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Abstract: This paper introduces an efficient computational procedure for analyzing the propagation
of harmonic waves in layered elastic media. This offers several advantages, including the ability to
handle arbitrary frequencies, depths, and the number of layers above an elastic half-space, and efforts
to follow dispersion curves and flag up possible singularities are investigated. While there are inherent
limitations in terms of computational accuracy and capacity, this methodology is straightforward to
implement for studying free or forced vibrations and obtaining relevant response data. We present
computations of wavenumber dispersion diagrams, phase velocity plots, and response data in both
the frequency and time domains. These computational results are provided for two example cases:
plane strain and axisymmetry. Our methodology is grounded in a well-conditioned dynamic stiffness
approach specifically tailored for deep-layered strata analysis. We introduce an innovative method
for efficiently computing wavenumber dispersion curves. By tracking the slope of these curves, users
can effectively manage continuation parameters. We illustrate this technique through numerical
evidence of a layer resonance in a real-life case study characterized by a fold in the dispersion curves.
Furthermore, this framework is particularly advantageous for engineers addressing problems related
to ground-borne vibrations. It enables the analysis of phenomena such as zero group velocity (ZGV),
where a singularity occurs, both in the frequency and time domains, shedding light on the unique
characteristics of such cases. Given the reduced dimension of the problem, this formulation can
considerably aid geophysicists and engineers in areas such as MASW or SASW techniques.

Keywords: wave propagation; linear elastic material; matrix scaling; zero group velocity; path following

1. Introduction

The primary objective of this paper was to investigate the propagation of elastic waves
in a waveguide from a rigid strip or a rigid disk placed on the surface of a two dimensional
or axisymmetric three-dimensional layered semi-infinite space. Importantly, this study
aimed to achieve this without the need for extensive layer subdivisions, even for deep
layers. Our research builds upon the findings presented in a prior work (reference [1]),
which provided a scaled dynamic stiffness matrix for bedrock layers. While extending
this bedrock problem to a half-space formulation is relatively straightforward and requires
minimal additional analysis, the novelty of our work lies in its practical applications.
For exceptionally deep strata, we demonstrate that a path continuation methodology can
identify an internal zero group velocity resonance, and the corresponding time domain
solution vividly illustrates the resonance behavior. It is worth noting that larger and more
complex models would yield the same results, but what sets our approach apart is its ability
to achieve these outcomes with manageable computational demands, even on standard
PC desktops.
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The ground is modeled as a soil profile that consists of multiple elastic, homogeneous,
isotropic layers. This problem has seen much activity in the past three decades but this
formulation contains a novel approach to determine a dynamic stiffness matrix. What is
new, but comparable to previous studies in this area, is the computation of natural modes
of free vibration for very deep strata, which may be computed easily and used for further
physical analysis. These are usually used to help explain a forced response calculation due
to harmonic or seismic loads in the body of the ground, wherein an example related to a
harmonic rigid-surface disk load is presented. Since the formulation is related primarily
to P-SV wavetypes we will drop most references pertaining to either the plane strain or
axisymmetric problems, where it is understood that the formulations can be applied to
both cases. At the end of the paper, a forced-vibration result presented in terms of the time
and frequency domains is presented for an axisymmetric problem.

Ground vibration literature contains a wealth of publications, with much work having
been conducted on the natural propagating modes in a layer over a half-space. The case of
a fluid layer over a higher-velocity fluid half-space is less complicated than the elastic wave
problem; it was first investigated by [2], and it is well-known as one of the first attempts to
study wave propagation through layers with overly infinite domains. Although the do-
mains lacked shear wave coupling, Ref. [2]’s thorough analysis showed that unattenuated
propagation of sound would occur in a slower fluid layer characterized by the minimization
of something called ’the group velocity’. The group velocity basically indicates the speed at
which the amplitude or envelope wave “groups” progress in a medium. Importantly, if the
group velocity is constant then the wave propagation is commonly called non-dispersive,
which means that all waves progress at the same speed. In layered media, where wave
speeds vary between layers, group velocity is clearly non-constant, and wave propagation
analysis, although linear in nature, is complicated to analyze.

Currently, elastic wave propagation analysis is usually performed via the [3] stiffness
matrix method (SMM). This approach was devised based on the earlier transfer matrix
method (TMM) originally proposed over 70 years ago by [4], later corrected and elab-
orated by [5], and iterated further by [6,7] relatively recently. Dunkin [8] also obtained
modal solutions by using the TMM. As was pointed out by Roesset, and more recently
by Kausel [9], the SMM has several advantages over the TMM approach: (i) the global
stiffness matrix becomes symmetric in the SMM and, as a result, lesser storage is required
and also fewer operations are required for executing the analysis; (ii) various loading
profiles can be easily treated; (iii) sub-structuring techniques become readily applicable. In
the SMM approach, two different methods exist, namely, (i) the exact approach based on
the root search method (RSM), and (ii) the approximate thin layer method (TLM) based
on a quadratic eigenvalue formulation. In the exact approach, while forming the global
stiffness matrix, the contribution of each layer is duly incorporated without making any
approximation. However, while obtaining the solution using the RSM, since the exact
approach contains a number of hyperbolic and transcendental functions the solution can
be obtained only by trial and iterative procedure. Tan has also described how to increase
accuracy for multilayer problems [10,11], Ba et al. have described efficient methods applied
to porous layers [12], and Huang et al. have formulated a two-step solution combining
solutions in the Fourier and spatial domains [13].

