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Abstract: One of the key applications of the Caputo fractional derivative is that the fractional order
of the derivative can be utilized as a parameter to improve the mathematical model by comparing it
to real data. To do so, we must first establish that the solution to the fractional dynamic equations
exists and is unique on its interval of existence. The vast majority of existence and uniqueness
results available in the literature, including Picard’s method, for ordinary and/or fractional dynamic
equations will result in only local existence results. In this work, we generalize Picard’s method to
obtain the existence and uniqueness of the solution of the nonlinear multi-order Caputo derivative
system with initial conditions, on the interval where the solution is bounded. The challenge presented
to establish our main result is in developing a generalized form of the Mittag–Leffler function that
will cooperate with all the different fractional derivative orders involved in the multi-order nonlinear
Caputo fractional differential system. In our work, we have developed the generalized Mittag–Leffler
function that suffices to establish the generalized Picard’s method for the nonlinear multi-order
system. As a result, we have obtained the existence and uniqueness of the nonlinear multi-order
Caputo derivative system with initial conditions in the large. In short, the solution exists and is
unique on the interval where the norm of the solution is bounded. The generalized Picard’s method
we have developed is both a theoretical and a computational method of computing the unique
solution on the interval of its existence.

Keywords: caputo fractional differential systems; multi-order systems; existence in the large

1. Introduction

Fractional differential equations have various applications in widespread fields of
science, such as engineering [1], chemistry [2–4], biology [5,6], physics [7–9], numerical
analysis [10,11], and others [12,13]. In addition, Caputo fractional differential equations
have the same initial and boundary conditions as the corresponding integer order dynamic
equations. To use the order of the fractional derivative as a parameter to enhance the
model, we need to show that the solution to the Caputo fractional differential equation
exists and is unique on its interval of existence. However, a majority of the theoretical
and computational methods of establishing existence and uniqueness results of dynamic
equations are local existence results only. This includes Picard’s method as well, which is
both a theoretical and a computational method of proving the existence and uniqueness
results for dynamic equations with initial conditions. In this work, we generalize Picard’s
method to provide an existence and uniqueness result in the large for the solution of the
nonlinear multi-order Caputo differential system with initial conditions.

The incorporation of fractional derivatives of order 0 < q < 1 allows for generaliza-
tions of the standard nonlinear system to multi-order systems where each iteration of the
system has its own derivative order. A system of the form
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Dc 0.65x1 = f1(t, x1, x2)

Dc 0.75x2 = f2(t, x1, x2)

would be a simple illustration of a multi-order system. However, the computation of
the solution on its interval of existence is not guaranteed by Picard’s method. In [14],
the authors have established that the fractional order of the derivative can be chosen as a
parameter to enhance the model. With the modeling point in view, in this paper, we develop
an existence result, namely existence in the large, for nonlinear multi-order fractional
systems incorporating the Caputo fractional derivative with respect to time. In [15–17],
the authors developed results for Riemann–Liouville multi-order systems. In their work,
they constructed iterative techniques for various cases of multi-order systems, and their
existence results were developed via upper and lower solution techniques. In [18], existence
in the large was proven for the Caputo fractional reaction diffusion equation by Picard’s
method. In [19,20], the authors studied two and three-order systems of Caputo fractional
differential equations of the same fractional order derivative with initial conditions using
the Laplace transform method.

In this paper, we establish that the solution to the nonlinear multi-order Caputo
differential system exists and is unique on the entire time interval where the norm of the
solution is bounded. This is what is referred to as existence in the large.

A common challenge when working with multi-order systems is that the generalized
exponential function, also known as the Mittag–Leffler function, depends on the order
of the derivatives in question. That is, Dc qEq(λtq) = λEq(λtq) only if the order of the
derivative and the parameter for the Mittag–Leffler function are equal. Overcoming this
challenge requires the construction of a generalized form of the Mittag–Leffler function
that will cooperate with all the fractional derivative orders in the system.

