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Abstract: We seek to add up Q = [ f dX over unit volume in arbitrary dimension. Nested sampling
locates the bulk of Q by geometrical compression, using a Monte Carlo ensemble constrained within
a progressively more restrictive lower limit f < f*. This domain is divided into a core f > f* and a
shell f = f*, with the core kept adequately populated.
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1. The Idea

Quantification means counting, which can be performed either outwards by construc-
tion, or inwards by peeling items away until there are none left. Quantification extends to
volumes, which underpin integration so numerical estimation of volume is fundamental.

Nested sampling [1,2] counts inwards, estimating volumes statistically from random
scatterings of points x, ranked by some quality function F(x) appropriate to the current ap-
plication (Figure 1). The procedure delves arbitrarily deep by recursively taking proportions
of arbitrarily big spaces.
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Figure 1. Sample ranked r out of n encloses about r/n of the volume.

Although suggested by intuition trained in the three dimensions of physical space,
geometrical estimation of volume becomes unhelpful in high dimension, where directions
tend to be mostly orthogonal, volumes collect around outer boundaries, and spanning the
space requires at least as many points as dimensions. Counting is immune to all that.

2. Quantity and Shape

A central use of volume is estimation of the mass (or “quantity”) Q and shape p

Q= [Fav,  pio=F(0/Q ®
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of a non-negative density function F(x) defined over a known volume, often thought of as
a unit prior measure V = 1. The information

H= [ p(x)log p(x)dv @

about x carried by F, measured in nats (logs base e) or bits (base 2), quantifies the corre-
sponding shape. Nested sampling is general but intended for applications where H > 1 so
that the bulk of Q occupies some tiny O(e~ ) fraction of the original volume (Figure 2 left).

According to fable, mathematicians find a needle in a haystack by iteratively halving
the haystack, repeatedly discarding the half that does not contain the needle. Such com-
pression proceeds exponentially, so is linear in H (one bit per step). This neatly outclasses
simple point-by-point search, which is proportional to the volume ratio exp(H). Nested
sampling operates similarly, with its locations ranked by value F. Volumetric compression
controlled by F suggests replacing Q in (1) by the equivalent ([ ydx = [ xdy) Lebesgue
integral [3]

Q= [ x(nar ©

where X(f) = |, F(x)>f 4V is the volume enclosed by the contour F (x) = f (Figure 2 right).

(I am indebted to Ning Xiang in private communication buttressed by [4] for pointing out
the Lebesgue connection, which to my embarrassment I had as inventor failed to notice).

F(x)

. X(f)

N tiny

Figure 2. (left) unit volume V modulated by F; (right) volume X(f) covering F > f.

X parameterizes a one-dimensional decomposition of quantity Q according to value F.
Nested sampling accumulates the quantity and discovers the shape by tracking inwards
and upwards, compressing X from the original 1 (complete) towards 0 (empty).

3. Nested Sampling

By hypothesis, F is a function accessible pointwise through evaluation at specified
locations x, whereas related volumes X have no such easy access. Hence, estimates of
Q can realistically only be built from evaluations of F. A priori, we have no knowledge
of where good (high value of F) locations x might be, so we start with a Monte Carlo
ensemble of random locations. In any ensemble, there will be one or more locations with
the worst (lowest) value f. This outer “shell” F = f surrounds the inner “core” F > f of
other locations with better values. For example, the four-object ensemble in Figure 3 (top)
has c = 3 objects in the core and s = 1 in the shell.

Compression is achieved by discarding the shell while retaining the core. Actually, any
of the ensemble values could be used to divide inner from outer, and the mathematician
of the fable would have used the median value. However, compression is smoother, and
results are more precise if only the outer shell is discarded. To avoid eroding the ensemble,
it is rebuilt with more locations randomly chosen within the current constraint F > f until
the core F > f contains enough objects that survive. For example, in Figure 3 (bottom),
three extra random locations extended the original ensemble until the core built up to the
original four objects, with three in the shell that is about to be discarded. For continuous
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applications, coincident values of F would be vanishingly rare, so a shell would never hold
more than one object.