The model considered here demonstrates the effect of a harmonic finite load over
layered strata [14]. The results derived by Fourier transform are valid for any frequency
and, importantly, any depth of layer. In principle, following traditional methods [15], we
could have used displacement and stress-continuity boundary conditions at the bottom of
the layer with equations at the ground surface to generate equations for four subsequent
unknowns of stress and displacement. However, this direct approach leads to formidable
numerical problems, in part due to fundamental expressions for characteristic wave func-
tions, such as cosh or sinh, which, when employed, can have a dramatic effect on the
numerical evaluation of solutions. Moreover, problems can arise due to the cancellation
or division of either very small or very large numbers [16]. To overcome this, ref. [17]
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derived a well-conditioned propagator matrix (TMM) for radially symmetric problems. In
this work, though, we constructed a single stiffness matrix method (SMM) for the physical
layer for plane strain problems, which conveniently avoids these difficulties. We there-
fore proceeded in the establishment of an original global dynamic stiffness matrix using
expressions that do not cause numerical problems.

A scaled dynamic stiffness matrix for an arbitrary thick layer was derived. To achieve
this, the vibration components in the wavenumber domain for layer depths and a half-space
were considered and arranged into a single matrix formulation. For the forced response, the
load was modeled as an infinite strip, so that the problem was plane; for the axisymmetric
case, the matrices were almost identical, so for a rigid uniform disk loading the vertical
and radial responses could also be calculated by an inverse transform, noting that a
Hankel transfom requires inversion in the axisymmetric case. Nevertheless, the overall
purpose of the present study was to present a computational method that does not suffer
numerical evaluation difficulties when predicting vibration transmission, in particular its
attenuation on the surface of a deep layer. The usefulness of the method is illustrated
by presenting numerical results from potentially computationally intensive application
examples. Comparisons against numerical solutions using finite element methods (FEM)
or boundary element methods (BEM) have been successfully performed previously but we
wished to avoid details of truncation, convergence, or element type that might detract from
the essence of this work.

This paper, which focuses on determining solutions for free- and forced-wave propa-
gation problems, is structured as follows: In Section 2, we establish the scaled formulation
of the problem for both plane strain and axisymmetric coordinates in the wavenumber
domain. This section also provides a brief overview of the root-finding methodology.
Subsequently, we present a numerical example that verifies the free-vibration formulation
derived by previous researchers. Additionally, in a second example, we identify the pres-
ence of zero group velocity modes, which are associated with a well-known earthquake
study. Section 3 includes frequency and time domain simulations, specifically addressing a
stationary rigid disk load. Finally, in Section 4, we offer a summary of our findings and
draw conclusions to wrap up the paper.

2. Computational Model

In this section, the well-known methodologies related to free and forced vibration are
formulated for plane strain or axisymmetric cases.

2.1. Two Dimensional and Axisymmetric Models

A generic model considered is shown in Figure 1. A strip load has width 2b and
is aligned with respect to the z-axis. It rests on a homogeneous, isotropic, elastic layer,
with material properties E (Young’s modulus), ρ (mass density), and ν (Poisson’s ratio). A
harmonic vertical rigidly supported load acts uniformly over a strip situated above elastic
layers. The elastic layers of finite depth consist of homogeneous and isotropic material,
overlying an infinite half-space of flexible material. The model is two dimensional, and
the co-ordinate system and parameters are shown in Figure 1. Although two dimensional,
the methods used here cover plane strain and axisymmetric cases. This figure shows a
generalized example of a semi-infinite stratified soil profile with linear elastic layers. For
computation of theoretical dispersion curves corresponding to the assumed layer structure
the problem assumes plane strain in the (x, z) plane. The x-axis is taken parallel to the
layers, with the x-axis in a horizontal direction to the surface wave propagation. The
positive z-axis is directed downwards. To develop an axisymmetric model, we referred
to [18] for inspiration.
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Figure 1. A layered half-space model geometry. The parameters of the model are shear and pressure
wave velocities Cs, Cp, respectively, in each layer, with mass density ρi and layer thickness hi.

For plane strain conditions much of the analysis necessary for the derivation of the
dynamic stiffness matrix has been presented before in references [14,15,19], so this will only
be briefly summarized. For plane strains the behavior of the elastic material is described by
Navier’s elastodynamic equations [14]. Without loss of generality, in the absence of body
forces, these equations apply to any layer and are written in vector form as follows:

(λ + µ)∇(∇.u) + µ∇2u = ρü, (1)

where u = (u, w) represents the components of the displacement in the x and z directions
and λ, µ are the Lamé constants. For the free-vibration problem the boundary conditions
for the layered problem are as follows: [(a)] zero stresses at the surface, so on z = 0,
[(b)] continuity of displacement and stress at internal interfaces, and in the far field, [(c)]
displacements u, w → 0 as z → ∞. The quantities Cp and Cs are, respectively, the pressure
(P) and shear (S) wave speeds given by

C2
p =

λ + 2µ

ρ
=

E(1 − ν)

ρ(1 + ν)(1 − 2ν)
, C2

s =
µ

ρ
=

E
2ρ(1 + ν)

. (2)

Note that the boundary conditions are almost identical for the axisymmetric problem in
(r, z), but on the surface σzz = −

(
P/πb2)whereas σzz = −(P/π2b) over a disk of radius b

or half-strip length b for the forced vibration in axisymmetry and plane strain, respectively.
The non-symmetric and complex-valued matrix [K](e,i), Appendix B, and the steps

required in its derivation are given in [1]. Specifically, [K](e,i) is the dynamic stiffness matrix
for a single elastic layer that is valid for any depth H > 0. To include the half-space in the
formulation, we consider the addition of a 2× 2 complex element stiffness matrix, [K](e,n+1):