In Section 2, we recall known results of fractional differential equations. In Section 3,
we establish a nice formula for the generalized Mittag–Leffler function which cooperates
with all the different order derivatives of the system and proves its convergence is uniform,
allowing term-by-term fractional calculus operations. In Section 3, we also prove the
existence of a unique solution of the linear Caputo multi-order system and then develop a
comparison theorem. This comparison theorem leads to a Gronwall-type inequality that
we incorporate in the proof of our main result. Our main result is developed in Section 4,
where we establish a generalized Picard’s existence and uniqueness result for the solution
to the nonlinear Caputo multi-order system. Finally, we extend this result from a finite
domain [0, T] for any T, T < ∞ where the solution of the system is bounded. It should
be noted that in biological models, such as population models, the interval of existence
is [0, ∞). On the other hand, the solution to u′ = u2, u(0) = 1 is known to exist on the
interval [0, 1). However, the unique solution of Dc q = u2, u(0) = 1, cannot be computed
easily. Using a comparison theorem, we can establish that the interval of existence for
any q < 1 is at best [0, 1− ε) for small ε, which depends on the value of q. Here the value
of q can be chosen in such a way that our solution matches realistic data. In Section 5,
we develop illustrative numerical results for biological models, involving different-order
Caputo fractional derivatives.

2. Preliminaries

In this paper, we examine existence and uniqueness results for multi-order systems
of Caputo fractional differential equations of orders 0 < q < 1 over the interval J = [0, T].
Our results employ the Caputo form of the fractional derivative given as

Dc qx(t) =
1

Γ(1− q)

∫ t

0
(t− s)−q

( d
ds

x(s)
)

ds,
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for x ∈ C1(J). The corresponding fractional integral is defined as

Iqx(t) =
1

Γ(q)

∫ t

0
(t− s)q−1x(s)ds.

In this section, we recall results regarding the scalar nonlinear Caputo fractional initial
value problem

Dc qx = f (t, x), x(0) = x0, (1)

with t ∈ J and x ∈ C1(J). As seen in [12,21,22], if x ∈ C1(J), then (1) is equivalent to the
fractional integral equation

x(t) = x0 +
1

Γ(q)

∫ t

0
(t− s)q−1 f (s, x)ds.

An important function in the discourse of fractional calculus is the Mittag–Leffler
function which, for parameters α, β ∈ R, is defined as

Eα,β(λtq) =
∞

∑
k=0

(λtq)k

Γ(kα + β)

and is entire for α, β > 0. The one-parameter Mittag–Leffler function defined as

Eα(λtq) = Eα,1(λtq) =
∞

∑
k=0

(λtq)k

Γ(kα + 1)

is a special case of the Mittag–Leffler function that is integral to the study of Caputo frac-
tional derivatives, since Dc qEq(λtq) = λEq(λtq). We refer the reader to [23] for more details.

Our results focus on the nonlinear multi-order N systems of the form

Dc qi xi = fi(t, x), xi(0) = ηi. (2)

where 0 < qi < 1, x = (x1, x2, x3, . . . , xN) and ηi ∈ R for each i ∈ C = {1, 2, 3, . . . , N}.
For simplicity, we will always assume i, or other indices, are in C unless stated otherwise.
For convenience, we will be using the following notation

Dc = ( Dc q1 , Dc q2 , Dc q3 , . . . , Dc qN ), and I = (Iq1 , Iq2 , Iq3 , . . . , IqN ).

Thus, system (2) could be written as

Dc x = f (t, x), x(0) = η,

where η = (η1, η2, η3, . . . , ηN). The notation of multi-order integrals can be cumbersome,
so let Ki(t, s) = 1

Γ(qi)
(t − s)qi−1; additionally, we utilize Ki when writing the Riemann–

Liouville integral. Therefore, we can write
∫ t

0 Ki(t, s)φds to mean the qi integral of any
function φ. It should be noted that the Riemann–Liouville integral and the Caputo integral
of the same order are the same.