Start with ensemble. Find core.
4 samples (imposed)
shell F = °
°
- Discard the shell. @
°

shell 7 =
Discarding s (=3) shell objects to leave just the core c (=4) reflects a volume compression
ratio around ﬁ (=4/7). This estimate is obtained without any reference to triangulation or
geometry or even topology. After discarding the shell, the outermost (lowest) value in the
core will define an updated and increased lower limit f, which can seed a subsequent iterate.
With all points distributed uniformly and equivalently, the compression ratio 7y (< 1)

will have been beta-distributed

Build ensemble to fill core.
core = 4 (imposed)
shell = 3 (usually 1)

Figure 3. Nested sampling iterate with ensemble size 4.

v ~ Beta(c,s), explicitly Pr(y) 1 (1—7)*7 L. 4)

So, when we wish to estimate what < actually was numerically, we can do no better than
sample Beta(c, s), either just once or (preferably) many times. Successive compressions
Y1,72, Y3, - - - starting from the initial volume X, = 1 lead to core volumes (Figure 4 left)

XM X2 X73 X Y4
Xo=1——>Xi=11 —— Xo=71172 —— X3=7172713 —— ... (5)

It is best to keep the shells as thin as possible to maximise the overall compression per
sample, which is why we choose to discard just one outermost value at a time. It does not
matter if sampling omits intermediate values of F because Beta(c,0) for an invisibly empty
shell (s = 0) would give v = 1 so would not contribute to compression.

These multiplicative factors are better accumulated additively as logarithms, for which
the mean and standard deviation

c+s—1 1 c+s—1 1 1/2
logy=—| Y = |+[ ¥ = (6)

j= =7

imply well-behaved moments of logarithmic compression log Xj. Conversely, the moments
of raw compression X rapidly become misleading and unusable. Just as in statistical
mechanics where the variable of interest is not raw degeneracy () but the entropy S = log (),
here it is log Q that matters.
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Figure 4. Nested sampling trajectory.
4. Quantity
From the 7’s, Q is estimated by Lebesgue (3) as
Qr (h-0)Xo+ (fa—fi)Xi 4+ (fk = fie1) X1 + ((F)—fi) X )

nested sampling trajectory termination

where (F) is the terminating mean value (Figure 4 right). The result is a distribution
Pr(Q)—Dbetter represented in view of the large dynamic ranges as Pr(log Q).

5. Approximation

There is no universally valid “best” single-value representative of Pr(log Q), which
need not even be unimodal. Neither is there any “unbiassed estimator” for Q or log Q.
Users who seek a single value may instead plausibly fix each <y at its logarithmically mean
value (6).

Typically in large applications (H > 1), the terms in Q rise to a maximum (as in-
creasing F overcomes diminishing volumes X) and then decay (as diminishing volume
overcomes limited values of F). Correspondingly, many iterations are needed to scan the
volume range. For continuous applications, s will always be 1 so that each -y is distributed
as Pr(y) = cy°~! with logarithmic mean and standard deviation

1 1
1087—*Eig (8)

Compression by a factor of e/ to the bulk of Q will take about cH + /cH such iterates, after
which the volume will be estimated with uncertainty 6 log X ~ v/H/c. The uncertainty
will be reflected in Q

dlogQ ~+/H/c 9)

which (under limited computer resources) is minimised by keeping the retained core size
¢ constant.

Of course, that is merely what is anticipated for a typical application. Particular cases
may behave worse, and Jlog Q should be estimated statistically if an application has risk
of that.
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6. Shape

As shells of volume X;_;—Xj are peeled away (Figure 4) to form the nested sam-
pling trajectory, the corresponding value f gives a Riemann weight wy = (X;_1—X) fx
(Figure 5 left). That weight can then be randomly assigned among the shell objects to
provide a decomposition of quantity according to volume.