[K](e,n+1) =
1
D

[
(λ + 2µ)α2k2

1 2µk(α1α2 − k2) + (λ + 2µ)kk2
1

2µk(α1α2 − k2) + µkk2
2 µα1k2

2

]
(3)

such that

[K](e,n+1){u}(e,n+1) = {σ}(e,n+1), (4)
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where D = 1/(k2 − α1α2) and at the lowest interface u(e,n+1) = [iwn+1, un+1]
T and

σ(e,n+1) = [−iσn+1, −τn+1]
T . Due to the way in which the ordering of the stresses

σ(e,i) and displacements u(e,i) are conveniently organized, the stresses and tractions at any
interface cancel so that the load vector on the right-hand side is zero except for stress that
accounts for surface load. The element matrix equations obtained for each layer of the
soil model are subsequently assembled at the common layer interfaces to form the global
layered system. The stiffness matrices for each layer can now be combined to give a single
matrix equation for an elastic layer over an elastic half-space, involving the scaled stiffness
matrix for the elastic layers [K(e,i)], i = 1..n and the matrix for the half-space [K(n+1)].

[K]G =



K11,1 K12,1 0
K21,1 K22,1 + K11,2 K12,2

K21,2
. . . . . .
. . . . . . K12,n

0 K21,n K22,n + Kn+1

. (5)

Hence, it is straightforward to generalize this technique to n elastic layers supported
by an elastic half-space where the size of the dynamic stiffness matrix becomes a single
complex-valued 2n × 2n matrix, but remembering that the matrix entries are transcen-
dental in wavenumber k. The right-hand side now only involves transformed stresses at
the ground surface, since the neighboring interface values have canceled each other, as
discussed earlier:

[K]G{u}G = {τ}G. (6)

Kausel and Roesset, in [3], previously introduced an alternative formulation using
a transfer matrix method (TMM) approach with stiffness matrices (SMM) akin to those
employed in structural dynamics. An element stiffness matrix, denoted as [Ki], is derived
for each layer within the geodynamic model. This element stiffness matrix for a specific
layer relates the stresses at the upper and lower interfaces of the layer to the corresponding
displacements. In the case of a multi-layered model, the system stiffness matrices, combined
with prescribed load vectors, can be employed to solve for displacements using techniques
analogous to the standard finite element method. When a load is applied to the surface, the
transformed stresses {τ}G become non-zero, allowing the matrix Equation (6) to be solved
in spatial wavenumber.

Apart from a slight change in the transformed values for the displacements, identical
expressions are obtained in the axisymmetric P-SV case. Hence, it is straightforward
to compute plane strain propagating and axisymmetric P-SV propagating modes in the
free-vibration case.

2.2. Free Vibration

To consider free vibration for the layered half-space problem the right-hand side of
Equation (6) is zero, and, hence, we have the following expression:

[K]G{u}G = 0 (7)

where the matrix has been defined above (see Equation (5)) and the unknowns are the
displacements on interfaces. Non-trivial solutions of Equation (7) are found by equating the
determinant of the matrix to zero. The non-zero solutions or eigenvectors of this equation
give the actual (real-valued) u and w displacements representing the propagating modes
(for real wavenumber solutions) through a vertical cross-section.

For calculations for the response of a layered half-space to a surface loading, the
transformed loads in the plane strain and axisymmetric P-SV are not identical nor are the
inverse transforms that need to be evaluated.
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2.3. Forced Vibration

In the plane strain case, the transformed load on the surface is represented as a
traction. In both cases of plane strain and axisymmetry, responses at points on the surface
of the ground can be recovered by employing suitable quadrature to the products of the
displacements in the wavenumber domain and the transform kernel. The solution of the
system of Equations (6) yields the transformed displacements u(k, z, ω) at the surface and,
hence, by suitable inverse-transformations solutions can be obtained. The response in the
space-frequency domain is obtained by an inverse transformation from the wavenumber to
the spatial domain, as outlined in [18], where

σzz =

{
− P

πb2 eiωt, |r| < b,
0, elsewhere.

(8)

σrz = 0. (9)

2.4. Numerical Evaluation of the Dynamic Stiffness Matrix

In general, when dealing with non-dimensional wavenumbers where ksh ≥ 36 (with
ks representing the shear wavenumber), the conventional approach encounters difficulties.
Specifically, when the depth exceeds approximately six shear wavelengths (h ≥ 6λs), a
numerical bottleneck problem arises when attempting to solve the system of linear algebraic
equations. Additionally, high-frequency computations can become ill-conditioned. It is
important to note that results cannot be reliably presented in cases where a “bottleneck”
occurs or is imminent since matrix elements may become unbounded.

To overcome the challenges associated with the global coordinate system, we introduce
a set of local coordinate systems to characterize vibrations within layered media. This
approach is designed to address bottleneck issues as outlined in [16].

In this work, the necessary manipulations to provide a robust scaled matrix, as a
projection method, have already been performed to assist in coding the matrix. The uti-
lization of the projected method ensures stable numerical evaluations for stiffness matrix
entries, thereby mitigating concerns related to numerical round-off errors. This is par-
ticularly crucial when dealing with operations such as dividing large numbers by small
ones or subtracting very large numbers. For instance, round-off errors can lead to expo-
nential growth in relative errors when evaluating the difference between functions like
|cosh(s1)− cosh(s2)|, where s1 < s < s2 and the difference |s1 − s2| is small. Additionally,
the numerical assessment of hyperbolic functions such as cosh and sinh can pose challenges
when handling large argument values.

