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Abstract: Background: The effects of the use of continuous glucose monitoring (CGM) in elite
endurance athletes are unclear. This case study reported the blood glucose (BG) levels of a female
national-level marathon runner during a real-world marathon race. Methods: Heart rate and BG
levels were monitored throughout the race. Results: The runner completed the race in 2:46 h:min,
which was an improvement from her previous personal record by just under one min. Her BG levels
were stable from approximately 5–40 km of the race at a mean concentration of 7.13 mmol/L, with
a standard deviation of 0.20 mmol/L and a coefficient of variation of 2.8%. Increases in BG levels
and heart rate were observed 6 min after the race and during the 40–42.195 km section, respectively.
Conclusions: The runner broke her own record and exhibited stable BG levels throughout the race,
with the highest BG value detected immediately after the race. Considering that quantity, content,
and timing of pre-race meals and supplementation during the race can affect BG levels, future studies
should assess additional detailed parameters in more detail and monitor multiple races with the
same elite endurance athletes to acquire more definitive evidence on CGM usefulness among elite
endurance athletes.
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1. Introduction

Continuous glucose monitoring (CGM) has been attracting an increasing amount of
interest among elite endurance athletes as a tool for evaluating the necessary carbohydrate
intake during races and the effects of endurance training [1,2]. For instance, the NN
Running Team and Eliud Kipchoge, who is the world’s fastest marathon runner, have
entered a contract with Abbott, a CGM manufacturer [3]. There is a growing body of
research evidence regarding the use of CGM in non-athlete populations [2,4,5]. For example,
a previous study reported that an educational module utilizing CGM was effective in
improving exercise motivation [4]. Another study compared hunger training using CGM
with fingerprick glucose monitoring in obese subjects and concluded that either method
of measuring blood glucose (BG) was effective for learning to eat based on hunger [5].
However, because of limited studies focused on elite endurance athletes, the scientific value
of using CGM to target this population remains unclear.

The history of research on BG levels during marathon races dates back approximate-ly
100 years. One of the pioneering studies in this field was conducted by Levine et al. [6],
in which they examined the relationship between physical condition at the finish of the
Boston Marathon and plasma glucose levels in 11 runners. They found intriguing patterns
of plasma glucose levels with respect to the general post-race physical conditions of the
runners. Specifically, the plasma glucose levels of the winner were within the typical
range and his condition was good. In contrast, the physical condition of the runners who
exhibited lower post-race plasma glucose levels was poor, characterized by symptoms
such as asthenia and pallor. The following year, this group investigated the effects of
implementing strategies for carbohydrate intake before and during the race in the runners
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who completed the previous year’s race and found that the plasma glucose levels were
below the normal range [7]. As a result, the runners could prevent hypoglycemia and
improve their general physical condition and race performance. Previously, 30 years ago,
to understand the causes of running speed (RS) reduction during marathon races, research
was conducted to identify the cause of late-race impaired running performance, specifically,
the severe impairment known as “hitting the wall” [8]. Notably, they reported that 7 of
11 runners who “hit the wall” had reduced plasma glucose concentrations. These early
studies made an important contribution to demonstrating the importance of preventing
hypoglycemia during marathon races.

Previous studies using CGM in endurance sports have focused mainly on ultrama-
rathon races [9–13]. To the best of the author’s knowledge, scientific papers examining the
monitoring of BG using CGM during marathon races are limited to a single case study of a
recreational male runner [14]. That case study monitored BG five times during a marathon
race in the same runner and reported that superior race performance was observed for a
flat BG pattern, whereas the RS gradually decreased and the race performance worsened in
the case of a pattern of descending BG. Based on these results, those authors concluded that
CGM is a useful tool for monitoring glucose fluctuations during long-distance running.

Despite the great interest in, and enthusiastic marketing of CGM in the context of
elite endurance sports, there is a paucity of scientific evidence about CGM’s usefulness
among elite endurance athletes. To address this gap, the present case study reports on the
monitoring of BG during a marathon race in a female national-level marathon runner.

2. Materials and Methods
2.1. Participant

This case study employed a performance-analysis approach to investigate the per-
formance of an experienced national-level female marathon runner. The runner had over
20 years of running training experience and had participated in more than 20 marathon
races, with a personal record of 2:47 h:min. Prior to the target marathon race, the runner
maintained a high level of training volume, i.e., 520 km/month. The study was ethically
approved by the Human Ethics Research Board of the Public Health Research Foundation
(No. 23A0002) and was conducted in accordance with the principles of the Declaration
of Helsinki.