In the next section, we develop a generalized Mittag–Leffler function and prove its
uniform convergence and integral properties. From there, we establish a uniqueness result
for a linear multi-order system and develop a Gronwall-style inequality for use in the proof
of uniqueness in our main result for nonlinear systems.
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3. Auxiliary Results

Results for the multi-order system involve a generalized Mittag–Leffler function. This
function is an adjustment of the multi-order generalized exponential as discussed in [16].
Specifically, for t ∈ J and a constant λ ∈ R, we consider

Z(λ, t) =
∞

∑
k1=0

∞

∑
k2=0

∞

∑
k3=0
· · ·

∞

∑
kN=0

(λk1+k2+···kN )(tk1q1+k2q2+···kN qN )

Γ(1 + k1q1 + k2q2 + · · · kNqN)
. (3)

In [16], the functions constructed were generalizations of the two-parameter Mittag–
Leffler function Eqi ,qi , and they proved that the series converged uniformly. Thus, with
only minor alterations, we can establish that Z converges uniformly on J as well. We show
this proof next.

Theorem 1. Z(λ, t) converges uniformly on J, and if λ > 0, then for every i, Iqi Z(λ, t) < 1
λ Z(λ, t)

on J.

Proof. To begin the proof, we define Zi to be the first i sums of Z(λ, t); for example,

Z3 =
∞

∑
k1=0

∞

∑
k2=0

∞

∑
k3=0

(λk1+k2+k3)(tk1q1+k2q2+k3q3)

Γ(1 + k1q1 + k2q2 + k3q3)
.

Thus, with this notation, ZN = Z(λ, t) and Z1 = Eq1(λtq1), implying that Z1 con-
verges uniformly.

We will now prove that Z2 converges uniformly. To do so, we utilize the beta function

B(x, y) =
∫ 1

0
sx−1(1− s)y−1ds

along with its decreasing nature. B(x, y) decreases in x and y for x, y > 0, since if 0 < x1 ≤ x2,
then for s ∈ (0, 1) we have sx1−1 ≥ sx2−1, implying B(x1, y) ≥ B(x2, y). The symmetry of
B establishes its monotonicity in both variables.

Now, if we split off the k2 = 0 term from Z2, we are left with two series: one only in
terms of k1 and another in terms of both k1 and k2 with k2 ≥ 1. The result is shown below:

Z2 =
∞

∑
k1=0

λk1 tk1q1

Γ(1 + k1q1)
+

∞

∑
k1=0

∞

∑
k2=1

(λk1+k2)(tk1q1+k2q2)

Γ(1 + k1q1 + k2q2)
.

The first term above is Z1, which converges uniformly, so we will show that the double
series above converges uniformly.

For t ∈ J and every k1 ≥ 1, k2 ≥ 0, we have

(λk1+k2)(tk1q1+k2q2)

Γ(1 + k1q1 + k2q2)
≤ B(1 + k1q1, k2q2)

(λk1+k2)(Tk1q1+k2q2)

Γ(1 + k1q1)Γ(k2q2)

≤ B(q1, q2)
λk1 Tk1q1

Γ(k1q1)

λk2 Tk2q2

Γ(1 + k2q2)
. (4)

Now we note that the second fraction in line (4) makes up the terms of Eq2(λtq2). Next,
we consider the first fraction, noting that

∞

∑
k1=1

λk1 Tk1q1

Γ(k1q1)
=

∞

∑
k1=0

λk1+1Tk1q1+q1

Γ(k1q1 + q1)
= λTq1 Eq1,q1(λTq1).

Applying these results and the Weierstrass M-test, we find that Z2 converges uniformly
on J.
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The proof that the remaining Zi series converge uniformly follows by similar argu-
ments. We show the details for Z3, exemplifying how the later cases can be developed. We
again start by isolating the k3 = 0 term, yielding

Z3 = Z2 +
∞

∑
k1=0

∞

∑
k2=0

∞

∑
k3=1

(λk1+k2+k3)(tk1q1+k2q2+k3q3)

Γ(1 + k1q1 + k2q2 + k3q3)
.