2.5. Root Finding and Parameter Continuation

Considering free vibration, the expression, Equation (7), may be written succintly as

[K(ω, k)]{Φ} = 0. (10)

where each entry in the stiffness matrix [K] represents a nonlinear function in terms of the
spatial wavenumber k and frequency ω, giving rise to a nonlinear root-finding exercise
when non-trivial solutions are sought. While we shall not delve into the specifics of the
function itself, our focus is on locating its roots. To achieve this, the method described
below is employed to identify the roots of the determinant det[K], denoted as DK and
commonly called the dispersion equation. A notable consequence of this approach is that
the phase velocity ω/k for any propagating mode Φ can be easily derived for points along
the dispersion curves where

DK(k, ω) = 0. (11)

A root-finding routine has been implemented, utilizing the complex plane winding
number integral to verify the count of real roots for systems such as Equation (11). These
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routines for root finding in the complex plane rely partly on the application of the complex-
argument principle.

Wave propagation frequencies or wavenumbers, along with their associated modes car-
rying energy, can be readily evaluated by determining the value of the roots of
Equation (11). Numerous methods are available for finding roots or zeroes of nonlin-
ear functions in one or multiple variables. However, the root-finding algorithm employed
in this study is based on the procedure developed by Ivansson and Karasalo [20]. Further
elaboration on the specific details of this algorithm will not be provided here except to
mention that no sophisticated strategy for determining the initial guesses for the solvers
was adopted. For example, at a specific frequency of interest the winding number integral
determines the number of roots in a domain, and a suitable nonlinear solver finds all these
roots. Supposing 10 distinct roots have been found, then 10 curves are followed, using the
continuation process outlined below.

Instead of seeking all the roots of the dispersion Equation (11) in a step-by-step manner
through stepping in one of the parameters, a technique different from more traditional
methods has been adopted. This approach proves effective in systematically seeking roots
along curves in (ω, k)-space. The method involves tracing dispersion curves through a
parametric continuation approach by using previous roots as initial estimates. In this
context, the parameter can be either the frequency ω or, alternatively, the wavenumber k.
For simplicity, let us assume all the roots, ki, at step i have been found and that the roots
are now sought at the next frequency, ω = ωi + ∆(ω), where, in the case of constant steps,
∆(ω) = ∆ω = ωi+1 −ωi. If |∆ω| is sufficiently small, and using simple linear extrapolation
to determine an initial estimate k0

i+1,

k0
i+1 = 2(ki − ki−1) + ki−1 (12)

then we should expect to find solutions, k0
i+1, of Equation (13) efficiently:

DK(k ; ω) = 0. (13)

This method works well while the dispersion curves are slowly varying; moreover, contin-
uation for all the roots simultaneously is possible, but when a steep slope is encountered
an adaptive technique for individual curves is required. A basic alternative formulation
yielding variable (usually smaller) step sizes, ∆(ω), which are inversely proportional to
the rate of change of the slope at previous steps, appeared to yield convergent results,
while also flagging up possible fold points. Further research into adaptive methods, poly-
nomial extrapolation, or arc continuation is continuing. However, this simple approach
introduces an additional layer of flexibility and proves highly effective, especially when
each frequency corresponds to a predetermined fixed number of single roots. Currently,
we focus on tracing a single set of curves in terms of frequency, as illustrated in the upper
plot, Figure 2.

Once a warning occurs, interchanging the parameters ω and k in the dispersion
equation means practically that fixing values of the frequency ω can lead to solutions of
the dispersion equation in k (11). Hence, if |∆(k)| > 0 is small we expect to find solution
curves in ω. In other words, continuing the solution path in either ω or k, as a means to
obtaining solutions ωi+1 of Equation (13) efficiently.

The methodology of interchanging is a powerful technique that requires automating
in the present algorithm. In the next section, the idea of parameter continuation is proposed
as a means to increase speed for computing relevant curves. Each curve is determined by
the roots of a specific formulation.
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Figure 2. Sketch showing a turning point or fold/branch bifurcation. A white dot represents the
initial guess for the solver, the red dots show the true solution, and the yellow dots show the ZGV
turning point. The black dots represent previously computed solutions.

3. Numerical Examples

Surface waves, except for Rayleigh waves on an isotropic half-space, exhibit a phe-
nomenon called dispersion, where the apparent velocity along the surface varies with
frequency. When seismic sources generate waves, they contain a range of frequencies, and
each frequency component has its own velocity, known as the phase velocity, denoted
as c(ω). If we were dealing with a single-frequency (monochromatic) wave, we would
only need to consider the phase velocity for that specific frequency to fully character-
ize the disturbance. However, in real scenarios, waves of multiple frequencies interfere
with each other, creating constructive and destructive patterns that influence the overall
ground motion. These constructive interference patterns behave as wave packets, which
themselves propagate along the surface with well-defined group velocities, represented as
U(ω). Therefore, the phase velocity is primarily determined by medium properties (such
as layer thickness, intrinsic P and S velocities, rigidity, etc.) and how well a particular
harmonic component fits into the associated boundary conditions. This was discussed
in the previous section. On the other hand, the group velocity depends on both medium
properties (through their influence on phase velocity) and how phase velocity varies with
frequency. This variation controls the interference between different harmonics. The group
velocity is especially significant because energy mainly propagates within the construc-
tively interfering wave packets, which move at the group velocity rather than individual
phase velocities.

Additionally, there are backward waves, which are guided waves with opposite phase
and group velocities, causing the phase to move toward the wave source. The study of
backward waves dates back over a century, beginning with Lamb’s pioneering work in
1904 [21]. A characteristic feature of a backward-wave mode is a distinctive bend in the
dispersion curve with a negative slope, resulting in the negative group velocity of the
corresponding guided wave. At the lowest frequency within the backward-wave range,
the group velocity becomes zero while the wavenumber remains non-zero, leading to what
we call a zero group velocity (ZGV) mode.