2.2. Measurements

The target race for this study was the Tokyo Marathon 2023, which was held on
5 March 2023. The performance indicators used for the analysis were RS, BG, heart rate
(HR), and cardiac cost. The RS was obtained from the official website. BG was measured us-
ing the FreeStyle Libre sensor (Abbott Diabetes Care, Alameda, CA, USA) that was inserted
into the subcutaneous tissue of the upper arm 2 days before the race. The amperometric
sensor continuously measured glucose concentration in the interstitial fluid and stored
glucose levels every 15 min for up to 8 h. The stored data were read using the FreeStyle
Libre reader device (Abbott Diabetes Care, Alameda, CA, USA) and were downloaded on a
PC using the FreeStyle Libre software (version 1.0). Because CGM measures glucose concen-
tration in the interstitial fluid, there is a time lag of 5–10 min from actual BG levels [15,16].
The BG in mg/dL was converted to mmol/L by multiplying by 0.0555. HR was measured
using an arm-worn HR monitor (Polar Verity Sense; Polar Electro, Kempele, Finland) with
a sampling frequency of one reading. Cardiac cost was calculated by dividing HR by RS
based on previous studies [17,18]. The RS and HR were averaged for every 5 km segment
(for the 40–42.195 km, calculated for 2.195 km) [18,19].

3. Results

The runner’s finishing time of 2:46 h:min represented an improvement of just under
one min from her personal record. Table 1 presents the RS, HR, and cardiac cost (HR/RS)
data recorded in each section of the race. The runner adopted a negative pacing strategy,
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with the first half completed in 1:23 h:min and the second half completed in 1:22 h:min.
The highest RS and HR values (peak HR: 171 bpm) were observed between 40 km and
42.195 km. The RS exhibited a low coefficient of variation (CV) of 1.0%, indicating a constant
pace during the race.

Table 1. Running speed, heart rate, and cardiac cost during the marathon race. Running speed
and heart rate are averaged values. Cardiac cost is calculated by dividing the heart rate by the
running speed.

Segment Running Speed
(km/h)

Heart Rate
(bpm)

Cardiac Cost
(bpm/km/h)

0–5 15.2 152 10
5–10 15.2 153 10.1
10–15 15.1 154 10.2
15–20 15.1 152 10.1
20–25 15.2 156 10.2
25–30 15.2 156 10.3
30–35 15.4 160 10.4
35–40 15.2 162 10.6
Last 15.6 166 10.7

Figure 1 displays the BG levels before, during, and after the race. The BG levels
were stable from ~5 to 40 km (0:23–2:38) of the race, at a mean of 7.13 mmol/L, standard
deviation of 0.20 mmol/L, and CV of 2.8%. The highest BG levels were observed 6 min
after the race, at 8.77 mmol/L.
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Figure 1. Changes in blood glucose levels before, during, and after the race. There is a time lag of
5–10 min from actual blood glucose levels.

4. Discussion

This case study provides novel data regarding the behavior of BG in a female elite
(national level) runner during a real-world marathon race.

The BG was stable from ~5 to 40 km of the race. The results suggest that higher or
sustained BG levels throughout the race indicate successful prevention of hypoglycemia [1].
In addition, the highest BG value was observed 6 min after the race ended. Considering
that a delay of 5–10 min exists between the actual BG levels and the recorded CGM glucose
levels [15,16], this may reflect a sympathetic activation that occurs during the end spurt of
the race, resulting from glycogen breakdown in the liver [20]. In fact, the highest RS and
HR values were observed for the 40–42.195 km part of the race (as shown in Table 1). Even
though the runner did not ingest sufficient carbohydrates during the race (estimated to
be less than 30 g of carbohydrate), it is likely that the runner had residual liver glycogen
that was used during the final phase of the race; however, there are no scientific data to
confirm this.

Our study detected higher BG levels before and after the start of the race. Because
the present study did not quantify the carbohydrate intake before and during the race, a



BioMed 2023, 3 390

detailed analysis could not be performed. Anecdotally, the runner ate Castella (Japanese
sponge cake made of sugar, flour, and eggs) until about an hour before the race.

Because of the nature of the study design, a causal relationship between BG and
race performance cannot be discussed. Nevertheless, the participant achieved a superior
performance by breaking her personal record in the race, and the changes in RS and HR
observed during the race were consistent with those of a superior race performance, as
reported by previous studies [18,19,21]. Hence, it is reasonable to suggest that the BG
pattern observed in this study was linked to the superior performance of this athlete.

The limitations of the present study were that evaluations were conducted only once
during the race, the lack of a detailed evaluation of pre-race nutrition and training sta-
tus, and not conducting a physiological test (i.e., maximal oxygen uptake and running
economy test). The results of previous studies examining the relationship between BG
pattern and endurance performance are inconsistent, and this is probably related to various
factors including quantity, content, timing of pre-race meals, supplementation during the
race [22–24], fitness levels [20], and race and/or ethnicity [25]. Thus, it will likely provide
more valuable information to assess additional parameters in more detail and conduct
measurements across multiple races with the same subjects.

5. Conclusions

In conclusion, the female elite runner who broke her own record in the marathon
exhibited mostly stable BG levels during the race, with the highest BG value being detected
immediately after the race. To determine the usefulness of CGM in elite endurance sports,
further studies are recommended.
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