As we just proved, Z2 converges uniformly, so we focus on the triple series above.
Thus, for t ∈ J, k1, k2 ≥ 0, and k3 ≥ 1, we have

(λk1+k2+k3)(tk1q1+k2q2+k3q3)

Γ(1 + k1q1 + k2q2 + k3q3)

≤ B(1 + k1q1 + k2q2, k3q3)
(λk1+k2+k3)(Tk1q1+k2q2+k3q3)

Γ(1 + k1q1 + k2q2)Γ(k3q3)

≤ B(q1 + q2, q3)
(λk1+k2)(Tk1q1+k2q2)

Γ(1 + k1q1 + k2q2)

λq3 Tk3q3

Γ(k3q3)
.

Similar to previous work, the first fraction makes up the terms of Z2, and the second
fraction makes up the terms of λTq3 Eq3,q3(λTq3). Therefore, by the Weierstrass M-test,
Z3 converges uniformly on J. Continuing this process, we can prove that every Zi converges
uniformly, including the final step, which will give us that ZN , that is Z(λ, t), converges
uniformly on J. Since N is fixed and finite in this case, we can employ the above steps
exhaustively; however, we can also inductively prove that ZN will converge uniformly for
all N by utilizing the same steps.

Since convergence is uniform, we can take the fractional integral of the series term by
term. To evaluate the fractional integral, we consider i = 1 for simplicity and note that the
same result will hold for every i.

Iq1 Z(d, t) =
∞

∑
k1=0

∞

∑
k2=0

∞

∑
k3=0
· · ·

∞

∑
kN=0

(λk1+k2+···kN )(t[k1+1]q1+k2q2+···kN qN )

Γ(1 + [k1 + 1]q1 + k2q2 + · · · kNqN)

=
∞

∑
k1=1

∞

∑
k2=0

∞

∑
k3=0
· · ·

∞

∑
kN=0

(λ[k1−1]+k2+···kN )(tk1q1+k2q2+···kN qN )

Γ(1 + k1q1 + k2q2 + · · · kNqN)
. (5)

Note that the sum in the second line of (5) is missing the k1 = 0 term and, provided
λ > 0, this term will be positive. Further, since the calculation found in (5) will hold for
all i, we can say that Iqi Z(λ, t) < 1

λ Z(λ, t).

Now we look at the homogeneous linear multi-order system with constant coefficients

Dc x = Ax, x(0) = η, (6)

where A is a real valued N × N matrix. Denoting the terms of A = (ai,j), we can equiva-
lently write (6) as

Dc qi xi =
N

∑
k=1

ai,kxk, xi(0) = ηi.

Many of our future results depend on the value of T from the interval J = [0, T].
To conveniently carry out these results, define τ as the constant

τ =

{
T if T ≥ 1,
1 if T < 1.

(7)

This constant is used frequently in our upcoming results, since tqi ≤ τ for all i, and
t ∈ J for any value of T.
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In the following proof that the linear system has a unique solution, we utilize Cacciop-
poli’s extended Banach Contraction Mapping Principle, which we state below.

Theorem 2. Let (X, d) be a complete metric space, and let f : X → X be a mapping such that for
each n ≥ 1, there exists a constant cn such that

d( f n(x), f n(y)) ≤ cnd(x, y),

for all x, y ∈ X, where ∑∞
n=1 cn < ∞. Then, f has a unique fixed point.

We direct the reader to [24,25] for more details, including the proof. Now we will
use this contraction mapping principle to prove that system (6) has a unique solution.
Unless stated otherwise, we use the sum norm in our results, that is, ‖x‖ = ∑N

i=1 |xi|.

Theorem 3. The linear system (6) has a unique solution on J, and the successive approximations

xn+1 = x0 + I(Axn), x0 = η (8)

converge uniformly to the solution.