The detailed physics of situations involving negative group velocities is not discussed
here but is exemplified through example results in both the time and frequency domains,
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drawn from the existing literature. To validate the accuracy of the method, several scenarios
are compared in the examples presented. It is important to note that these scenarios
are not considered benchmark solutions as no such benchmarks exist, to the best of the
authors’ knowledge. Instead, they serve to illustrate the formulation’s efficiency in terms
of computational speed. The soil characteristic values used in these examples are provided
for reference in two cases.

3.1. Free Vibration–Dispersion Relations

An application of the free vibration, Section 2.2, is to aid understanding of character-
istics that show up for a forced-response case. In this respect, Figures 3 and 4 show the
principal results for the ground profiles, Tables 1 and 2. Verification of the method in the
first example and demonstration in the second example of the “unusual” ZGV behavior
mentioned above is presented. To show the accuracy and effectiveness of the proposed
technique, we proceed to evaluate the dispersion relation and phase velocity spectra for
the two ground profiles.

3.1.1. Verification of Model, [22]: Example 1

A ground profile was chosen in the thesis by [22], which was further evaluated
by [23], Table 1 using various popular approaches. The ground profile is made up from
four different layers, each 1.0 km in depth, and of a semi-infinite space, with the second
and fourth softer layers sandwiched by stiffer layers. Generally, the stiffness of the layer
and mass density vary non-uniformly with depth and the shear wavespeeds vary from
Cs = 2.7 km/s to Cs = 4.7km/s for the half-space.

Table 1. Material properties for Example 1. Referenced in Kumar et al. [23].

Soil Layer 1 Layer 2 Layer 3 Layer 4 Half-space
Depth (km) 1.0 1.0 1.0 1.0 ∞
E (Pa) 1.04 × 1011 0.81 × 1011 1.60 × 1011 1.30 × 1011 1.94 × 1011

ρ (kg m−3) 2700 2500 3100 2900 3300
ν 0.33 0.33 0.33 0.33 0.33
Cr (m s−1) 3542 3262 4100 3821 4380
Cs (m s−1) 3800 3500 4400 4100 4700
Cp (m s−1) 7544 6948 8735 8140 9331

There is little physical information included in this referred example but the compu-
tations are quite extensive due to the depths of the layers involved, the present method
requiring inversions of 10 × 10 matrices; hence, this example was chosen for computational
reasons. Figure 3 was produced by the root solver described in Section 2.5, and by digitiza-
tion of the curves presented in Kumar and Naskar it was possible to reproduce the phase
velocity curves presented.

It was not possible to directly compare the accuracy or computation times between
Kumar and Naskar and the Kausel method for this single example, but working on an i5
processor 32MB RAM machine running MATLAB 2020A calculation software the tasks
were clocked. Here, wavespeed variation with frequencies at 140 equal frequency steps,
between 0 and 9 Hz, for the first nine natural modes were computed. Adopting the root-
finding method beginning at 9 Hz and ending at 0.1 Hz, the method adopted here took
approximately 12.0 seconds to complete the 140-frequency-step analysis. The half-space
shear wavespeed is shown as a line across the graph, to show the limit of the solution. It is
clear that all three methods agree well.
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Figure 3. A comparison between the dispersion phase velocity curves calculated by the present method
(solid colored lines), with [23] (◦), and by [3] (□). The ground profile comprises four layers of depth 4.0 km
each situated over an elastic half-space, Table 1, referenced as Profile C in Kumar and Naskar [23].

3.1.2. Verification of Scaled-Matrix Technique, Latur Earthquake: Example 2

A ground model site, Table 2, used for synthetic seismograms observed as aftershocks
of the Latur earthquake, 1993, was evaluated in paper [6].

Table 2. Material properties for Example 2, referenced in Wang [6].

Soil Layer 1 Layer 2 Half-Space
Depth (m) 5 300 ∞
E (Pa) 1.55 × 108 4.22 × 1010 8.22 × 1010

ρ (kg m−3) 1300 2500 2700
ν 0.486 0.250 0.240
Cr (m s−1) 190 2392 3216
Cs (m s−1) 200 2600 3500
Cp (m s−1) 1200 4500 6000

It consists, simply, of two layers overlying an elastic half-space. Figure 4 is a more
conventional dispersion diagram for wavenumbers and phase velocities and is suitable
for physical interpretation, such as cut-on frequencies and Leaky modes, etc. Figure 4a,
however, does not feature characteristics that allow straightforward interpretation. Two
modes have real wavespeeds or wavenumbers at all frequencies, but only one, which
we shall call the second mode, tends toward the Rayleigh wavespeed for the upper layer
at low frequencies (190 m/s). At low frequencies or large wavelengths, the layer depth
should become negligible and wavespeeds should tend towards the half-space Rayleigh
wavespeed (which would exist without the two layers). At higher frequencies the modes
do tend toward the upper-layer wavespeed as expected. Employing the path continuation
algorithm described in Section 2.5 was straightforward and required no adaptive methods
to adjust step sizes.
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(a)

(b)

Figure 4. Dispersion curves of the present method for ground profile, Table 2 in [6], where→ indicates a ZGV
(zero group velocity) location and the circles indicate frequencies (28.5 Hz and 38.8 Hz) and wavenumbers
where modal shapes are displayed for each (see Figure 5). (a) Propagating wavenumber plotted against
frequency for ground profile, Table 2. Zero group velocity detected at 28.4 Hz and 38.7 Hz;
(b) Phase velocity plotted against frequency for ground profile, Table 2. Zero group velocity
detected at 28.4 Hz and 38.7 Hz.

