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Abstract: Even with significant developments in nanoscience, relatively little is known about the
interactions of nanocrystal semiconducting materials with bio-macromolecules. To investigate
the interfacial phenomena of cadmium selenide quantum dot (CdSe QD) nanocrystals with pro-
teins extracted from Moringa oleifera seeds, different concentrations of cadmium selenide quantum
dots–Moringa oleifera seed protein (CdSe–MSP) complexes were prepared. Respective CdSe QDs with
hexagonal phase and crystalline size in the range of 4–7 nm were synthesized and labelled with the pu-
rified mesoporous MSP having a surface area of 8.4 m2/g. The interaction mechanism between CdSe
QDs and MSP was studied using UV–Vis absorption, fluorescence emission and Fourier Transform
Infrared spectroscopies. The UV–Vis absorption spectra showed absorption bands of CdSe–MSP
complexes at 546.5 nm. The fluorescence intensity of CdSe QDs was found to decrease with in-
creasing concentration of MSP. The thermodynamic potentials ∆Hθ (−321.3 × 103 Jmol−1); ∆Sθ

(156.0 JK−1mol−1) and ∆Gθ (−46.6 × 103 Jmol−1) were also calculated. The stability of the complex
found is strongly influenced by electrostatics interaction and surface-bound complexation equilib-
rium attraction. This information can help to elucidate the surface characteristics of MSP and its
potential interactions with other molecules or nanoparticles.

Keywords: Moringa oleifera protein; cadnium-selenium nanocrystals; quenching; luminescence;
Stern–Volmer equation

1. Introduction

Quantum dots (QDs) are semiconductor nanoparticles with unique electronic and op-
tical properties, which make them attractive for various applications, including electronics,
optoelectronics, and biotechnology [1]. As a result, QDs have important applications in bio-
logical fluorophores imaging, tracking, and sensing. When QDs enter living systems, they
first encounter proteins. The interactions between proteins and QDs significantly influence
the structures and functions of the proteins, as well as the performance of the QDs [2]. It
has been shown that the interaction of QDs with biological molecules can enhance optical
properties and their stability, or may conversely lead to their degradation [2,3]. However,
the potential toxicity of these nanoparticles raises concerns about their safety for human
health and the environment. The usage of Cd-based quantum dots may result in toxicity
problems, including cytotoxicity, environmental toxicity, and bioaccumulation. The toxicity
of Cd-based quantum dots varies depending on factors such as concentration, exposure
time, and physico-chemical properties [4]. The main classification criteria for quantum dots
are their core type, shape, structure, size, and ligands [5]. Due to material degradation,
core-only quantum dots have been proven to be unstable [6]. Exposure to an oxidizing
environment weakens the selenide layer on the surface of core-type quantum dots [7]. This
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causes leakage of cadmium ions from quantum dots, such as CdSe QDs. The toxicity of
cadmium quantum dots may be caused by the hazardous cadmium ions they contain. To
make secure QDs for widespread use, we need advanced surface components to prevent
any core leakage. Recently, there has been a significant amount of research conducted on
the implementation of an additional shell layer on the surface of Cd/Se quantum dots [8,9].
Adding a second shell layer, like a ligand, decreases the oxidation of Se and reduces the
leakage of Cd ions [10]. The presence of ligands on the shells of quantum dots (QDs)
enhances the stability of the QD dots. Although researchers have found that the shell
and ligands of QDs can reduce toxicity by preventing core material leakage, some leakage
can still occur [11]. For instance, protein levels may drop below ideal levels for critical
biological functions because of the creation of QD clusters. It is important to study how
proteins and QDs interact to understand the overall effects of QDs on cells and tissues
by understanding the physico-chemical properties of the protein-metal-based quantum
system [7]. A study recently published by Shivaji et al. [4] found that coating the Cd-based
QDs with protein can prevent the core CdS QDs from photo-corrosion, hence preventing
the release of harmful Cd ions into the environment. The study used tea leaf extract, which
is a practical method, to biofunctionalize the active surface of CdS QDs. According to the
study, the chlorophyll/polyphenol moieties shielded the CdS QDs from photo-corrosion
and stopped the leaching of the Cd2+ ions. The use of Cd-based quantum dots in water
treatment has the potential to have negative environmental effects, which can be lessened
with this strategy. However, more research is needed to understand and address the poten-
tial risks of using Cd-based quantum dots in water treatment. This is necessary to ensure
their safe and sustainable use. Thus, studies on the interactions between QDs and proteins
can provide a theoretical basis for the design, efficient application, and safety evaluation
of QDs.