Proof. Let J (x) be the mapping

Ji(xi) = ηi +
∫ t

0
Ki(t, s)

N

∑
k=1

ai,kxk ds.

For simplicity, let M = maxi,j |ai,j|, then

∣∣Ji(xi)−Ji(yi)
∣∣ = ∣∣∣ ∫ t

0
Ki(t, s)

N

∑
k=1

ai,k(xk − yk) ds
∣∣∣

≤ MN‖x− y‖
Γ(qi)

∫ t

0
(t− s)qi−1ds

=
MNtqi

Γ(qi + 1)
‖x− y‖ ≤ MNτ

Γ(qi + 1)
‖x− y‖.

Similarly, ∣∣J 2
i (xi)−J 2

i (yi)
∣∣

=
∣∣∣ ∫ t

0
Ki(t, s)

N

∑
k=1

ai,k
(
Jk(xk)−Jk(yk)

)
ds
∣∣∣

=
∣∣∣ ∫ t

0
Ki(t, s)

N

∑
k=1

ai,k

∫ s

0
Ki(s, v)

N

∑
k=1

ai,j(xj − yj)dvds
∣∣∣

≤ M2N2‖x− y‖
∫ t

0
Ki(t, s)

( ∫ s

0
Ki(s, v)dv

)
ds

=
M2N2t2qi

Γ(2qi + 1)
‖x− y‖ ≤ M2N2τ2

Γ(2qi + 1)
‖x− y‖.

Continuing the process inductively, we can show that for all n,

∣∣J n
i (xi)−J n

i (yi)
∣∣ ≤ MnNnτn

Γ(nqi + 1)
‖x− y‖,
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therefore, for all n,

∥∥J n(x)−J n(y)
∥∥ ≤ ‖x− y‖

N

∑
k=1

MnNnτn

Γ(nqk + 1)
,

and since Eqi (MNτ) converges uniformly for every i, we obtain

∞

∑
n=1

N

∑
k=1

MnNnτn

Γ(nqk + 1)
=

N

∑
k=1

Eqk (MNτ).

Therefore, the mapping J has a unique fixed point by Theorem 2, implying (6) has a
unique solution.

The succeeding inequality properties help us prove uniqueness in our main result.

Corollary 1. The solution to (6) satisfies the inequality

‖x‖ ≤ ‖η‖
[
1 + 2MNτ

N

∑
k=1

Eqk (MNτ)
]
,

where M = maxi,j |ai,j|.

Proof. From Theorem 3, the sequence of successive approximations

xn+1 = J (xn) = x0 + I(Axn), x0 = η

converges uniformly, and since xn = x0 + ∑n
k=1(xk − xk−1) for all n, the series

∑∞
k=1(xk − xk−1) also converges uniformly. Now, note from the previous proof we have

‖x2 − x1‖ =
∥∥J (x1)−J (x0)

∥∥ ≤ ‖x1 − x0‖
N

∑
k=1

MNτ

Γ(qk + 1)
.

Similarly,

‖x3 − x2‖ =
∥∥J (x2)−J (x1)

∥∥ =
∥∥J 2(x1)−J 2(x0)

∥∥
≤ ‖x1 − x0‖

N

∑
k=1

M2N2τ2

Γ(2qk + 1)
;

continuing this process inductively, we can show that

‖xn − xn−1‖ ≤ ‖x1 − x0‖
N

∑
k=1

MnNnτn

Γ(nqk + 1)

for all n. Now let us consider ‖x1 − x0‖; for each i,

|x1i − x0i| ≤
∫ t

0
Ki(t, s)

n

∑
k=1
|ai,kηk|ds

≤ N‖η‖ Mτ

Γ(qi + 1)
< 2N‖η‖Mτ,

since 1
Γ(qi+1) < 2 for each i. Thus, we have

‖x1 − x0‖ < 2‖η‖NMτ,
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leading to

‖xn − xn−1‖ < 2‖η‖MNτ
N

∑
k=1

MnNnτn

Γ(nqk + 1)

for all n; since convergence is uniform, we have

∞

∑
k=1
‖xn − xn−1‖ ≤ 2‖η‖MNτ

N

∑
k=1

Eqk (MNτ).