It is well known in the non-destructive inspection community that Lamb modes can
possess backward-wave phenomena for certain values of Poisson’s ratio or combinations of
layer and substrate. A backward-wave mode is indicated by a typical bend of the dispersion
curve, with a negative slope resulting in the negative group velocity of the corresponding
guided wave. At the minimum frequency of the backward-wave range, the group velocity
becomes zero while the wavenumber remains non-zero; the corresponding wave is referred
to as a ZGV mode, which occurs twice in the frequency range used here (Figure 4a). Aside
from the opposite phase movement, for which detection is a rather challenging task, the
backward wave is considered to manifest itself by a surface-displacement resonance at the
ZGV frequency. The red dots in Figure 4b depict the positions at which the propagation
modes are computed in the next section. Note well that employing the path continuation
algorithm described in Section 2.5 requires an ad hoc adaptive technique that can reduce
the step size sufficiently while finding distinct wavenumber solutions.
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(a)

(b)
Figure 5. Modal shapes evaluated at two frequencies related to the Latur earthquake ground profile,
Table 2. All modes were evaluated at (a) Six mode shapes plotted against depth on a logarithmic scale at
frequency f = 28.5 Hz (see Figure 4), (b) Six mode shapes plotted against depth on a logarithmic scale at
frequency, f = 38.8 Hz (see Figure 4).

3.2. Modal Evaluation, Latur Earthquake: Example 2

Figure 5 shows the variation of amplitude (to within an arbitrary amplitude factor)
of the vertical and horizontal motion components of the first few modes, plotted against
depth up to 1000 m into the ground at frequencies in the vicinity of the appearance of
the zero group velocity (ZGV) mode. The depth scale is logarithmic, which highlights
the modal behavior nearer the surface. The legends in this figure show the phase velocity
and the wavenumber related to individual mode shapes. In Figure 5a, the variation of the
radial mode (U) with depth, adjacent to the first ZGV frequency f = 28.5 Hz, shifts from
maximum to minimum within the top 5 m layer then attenuates quickly to zero through the
lower strata in the ground. At the surface, it appears that each modal wavetype can equally
contribute to a surface-vibration response, except at the second mode cW = 2302 m/s,
k = 0.078 rad/m, where it appears, on the contrary, that this second mode dominates in
carrying the vertical surface wave energy for vertical mode shapes (W). At this frequency,
mode shapes in the vicinity of the ZGV turning point are not remarkably different to other
modes corresponding to other waves. At the second ZGV turning point, the mode shapes
were evaluated at an adjacent frequency, 38.8 Hz (Figure 5b). Contributors to potential
surface waves are evenly distributed through the lowest phase velocity modes across all
seven mode shapes displayed here. Interestingly, the mode that relates to the half-space
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shear wave dispersion curve shows a potential significant contribution in the lower depths
of the strata, up to around 600 m below the surface.

3.3. Forced Vibration–Frequency Domain, Latur Earthquake, Example 2

For this section, the results displayed in Figure 6 were obtained with the proposed
solution strategy determined by the axisymmetric model, Section 2.3, and are compared
with those obtained with a methodology proposed by Wang, [6], a method which has
been adopted widely by many researchers in the ground vibration and seismic scientific
communities. This approach evolved from the Thomson-Haskell layer transition matrix
methods, with an orthonormalization procedure to overcome numerical stability issues
with the original propagation algorithm.

Figure 6. Radial and vertical displacement amplitude at five receiver positions, 5, 10, 20, 40, and 60 m
from center of disk-load. Ground profile represented in Table 2.

In the following, responses to a harmonic surface load were calculated using the
hysteretic damping values established in Wang [6]. To conduct this, a circular uniform
traction load with radius b = 1 m, Equation (8), was applied on the surface of a layered
soil deposit. The deposit consisted of an h = 5 m soft soil layer on top of a 300 m deep
stiffer layer which overlaid a homogeneous half-space. The soil layer properties are shown
in Table 2. Figure 6 shows the vertical and horizontal displacement magnitude at five
response points located on the soil surface at distances d = 5, 10, 20, 40, 60 m from the disk
center, as obtained with the proposed solution strategy. Attenuation of radial and vertical
displacement with distance is evident throughout the frequency range. At 10 m and beyond
it is clear that the greatest response featured close to frequencies 18 and 38 Hz for radial
components and 20 and 40 Hz for vertical components beyond 10 m. Although this is not
strong evidence of resonance due to the existence of a ZGV mode, an increased amplitude
was observed and verified the conclusions by Wang [6].
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3.4. Forced Vibration–Time Domain, Latur Earthquake, Example 2

To study the behavior of a time-dependent force located on the surface of the layered
half-space we used the numerical fast Fourier transform (FFT) to convert solutions from
the frequency domain to the time domain. This technique gives the displacements in the
space-time domain, taking a source whose temporal variation is provided by a Ricker
wavelet, as defined below. To reduce the computational time we used quadrature in space
to calculate responses at a few selected receiver points. Also, since the Ricker wavelet
decays rapidly, in both time and frequency, this allowed a computed time domain solution
to be calculated in a reasonable time for interpretation.

The Ricker wavelet function is given by

w(τ) = W0

(
1 − 1

2
τ2
)

exp(−1
4

τ2)

where W0 is the amplitude, τ = (t − td)/t0; td is the time delay at which maximum
occurs, and t0 is related to the “natural frequency” of the Ricker wavelet, 1/t0 = 2π f0
(see Figure 7). In our calculations we chose the width of the input pulse as f0 = 14 Hz,
somewhat arbitrarily, but to allow at least the cut-on of a few propagating modes. By
applying exponential windowing with damping terms equivalent to the frequency domain,
time domain responses were calculated using an FFT with 512 frequency steps up to the
Nyquist frequency around 250 Hz.