Moringa oleifera is a tropical plant that is widely used for its nutritional and medici-
nal properties. It has been shown to have coagulation properties, and cationic proteins
extracted from its seeds have been used as a natural coagulant for water treatment [12–14].
Proteins extracted from the seeds of Moringa oleifera are of low molecular mass and are
known to be effective agents in water treatment [12,13]. Previous studies have shown that
Moringa seed proteins (MSP) exhibit peculiar properties, some of which include surface
activity [15,16], conformational stability over a wide range of pH and ionic strength [17],
proteins charge reversal by surfactant [18], adsorption and desorption depending on the
surface type [19–25], amino acid composition [23], inducement of dense floc structures and
high fractal dimensions [26] and recovery of cationic precious metals [27]. The solution acts
as a natural cationic polyelectrolyte during wastewater treatment [28,29]. Recently, Thanki
et al., 2022 [30] investigated the effect of various operational parameters of MSP, such as
coagulation-flocculation pH (2–10), coagulant dosage (0.1–1.0 g L−1), optimized operational
conditions and sedimentation kinetics. They suggested that MSP can be employed as a
promising coagulant for municipal wastewater with improved treatment efficiencies.

Despite many studies on the interaction of QDs with biological molecules [31], there
has not been any investigation on the interactions between Moringa oleifera seed proteins
(MSP) with QDs emanating from their respective unique properties’ applications, artic-
ulated above, and (potential) more diverse applications. Thorough investigations are
required to examine several parameters that influence the interaction mechanisms of quan-
tum dots (QDs), including their size, surface charge, and structure. These investigations are
crucial to uncover the evident prospective uses of QDs. Moreover, despite the remarkable
studies done on nanocrystal QDs, little is known about the surface modification and the
interaction mechanism of nanoparticles with macromolecules [32,33]. QD–protein hybrid
bioconjugation at an atomic level has been studied for dihydrolipic acid (DHLA) capped
CdSe/ZnS core/shell QDs with maltose-binding protein in the gas phase using ab initio
and ONIOM methods (which include the IMOMM and IMOMO methods) as a potential
candidate for enhanced light harvesting efficiency through theoretical investigation [34].
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When CdSe quantum dots interact with cationic proteins extracted from Moringa
oleifera seeds in water treatment, several processes may occur. One of the potential mech-
anisms is an electrostatic attraction between the positively charged cationic proteins and
the negatively charged CdSe quantum dots. This attraction can lead to the formation of
complexes between the two, which can affect the stability, aggregation, and reactivity of
the nanoparticles [33]. When employing MSP for water treatment, a disadvantage is that
the organic compounds and other substances extracted during the process can serve as a
favourable food supply for bacteria, leading to rapid water contamination [35]. To eliminate
this problem, the photocatalytic properties of the quantum dots can be considered, as they
may be able to destroy the bacteria. Thus, labelling the MSP with a photocatalyst semicon-
ductor, such as cadmium selenide quantum dots (CdSe QDs), may solve the problem of
bacterial accumulation in water. It is known that proteins can chemically bind to many
different surfaces as biomarkers [19–25]. When QDs are used as biomarkers, especially for
in vivo bio-labelling, the interactions between small biomolecules in the biosystem and
the surface of QDs may influence the efficiency of the electron-hole recombination pro-
cess [3,36], leading to higher photocatalysis activity of the QDs. It is also important to bear
in mind the possible toxicity of the protein–QDs system in water treatment applications.

This study focuses on the interactions of MSP with CdSe QDs, here referred to as the
CdSe–MSP complex. The use of cationic proteins extracted from Moringa oleifera seeds
as a model protein in the study of the interaction with CdSe quantum dots is a valid
approach to understanding the physico-chemical properties of the protein–nanoparticle
system. The investigation of the interactions between CdSe QDs and MSP involved various
experimental techniques to characterize the physico-chemical properties of the complex
system. Brunaver–Emmett–Teller (BET), Transmission electron microscopy (TEM), scanning
electron microscope–Energy-dispersive X-ray spectroscopy (SEM–EDX), X-ray diffraction
(XRD), UV–Vis, Fluorescence (FL) and the Fourier transform infrared (FTIR) spectroscopies
techniques were employed in this research to obtain a comprehensive understanding of the
physico-chemical properties and mechanisms involved in the interaction between natural
proteins and CdSe QDs. This information can be useful for the development of safer and
more efficient QDs for various applications.