This directly yields

‖x‖ ≤ ‖η‖
[
1 + 2MNτ

N

∑
k=1

Eqk (MNτ)
]
,

which completes the proof.

Remark 1. We note that Corollary 1 implies that if η = 0, then x = 0 on all of J.

Next, we develop a comparison theorem that provides conditions for when inequalities
are preserved from original integral inequalities. This theorem is utilized in the uniqueness
proof of our generalized Picard’s method.

Theorem 4. Let y, z ∈ C1(J) satisfy the inequalities

y ≥ η + I(Ay), y(0) ≥ η, (9)

z ≤ η + I(Az), z(0) ≤ η, (10)

then z ≤ y on J.

Proof. To begin, suppose the inequalities in (10) are strict inequalities; we show in this case
that z < y. To prove this, suppose to the contrary that the set

Λ =
N⋃

i=1

{t ∈ J : yi(t) ≤ zi(t)}

is non-empty. Let λ = inf(Λ). Since z(0) < y(0) and both are continuous over J, we can
conclude that zi(λ) = yi(λ) for some i and that λ > 0. Therefore, since λ is the infimum of
Λ and z ≤ y on [0, λ], ∑N

k=1 aikzk ≤ ∑N
k=1 aikyk on [0, λ]. Then,

∫ λ

0
Ki(λ, s)

N

∑
k=1

aikzk ds > zi(λ)− ηi = yi(λ)− ηi

≥
∫ λ

0
Ki(λ, s)

N

∑
k=1

aikyk ds

≥
∫ λ

0
Ki(λ, s)

N

∑
k=1

aikzk ds,

which is a contradiction. Therefore, z < y on J.
Now we will prove that z ≤ y when the inequalities are not strict. Define the function

zε for each i as zε i = zi − εϕ, where ϕ = Z(2MN, t) as defined in (3). Then note that, since
φ(0) = 1, for each i,

zε i(0) = zi(0)− ε < ηi.
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Then for each i,

zε i − ηi + εϕ ≤
∫ t

0
Ki(t, s)

N

∑
k=1

ai,kzk ds

=
∫ t

0
Ki(t, s)

N

∑
k=1

ai,k
[
zεk + (zk − zεk)

]
ds

≤
∫ t

0
Ki(t, s)

N

∑
k=1

[
ai,kzεk + Mεϕ

]
ds

<
∫ t

0
Ki(t, s)

N

∑
k=1

ai,kzεk ds +
εϕ

2
.

The final inequality comes from Theorem 1, which implies Iqi ϕ < 1
2MN ϕ. This then

implies that

zε i < ηi +
∫ t

0
Ki(t, s)

N

∑
k=1

ai,kzεk.

Then by the previous case with strict inequalities, we have that zε < y on J. Then letting
ε→ 0, we obtain z ≤ y on J.

In the next section, we employ these results to prove existence in the large for
system (2).

4. Main Result

What follows is a generalized Picard’s existence for system (2), which is then extended
to existence in the large.

Theorem 5. Assume f is continuous on the rectangle S where

S =
{
(t, x) | t ∈ [0, T], ‖x‖ < ∞

}
for some finite positive real number T. Further suppose f attains the Lipschitz condition

| fi(t, x)− fi(t, y)| ≤ L
N

∑
k=1
|xk − yk| (11)

on S. Then (2) has a unique solution on [0, T], and the successive approximations

(xn+1)i = x0i +
∫ t

0
Ki(t, s) fi(t, xn) ds, x0i = ηi (12)

exist on [0, T] and converge uniformly to a solution x of (2).

Proof. First, we note that for all n ≥ 1 we have

xn = x0 +
n

∑
k=1

(xk − xk−1).