Figure 7. A Ricker wavelet time profile, which applies to a uniform pressure over a rigid disk in
Example 2.

The two sets of results highlight the difference between a model that includes a soft
top layer (see Figure 8a) and one which does not (see Figure 8b). Both sets of solutions
naturally exhibit a strong dispersive nature as the envelope of the solution wave packet
propagates along the surface. This is especially evident for the soft 5 m layer result: there
appears a second wave packet in the vertical response at distances that develop from 40 m,
which is due to the soft-layer response. As reported in [6], the “slow” speeds of the two
wave packets effected by ZGV dispersion are clearly evident.
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(a)

(b)
Figure 8. For a Ricker wavelet load over a rigid disk, responses at 5, 10, 20, 40, and 60 m from center
of disk load. Upper (a) and lower (b) solutions compared for two ground profiles. (a) Ground profile
represented in Table 2, without the top 5 m layer; (b) Ground profile represented in Table 2.

4. Conclusions

A uniformly applicable model has been developed for studying the propagation of
surface vibrations through elastic layers of arbitrary depth. This model comprises an elastic,
isotropic, and homogeneous layer overlaying a half-space. A dynamic stiffness matrix, well-
conditioned for this model, has been established through the projection of characteristic
functions onto depth-dimension endpoints. To explore the behavior of natural propagating
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modes within these layers under zero-surface-stress conditions, singular values of the
dynamic stiffness were computed. The characteristic equation was also employed to
determine the solution shapes of these propagating modes. For instance, when examining
a ground profile with a high Poisson’s ratio in the top layer over a deep strata, a zero group
velocity mode was identified. This mode corresponded to a layer resonance, which had
been previously observed. Vibrational responses due to a fixed disk load in the frequency
domain indicated resonances at cut-off frequencies. Additionally, time domain results were
obtained, confirming the existence of non-dispersive wave packets, as suggested by earlier
researchers. This formulation’s broad applicability for dynamic stiffness matrices opens
the door to modeling various new problems where plane strain conditions are applicable.
Furthermore, it can be readily expanded to account for sub-layers of different materials
within the strata and extended to three-dimensional problems, where an exact 6x6 dynamic
stiffness matrix could be established.

In summary, the following conclusions have been drawn:

• A well-conditioned dynamic stiffness matrix has been developed for layers of arbi-
trary depths.

• The characteristic equation has been formulated in a way that requires unknowns to
be expressed only at material layer nodal points, eliminating the need for subdividing
the strata.

• The model has been applied to known ground profiles, revealing the existence of
zero group velocity modes. Examples involving time histories and frequency domain
responses have been provided.

• Anisotropic constitutive models, such as transversely isotropic or orthotropic models,
may be used to describe the mechanical behavior of anisotropic soils in numerical
analyses, and this is an area in which we are interested in extending our knowledge
for future research.

• The appearance of zero group velocity modes may be studied efficiently in a sensitivity
analysis, since the size of the problem is small and the continuation methodology can
aid in testing its existence.

• Future advancements towards a 3D dynamic stiffness matrix, involving the analytical
determination of 36 entries, could significantly reduce computational costs in full-sized
models well within reach on small desktop PCs.
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Appendix A

For each layer, the displacement field can be obtained from potentials as

u = u(x, z, t) =
∂Φ

∂x
+

∂Ψ

∂z
,

w = w(x, z, t) =
∂Φ

∂z
− ∂Ψ

∂x
, (A1)

where Φ = Φ(x, z, t) and Ψ = Ψ(x, z, t) are the solutions of two dimensional wave equa-
tions for each elastic layer:

C2
P∇2Φ = Φ̈, and C2

S∇2Ψ = Ψ̈. (A2)

For the sake of argument, we assume a single layer has depth H > 0 and that the z-
coordinate for the layer is locally specified, 0 ≤ z ≤ H. In this region, the corresponding
stress fields œ = [σxz, σzz]T are subsequently obtained as

σxz = τ = µ

(
2

∂2Φ

∂x∂z
+

∂2Ψ

∂z2 − ∂2Ψ

∂x2

)
,

and (A3)

σzz = σ = µ

(
C2

p

C2
s

∂2Φ

∂z2 +

(
C2

p

C2
s
− 2

)
∂2Ψ

∂x2 − 2
∂2Ψ

∂x∂z

)
.

The pair of Equations (A2) are transformed into the Fourier domain, with respect to x, via
the transform pair

f (k) =
1

2π

∫ +∞

−∞
f (x)e−ikxdx, f (x) =

∫ +∞

−∞
f (k)eikxdk. (A4)

For the sake of completeness, the Fourier transform pair in the case of radial symmetry is

f (k) =
∫ +∞

0
f (r)rJ0(kr)dr, f (r) =

∫ +∞

0
f (r)kJ0(kr)dk. (A5)

This introduces the Fourier component k, which is also commonly known as the wavenum-
ber in the horizontal direction. Upon the transformation, we obtain differential equations
in the z- direction, which now includes frequency ω and the wavenumber k as parameters.
Much of the analysis of this problem is identical to the solution of similar problems [15,24],
where a dynamic stiffness matrix [T] is derived, such that

{τ} = [T]{u}, (A6)

where {τ} are the transforms of the stress functions, and u are the transforms of the
displacements. Note that it is common practice to write solutions to the subsequent
homogeneous ordinary differential equations in terms of cosh and sinh functions. However,
this choice of characteristic functions is not convenient for problems involving a spatial
domain of arbitrary size. Hence, the general solutions in the Fourier domain may be written
in the scaled formulation, after introducing wavenumber pairs kp = ω/cp and ks = ω/cs:

Φ(r, z, t) =
(

Ae−α1z + Beα1(z−H)
)

, α1 =
√

k2 − k2
p

0 < z < H (A7)

Ψ(r, z, t) =
(

Ce−α2z + Deα2(z−H)
)

, α2 =
√

k2 − k2
s
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where the branch cuts are chosen so that Re(α1,2) ≥ 0. The reason for choosing the scaled
exponential characteristic functions over hyperbolic functions is clear if you attempt to
evaluate and manipulate these functions on a personal computer, as commented on by
Kausel in his compendium [16], Basically, this choice of basis ensures that the characteristic
functions do not grow unbounded with layer depth, as z → H, which would occur with
unscaled elementary functions. Subsequently, it is evident that the displacements (u, w)
also will not grow unbounded with depth. Now, by inserting the scaled ansatz into the
Equations (A1), this yields the element displacements on the upper and lower interfaces,
respectively, for layer (e, i): {

u(e,i)

}
= [C]{A}. (A8)

where u(e,i) = [iwi, ui, iwi+1, ui+1]
T and the 4 × 4 complex-valued matrix [C] is given by

[C] =


−iα1 iα1e−α1 H −k −ke−α2 H

ik ike−α1 H α2 −α2e−α2 H

−iα1e−α1 H iα1 −ke−α2 H −k
ike−α1 H ik α2e−α2 H −α2

. (A9)

To derive a dynamic stiffness matrix for element (e, i) we need the transformed stress
equations, which can be developed by Equation (A3):

{σ}(e,i) = [S]{A}, (A10)

where σ(e,i) = [−iσi, −τi, iσi+1, τi+1]
T and

[S] =


−iα2

1(λ + 2µ) + iλk2 (
−iα2

1(λ + 2µ) + iλk2)g1 −2µkα2 2µkα2k g2
2iµkα1 −2iµkα1k g1 µ

(
α2

2 + k2) µ
(
α2

2 + k2)g2
i
(
α2

1(λ + 2µ)− λk2)g1 i
(
α2

1(λ + 2µ)− λk2) 2µkα2 g2 −2µkα2
−2iµkα1 g1 2iµkα1 −µ

(
α2

2 + k2)g2 −µ
(
α2

2 + k2)
 (A11)

with the decaying functions gi = e−αi H , i = 1, 2. We are now in a position to combine
Equations (A8) and (A10) to obtain at a single matrix formulation that expresses the
displacements and stresses at the interfaces. The general dynamic stiffness matrix for any
global domain thus becomes a 4 × 4 complex valued matrix:

[K](e,i){u}(e,i) = {σ}(e,i). (A12)

where [K](e,i) = [S][C]−1. The algebraically complicated and non-symmetric matrix
[K](e,i) is given in Appendix B.

Appendix B

We follow the notation that the element in the ith row and jth column is denoted Kij.
The matrix [K] is, however, not symmetric, but we have K31 = K13, K32 = −K14, K33 = K11,
K34 = −K12, K41 = −K23, K42 = K24, K43 = −K21, and K44 = K22. The remaining elements
of the matrices are as follows:
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K11 = −α2(λ + 2µ)k2
1

((
k2 − α1α2

)2(
e−2(α1+α2)H − 1

)
+ (A13)(

k2 + α1α2

)2(
e−2α1 H + e−2α2 H

))
/D,

K12 = k
{(

k2 − α1α2

)(
(λ + 2µ)α2

1 − 2µα1α2 − λk2
)(

e−(α1+α2)2H + 1
)
+

4α1α2

(
(λ + 2µ)α2

1 − (λ − 2µ)k2
)

e−(α1+α2)H −(
k2 + α1α2

)(
(λ + 2µ)α2

1 + 2α1α2 − λk2
)(

e−2α12H + e−2α2 H
)}

/D, (A14)

K21 = −µk
{(

k2 − α1α2

)(
k2 + α2

2 − 2α1α2

)(
e−2(α1+α2)H + 1

)
+

4α1α2

(
α2

2 + 3k2
)

e−(α1+α2)H +(
k2 + α1α2

)(
k2 + 2α1α2 + α2

2

)(
e−2α1 H + e−2α2 H

)}
/D, (A15)

K22 = µα1k2
2

{(
k2 + α1α2

)(
e−2α1 H − e−2α2 H

)
−
(

k2 − α1α2

)(
e−2(α1+α2)H − 1

)}
/D, (A16)

K13 = 2α2k2
1(λ + 2µ)

{
k2e−α2 H

(
e−2α1 H − 1

)
+ α1α2e−α1 H

(
1 − e−2α2 H

)}
/D, (A17)

K14 = −2α1α2kk2
1(λ + 2µ)

{
e−α1 H

(
e−2α2 H + 1

)
− e−α2 H

(
e−2α1 H + 1

)}
/D, (A18)

K23 = 2µkα1α2k2
2

{
e−α1 H

(
e−2α2 H + 1

)
− e−α2 H

(
e−2α1 H + 1

)}
/D, (A19)

K24 = −2µα1k2
2

{
k2e−α1 H

(
1 − e−2α2 H

)
− α1α2e−α2 H

(
1 − e−2α1 H

)}
/D. (A20)

Here,

D =
(

k2 − α1α2

)2
(exp(−2(α1 + α2)H) + 1)−(

k2 + α1α2

)2
(exp(−2α1H) + exp(−2α2H)) +

8k2α1α2 exp(−(α1 + α2)H) (A21)
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