A A
()3 ] Riemann weights (P 5 Lebesgue addition
f shil 3 Q~ Y FiX i Tshacll 3 Q~Y XoF
4 shell 2, f el o
f ° shell 1 ° A ° shell 1 -
0 X X, X, XU: 0 0 X, X X XO:

Figure 5. Riemann and Lebesgue.

Objects drawn randomly in proportion to w then give a usefully compact representa-
tion of shape p(x) as a set of equally weighted locations. These introductory locations can
be used to seed standard Metropolis MCMC exploration if more samples are wanted.

7. Programming

It may be assumed that the user has, through some such method as importance weight-
ing, already extracted from the original problem whatever structure is analytically available
so that the remaining numerical task is reduced as far as reasonably possible. Nested
sampling is then to be employed for compressing through the remaining information H.

The following is the minimal skeleton program for nested sampling:

INITIALISE (Figure 6 left)
1: | Set N and allocate (x, F) for N objects Stored ensemble 0,1,..., N—1
2.1 X=1 Initialise volume
31 f=0 Initialise lower bound
4:1 Q=0 Initialise quantity Q
5. | fori=0,1,...,N—1 Initialise ensemble ...
6: F; = F(x; uniform) ...with random locations x;
ITERATE (Figure 6 right, A = ¢ — Cprevious)
7: | until( terminate ) Iterate until termination
8: f=min(Fy,F,...,FN_1) Update lower bound f
9: AQ = X x Af Update Q (Figure 5 right, lower)
10: M=N Initial membership = retained storage
11: fori =0,1,...,N—1randomly For each stored object, ...
12: while( F; equals f ) ... keep trying again until out of shell
OUTPUT (x;, F(x;)) and M
13: F; = F(x; uniformin F > f) | Replace (x;, F(x;)) in F > f
14: Alog X =logy(M) Compress.
15: AM =1 Increment core+shell membership
TERMINATE
OUTPUT each (x;, F(x;)) and @
16: | f = mean(Fy, Fy,...,Fny_1) Final ensemble.
17: | AQ = X x Af Update Q (Figure 5 right, top)
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The output forms the nested sampling trajectory, both pre- and post-termination, with
each location x representing its shell of volume AX having values at or around F(x), and
compression defined by M with core size N. The compression ratio (M) in line 14 can
be either the probabilistic estimate Beta(M, 1) (4) or the approximating logarithmic mean
value e~ /M (8).

Figure 6. (left) set prior object by MC; (right) generate new object by MCMC.

The program’s overt purpose is to accumulate the quantity Q according to Lebesgue
summation (7). This accumulation is parasitic upon nested exploration which is driven
only by ranking of quality, so that arbitrary monotonic quantities © = [ X(f) d6(f) could
be accumulated consistently at the same time.

Apart from the procedure for evaluating F(x), the program requires three inputs from
the user.

A: A Monte Carlo procedure for a random x uniformly distributed over the original unit
volume (Figure 6 left), used in line 6.

B: A procedure for generating a new x uniformly distributed within the current constraint
F(x) > f, used in line 13. In practice, this will be a Markov chain (MCMC) procedure
seeded at a random member of the current ensemble and exploring the constrained
volume with moves obeying detailed balance (Figure 6 right). Note that these moves
are not modulated by F, except that destinations below f are prohibited. Geometrical
properties of an application may assist construction of the MCMC procedure, as
when ellipsoidal domains are constructed around the walkers in suitably smooth
applications in suitably restricted dimension ([5] etc.), but nested sampling itself is not
dependent on geometry or topology or continuity or differentiability or convenient
shapes. It is for the user to program a suitable procedure for the application in hand.
Or fail in the attempt.

C: A termination criterion, needed in line 7. There is no universally valid criterion because
numerical experimentation alone can never exclude the possibility of high values
in unreached locations which could render termination premature. Your author’s
default criterion is to terminate when H, which can be accumulated through A(QH +
Qlog Q) = X A(flog f), appears to have stopped increasing significantly, indicating
that most of the relevant structure has likely been found.

Lines 1-6 of the program are straightforward initialisation of a random N-object
ensemble.