Therefore we utilize the Weierstrass M-test to show that the series ∑∞
k=1(xk − xk−1)

converges absolutely and uniformly, which in turn shows that (xn) converges uniformly.
The successive approximations described in (12) are defined on [0, T], and since f is
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continuous on S, there exists a positive constant M such that ‖ f (t, x0)‖ ≤ M for all
t ∈ [0, T]. Then note

|x1i − x0i| ≤
1

Γ(qi)

∫ t

0
(t− s)qi−1‖ f (s, x0)‖ds ≤ Mtqi

Γ(qi + 1)

for t ∈ [0, T] and for all i. This implies that

‖x1 − x0‖ ≤ M
N

∑
k=1

tqk

Γ(qk + 1)
.

Then

|x2i − x1i| ≤
1

Γ(qi)

∫ t

0
(t− s)qi−1| fi(s, x1)− fi(s, x0)|ds

≤ L
Γ(qi)

∫ t

0
(t− s)qi−1‖x1 − x0‖ ds

≤ ML
Γ(qi)

∫ t

0
(t− s)qi−1

N

∑
k=1

sqk

Γ(qk + 1)
ds

= ML
N

∑
k=1

tqk+qi

Γ(qk + qi + 1)
.

Thus,

‖x2 − x1‖ ≤ ML
N

∑
k1=1

N

∑
k2=1

tqk1
+qk2

Γ(qk1 + qk2 + 1)
.

For simplicity, let σi = qki
; continuing the previous process inductively, we can show

‖xn − xn−1‖

≤ MLn−1
N

∑
k1=1

N

∑
k2=1

N

∑
k3=1
· · ·

N

∑
kn=1

tσ1+σ2+···σN

Γ(1 + σ1 + σ2 + · · · σn)

≤ MLn−1
N

∑
k1=1

N

∑
k2=1

N

∑
k3=1
· · ·

N

∑
kn=1

τn

Γ(1 + σ1 + σ2 + · · · σn)
(13)

for all n ≥ 2, since tσi ≤ τ for each i as defined in (7).
Now, in the direction of finding a bound on the above sums, let ρ = mini∈C{qi} and

note that 1
Γ(z) is decreasing for real numbers z ≥ 2. Further note that there exists a W > 0

such that 1 + ∑n
i=1 σi ≥ 2 for all n ≥W. Therefore, we have that

1
Γ
(
1 + ∑n

i=1 σi
) ≤ 1

Γ(1 + nρ)
, for all n ≥W.

Applying these results to the sums in (13), for n ≥W, we get

‖xn − xn−1‖ ≤
MLn−1Nnτn

Γ(1 + nρ)
.

The bounds above describe the terms of the convergent series M
L Eρ(LNτ). Therefore,

by the Weierstrass M-test, the series ∑∞
n=1(xn − xn−1) converges absolutely and uniformly

on [0, T] and, in turn, xn converges uniformly on J. Therefore, letting x = lim xn and noting
the convergence is uniform we obtain

x = x0 + I f (t, x),
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implying this limit is a solution to (2). Now we wish to show this solution is unique, so let
y be another solution to (2), and let z be defined as zi = |xi − yi| for each i. Now note that
z(0) = 0 and

zi ≤
∫ t

0
Ki(t, s)

∣∣ fi(t, x)− fi(t, y)
∣∣ ds ≤

∫ t

0
Ki(t, s)L

N

∑
k=1

zk ds

for each i. Now let x̂ be the solution to the linear system

Dc x̂ = Lx̂, x̂(0) = 0,

where L is the N × N matrix in which every entry is L. Then we have

z ≤ I(Lz), x̂ = I(Lx̂), and z(0) ≤ x̂(0).

Then by Theorem 4, z ≤ x̂; thus, by Remark 1, and since z ≥ 0, we have that
‖z‖ ≤ ‖x̂‖ = 0, implying that the solution to (2) is unique.

This result extends naturally to an existence in the large result given below. We
note that we only extend this result to the positive t-axis due to the nature of fractional
differential equations.

