisms, which were found to be linked with UL, was carried out using
numerous online genomic databases and recent advancements in bioinformatics. The goal
of this bioinformatic investigation was to gain knowledge of the mechanisms behind these
linkages. This study aimed to investigate the published GWAS studies of UL to recognize
significant functionality of TNRC6B polymorphism linked with UL.

2. Materials and Methods
2.1. Selection of Polymorphisms

Based on the results of their connection with UL that have been published, polymor-
phisms were chosen for the study. The phrases “uterine leiomyoma,” “TNRC6B”, and “in
silico analysis” were used in different combinations to search PubMed for relevant articles.
The search resulted in 7 articles that were pertinent. These papers listed a total of six SNPs
connected to UL in 4 ethnic samples: Japanese, European, UK and European and African.
Table 1 contains a list of the chosen polymorphisms.

Table 1. Overview of functional effects of TNRC6B gene polymorphisms at (22q13.1) associated with
UL in GWAS studies.

Gene SNPs (Pos.) OR (Effect Allele),
p (Ref.)

Regulatory Effects eQTL

TNRC6B rs4821939
(40263247)

OR = 1.08 (A),
p = 7.8 × 10−16 [6]

Enhancer 11 tissues, DNAse 4
tissues, 5 protein bounds,
3 altered motifs

RP51042K10.10, FAM83F,
TNRC6B, RP51042K10.13,

SLC25A17, XPNPEP3

rs12484776
(40256869)

OR = 1.23 (G),
p = 2.8 × 10−12 [17]

Enhancer 16 tissues, DNAse 4
tissues, 1 altered motif

RP51042K10.10, TNRC6B,
FAM83F RP51042K10.13,

XPNPEP3, SLC25A17
OR = 0.89 (A),

p = 4.6× 10−18 [18]

rs733381
(40273644)

OR = 1.10 (G),
p = 5.7 × 10−11 [19]

Enhancer 11 tissues, DNAse 2
tissues, 1 protein bound,
2 altered motifs

RP51042K10.10, FAM83F,
XPNPEP3 RP51042K10.13,

TNRC6B, SLC25A17
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Table 1. Cont.

Gene SNPs (Pos.) OR (Effect Allele),
p (Ref.)

Regulatory Effects eQTL

rs12484951
(40307071)

OR = 1.11 (G),
p = 3.2 × 10−13 [20]

2 altered motifs RP5-1042K10.10, FAM83F,
SLC25A17, RP5-1042K10.13,

TNRC6B, XPNPEP3

rs3830738
(40315223)

OR = 0.91 (A),
p = 2.7 × 10−13 [21]

5 altered motifs RP5-1042K10.10, TNRC6B,
FAM83F, RP5-1042K10.13,

XPNPEP3

rs17332320
(40315616)

OR = 1.15 (T),
p = 1.6 × 10−12 [22]

DNAse 2 tissues, 2 altered motifs RP51042K10.10, TNRC6B,
SLC25A17, RP5-1042K10.13,

XPNPEP3, FAM83F

2.2. Bioinformatic Analysis

The following bioinformatics tools were used for the analyses: utilizing the integrated
online program HaploReg v4.1 [23], chosen polymorphism loci were examined for their
functional importance (chromatin states, motifs changes, protein interactions, regulatory
potential, and eQTLs).

In addition to HaploReg (v4.1), the GTExportal data (http://www.gtexportal.org
(accessed on 29 January 2023 )) were used to evaluate the influence of the six candidate
SNPs for UL on gene expression level (cis- and trans-eQTL) in organs and tissues [24].
Using the Gene Ontology Resource tools available at (http://geneontology.org (accessed
on 29 January 2023 )) [25], the functional importance of the candidate genes for UL in the
different biological pathways was investigated.

3. Results
3.1. Genomic Location of the SNPs

In the introns of the TNRC6B gene, six reference SNPs were found.

3.2. Regulatory Effects

They suggest that all reference SNPs can produce various regulatory effects, albeit to a
different extent, as follows:

SNP rs12484776 displays histone marks associated with enhancers in 16 tissues (hESC-
derived CD56+ mesoderm cultured cells and primary B and T cells (regulatory, effec-
tor/memory enriched, helper, etc.)) from peripheral blood and brain (hippocampus middle,
anterior caudate, dorsolateral and prefrontal cortex, etc., and male fetal brain, fetal adrenal
gland, fetal muscle trunk, etc.) located in the DNase-1 hypersensitive region in four tissues
(H1-derived mesenchymal stem cells, foreskin fibroblast primary cells skin01, fetal lung
and placenta) and altered motif (SRF) for the transcription factor.