Lines 7-15 are the iterative loop. On entry, the ensemble has N core objects. The
bounding (lowest) value f is appropriately increased (line 8) and Q updated (line 9). At
least one object then lies on the new boundary with F = f (the new shell), with the others
in the diminished core F > f. The aim is to add new randomly located objects until the
core has again built up to N, following which the shell can be discarded (or, more usefully,
output as the trajectory).

Whenever a shell object is discovered within the N-object stored ensemble (Lines 11 and 12),
it is written out to the trajectory to make room for a new random location. When that new
location is generated (Line 13), it is included in the extended membership M (line 15). Mean-
while, the corresponding 1-in-M contribution to compression is incorporated in Line 14.
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This loop (Lines 11 to 15) ends when the new location falls into the now-more-populated
core. The iterate ends when every stored object is in the core, with every shell object having
been written to the trajectory (c = N, s = M—N).

Compression could be programmed using a single ratio v = Beta(c, s) (Equation (4))
just before Line 9 to discard the whole shell in one go. However, it is better to use the indi-
vidual steps shown in Line 13. That is equivalent to grouped compression, and Beta(M, 1)
is quick to compute.

c+s—1

Beta(c,s) = H Beta(k, 1), Beta(k,1) = (Uniform(O, 1))1/k.
k=c

(10)

Lastly, if the program has been properly terminated with the bulk of the structure found, the
contribution of the final ensemble (Lines 16 to 17) will be negligible and could be omitted.

Because of the dynamic range inherent in large problems, the skeleton program as
written is susceptible to computer over/underflow. Therefore any useful implementation
should store X, F, Q, w as logarithms.

A professional refinement is to track several chains of Beta-distributed compressions
in line 14 to obtain the distribution of Q. Production of a nested sampling trajectory {x, F }
was statistical, so its interpretation ought also to be statistical.

8. Convergence

There has been a view in the community [6,7] that interest lies in, and convergence
should be proved for, Q rather than log Q. That view is a relic of bygone concentration on
small problems—misleading nowadays because the extremely heavy-tailed distribution
of Q in applications of appreciable size requires excessive resources to decrease 5Q below
Q. As mentioned below (6), it is variation in log Q that matters, even if that residual
uncertainty allows orders of magnitude of uncertainty in Q.

In most practical applications, a run can be continued until compression has scanned
through most of the posterior distribution, as indicated by flattening off of H as it rises
toward its presumed final value. In such cases, rms convergence of log Q proceeds as the
usual statistical inverse-square-root O(n~1/2), where n > cH is the number of iterative
steps as in (9). That fact can be demonstrated by observing that the number of iterates n
required to compress volume from 1 to X is a Poisson distribution with mean —clog X,
which consequently has inverse-square-root uncertainty. The compression — log X inferred
from 7 is then exponential with mean n/c, with that same inverse-square-root uncertainty.
The overall effect is then inverse square root as stated.

Incidentally, the behaviour of nested sampling depends on the prior-to-posterior
information H, which can be unrelated to dimension. Dimension, which is a geometrical
construction, is not part of nested sampling. Applications need not even have a dimension.

Exceptionally, there may be a localised but important quality peak hiding beyond
termination and yielding substantial or even dominant termination error. It was shown
in [8] that termination error is controllable if H can be bounded above. Resources can
then be adjusted to yield convergence as O(n~1/4). Of course, the information H is always
bounded in any practical application: the question would be how to define a convincing
upper limit.

Those analyses assumed that the ensemble size was held constant, with implicitly unit
shells s = 1 surrounding a constant core size c. But, in discrete applications, plateaus of
constant quality F may necessitate larger shells, which require extra resources to traverse.
Indeed, Mother Nature can supply arbitrarily challenging problems, to which we have no
general answer.

Ultimately, finding a 1-in-e~ posterior domain may require e/’ exploratory samples,
thus defeating the enterprise. Numerical exploration will never be able to find a flagpole in
the Atlantic Ocean.
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