Theorem 6. Assume f is continuous and satisfies the Lipschitz condition (11) on each rectangle
Sλ for each λ where

Sλ =
{
(t, x) | t ∈ [0, λ], ‖x‖ < ∞

}
.

Then system (2) has a unique solution existing for all t.

This follows directly from the application of Theorem 5, as its hypotheses will be
satisfied on each Sλ.

5. Applications

In this section we construct illustrative numerical examples of the generalized Picard’s
method developed in Theorem 5. All computations and graph constructions were done with
Python 3.9.6 on a 64-bit Windows 10 machine with a 3.4 GHz 6-core processor and 16 GB of
RAM. We investigate the epidemic model studied in [20], first showing that the method
applies to the single-order system and then expanding to illustrate the multi-order case.

The SIR model considered in this work was

Dc qS(t) = −βS(t)I(t), S(0) = L1,

Dc q I(t) = βS(t)I(t)− γI(t), I(0) = L2,

Dc qR(t) = γI(t), R(0) = L3,

where β is the contact rate, and γ is the recovery rate. S(t) is the susceptible population,
I(t) is the infected population, and R(t) is the population recovered from the disease.
The authors assumed that the birth and death rates were the same for the small period of
the epidemic. It is further assumed that there is no immigration and that the recovered
population is immune to the disease, yielding a constant population. The authors of [20]
utilized β = 0.01, γ = 0.02, L1 = 20, L2 = 10, and L3 = 5 and examined values of
q ∈ {0.8, 0.85, 0.9, 0.95, 1}. For the sake of comparison, we utilized the same values in our
approximations. The numerical method employed computes the successive approximations
from (8) up to x99 with x0 = (20, 10, 5).

The graphs in Figure 1 show the numerical results of the generalized Picard’s method,
and we find them reasonably close to results found in [20]. The computation speeds for
these approximations averaged 7.762 s.
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Figure 1. Solution curves for single-order systems.
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For the second example, we extend the above system to the following multi-order system

Dc q1 S(t) = −βS(t)I(t), S(0) = L1,

Dc q2 I(t) = βS(t)I(t)− γI(t), I(0) = L2,

Dc q3 R(t) = γI(t), R(0) = L3,

utilizing the same constants as before but now considering the following fractional deriva-
tive order groups

Q1 = (0.8, 0.7, 0.8) Q2 = (0.8, 0.8, 0.7) Q3 = (0.8, 0.9, 0.9)

Q4 = (0.7, 0.8, 0.9) Q5 = (0.7, 0.9, 0.8).

These orders are chosen to illustrate the behavior of the multi-order case, which
exemplifies how various orders can be chosen to better fit certain data. The approximations
are computed in the same way as before, up to x99. The computation time for the second
example averaged 7.819 s. The results of the second example are shown in Figure 2.
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Figure 2. Solution curves for multi-order systems.

Concluding Remarks: In this work, we developed Picard’s method to prove the exis-
tence and uniqueness of the solution to multi-order Caputo systems with initial conditions.
The advantage of the multi-order system is that the order of the derivatives can be used as
a parameter to make the solution closer to the data available for any mathematical model
compared with the integer order or Caputo fractional system of the same order. We note
that if the goal is to find the best fit for the approximations, i.e., the ideal orders, then,
unfortunately, this can only be done via trial and error at this time. Determining an analytic
way to find the optimal order is still an open problem and something we wish to study in
the future.

In [26,27], the authors studied sequential Caputo fractional differential equations and
their applications. It should be noted that the solution to the sequential Caputo differential
equations can be reduced to a Caputo fractional differential system. The Caputo fractional
linear system with constant coefficients and initial conditions can be solved using the
Laplace transform method. The explicit and numerical computation of the linear system
is essential to solving the corresponding nonlinear system by any iterative method. We
plan to explore the explicit and numerical computation of the Caputo multi-order linear
system. This will pave the way to developing iterative methods to solve nonlinear systems
combined with upper and lower solutions.
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