SNP rs4821939 displays histone marks associated with enhancers in 11 tissues (hESC-
derived CD56+ mesoderm cultured cells and primary B and T cells (regulatory, effec-
tor/memory enriched, helper, etc.)) from peripheral blood and brain (hippocampus middle,
anterior caudate, dorsolateral and prefrontal cortex, etc., and male fetal brain, fetal adrenal
gland, fetal muscle trunk, etc.) located in the DNase-1 hypersensitive region in four tissues
(primary T cells from cord blood, primary hematopoietic stem cells G-CSF-mobilized male
and female, and HUVEC umbilical vein endothelial primary cells), five bound proteins
(iPS-15b cells, primary hematopoietic stem cells G-CSF-mobilized male and female, and
monocytes-CD14+ RO01746 primary cells) and three altered motifs (Hmx, Mef2 and Nkx2)
for the transcription factor.

SNP rs733381 displays histone marks associated with enhancers in 11 tissues (hESC-
derived CD56+ mesoderm cultured cells and primary B and T cells (regulatory, effec-
tor/memory enriched, helper, etc.)) from peripheral blood and brain (hippocampus middle,
anterior caudate, dorsolateral and prefrontal cortex, etc., and male fetal brain, fetal adrenal

http://www.gtexportal.org
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gland, fetal muscle trunk, etc.) located in the DNase-1 hypersensitive region in two tissues
(fetal kidney and ovary), bound proteins (ZNF263) and two altered motifs (BCL and p300)
for the transcription factor.

SNP rs12484951 displays histone marks associated with two altered motifs (BATF and
Hmbox1) for the transcription factor. SNP rs3830738 displays histone marks associated
with five altered motifs (Foxj1, Foxk1, Irf, TCF12 and p300) for the transcription factor.

SNP rs17332320 displays histone marks located in the DNase-1 hypersensitive re-
gion in two tissues (BLD and BLD) and two altered motifs (HDAC2 and Pax-5) for the
transcription factor.

3.3. Expression QTLs

In four tissues (organs), four SNPs seemed to have a cis-eQTL influence on the expres-
sion of four genes (RP51042K10.10, TNRC6B, RP51042K10.13 and XPNPEP3). However,
SNP rs3830738 only affected the expression of three genes (RP51042K10.10, TNRC6B, and
RP51042K10.13), while SNP rs17332320 only affected RP51042K10.10 and TNRC6B.

3.4. The Alternative Splicing Traits (sQTL)

The GTEx dataset highlighted the regulatory function of mRNA precursor splicing
patterns. According to GTEx, none of the six SNPs are linked to alternative splicing traits
(sQTL) of any gene in any tissue.

3.5. Pathway Analysis

This investigation was performed on TNRC6B since it was discovered to be linked
with UL and multiple reference polymorphisms were mapped to this gene, as well as
because several reference SNPs may impact the expression of this gene according to the
eQTL analysis. The following genes were evaluated using the Gene Ontology database:
(RP51042K10.10, FAM83F, TNRC6B, RP51042K10.13, SLC25A17, and XPNPEP3) in Table 1,
where no statistically significant biological pathways for genes related with the researched
polymorphisms were discovered.

4. Discussion

This study shows that, in addition to the previously reported TNRC6B gene as being
connected with UL, many reference polymorphisms were mapped to this gene, and that
the expression of this gene may be influenced by several reference SNPs based on the eQTL
analysis. These associated polymorphism loci were shown to have no major functional role
(multiple expression and splicing patterns) that was reported to correlate with UL, which
somehow did not affect any gene in any tissue, by documenting pronounced pleiotropic
tissue-specific regulatory/expression/splicing effects.

In general, the degree of gene pleiotropy appears to be inversely linked to the gene’s
proportionate contribution to the trait. Given that the majority of genes in the human
genome are pleiotropic [26], the predicted contribution of each to a specific characteristic is
relatively small. As a result, extremely pleiotropic genes have a limited impact size and
frequently provide false negative findings in GWAS unless their contribution to a specific
trait is greater than the average for other traits. The current analysis also offers insight on
often observed discrepancies in relation to polymorphisms and failed attempts to replicate
potential loci in other ethnic populations.

5. Conclusions

The in silico analysis of GWAS TNRC6B gene polymorphisms significant for fibroids
have pronounced epigenetic effects and affect the expression of six genes (RP51042K10.10,
FAM83F, TNRC6B, RP51042K10.13, SLC25A17 and XPNPEP3), which may be the basis of
their involvement in the pathophysiology of fibroids.
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