2. Materials and Methods
2.1. Chemicals Used

All chemicals and solvents were used as received without further purification and
these were a stock solution of cadmium acetate dehydrate (CH3COO)2Cd·2H2O, ≥98%,
Merck, Johannesburg, SA), highly pure selenium powder (Se, 99.99% HPLC), trioctyl-n-
phosphene oxide (TOPO, 99%, Aldrich), trioctylphosphine (TOP, 97%, Aldrich), hexadecyl
amine (HDA, 98%, Aldrich), tetradecyl-phosphonic acid (TDPA, 97%, Aldrich), all from
Aldrich, Johannesburg, South Africa. Octadecene (ODE, 90%, Merck, Johannesburg, South
Africa), methanol, sodium chloride (NaCl), petroleum ether, ammonium sulfate (NH4)2SO4,
carboxymethylcellulose (CM-Cellulose micro granular 25–60 µm, Biophoretics, Reno, NV,
USA), toluene and methanol. M. oleifera seeds were purchased from a local supplier
in Windhoek, Namibia. All substances were dried and degassed before use to provide
rigorously oxygen- and water-free conditions for the synthesis.

2.2. Synthesis of CdSe Quantum Dots

The CdSe quantum dots were synthesized in HDA-TOPO-TOP mixtures as a green
chemical approach using the procedure initially reported by Mekis et al. [37] and as
modified by Gupta et al. [38]. All synthetic routes were carried out in a dry environment. In
a 50 mL three-neck flask, 5 g HDA, 8 g of TOPO, and 0.15 g TDPA were mixed as a one-pot
synthesis. The mixture was dried at 120 ◦C under vacuum for 20 min. The TOPSe stock
solution was prepared by mixing selenium powder (2 g) in 5 mL of TOP and the mixture
was heated to 270 ◦C. The cadmium stock solution (2.5 g of Cd(Ac)2 in 10 mL of TOP) was
injected into the mixture while stirring, resulting in the nucleation of CdSe nanocrystals.
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Respectively, the molar ratio between cadmium and selenium precursors was 1.4:1. The
injection of the stock solution, as well as the further nanocrystal growth, was carried out at
270 ◦C. Finally, the red-colored solution was obtained for CdSe QDs and washed several
times with methanol, followed by centrifugation at 3000 rpm for 20 min. The washing was
repeated three times. The above sediment was heated in a vacuum at 70 ◦C for ca. 48 h [32].

2.3. Extraction and Purification of MSP

The extraction and purification of protein powder, MSP, was performed using the
method of Ndabigengesere and Narasiah [39,40], and the experimental details are as
described by Kwaambwa and Maikokera [15–17]. The procedure involves extraction
with petroleum ether to remove oil, extraction of the proteins with water, precipitation of
proteins with ammonium sulfate, filtration, dissolving the precipitate in water, dialysis to
remove excess ammonium sulfate, adsorption through carboxymethyl cellulose column,
and elution with 1 M NaCl, dialysis, and finally freeze-drying.

2.4. Synthesis of CdSe–MSP Complexes

The aqueous CdSe–MSPn complexes were prepared by mixing the increasing con-
centration of MSPn (n = 10, 25, 50, 80, 100 g L−1) with CdSe at a fixed concentration
(5.23 × 110−3 M) dispersed in toluene; the complexes were prepared in a buffer solution at
pH 8 [2]. The mixtures were subjected to an orbital shaker for agitation and homogenization
at 25 ◦C for 25 min at a speed of 150 rpm under a buffer solution at pH 8. The resultant
aqueous CdSe–MSP (50 g L−1) was placed on the round bottom flask and subjected to
the rotary evaporator at 120 rpm at a temperature of water bath of 40 ◦C. The semi-solid
CdSe–MSP was then subjected to freeze drying and the crystalline CdSe–MSP complexes
were obtained.

2.5. Characterization of the Synthesized CdSe QDs and CdSe–MSP Complexes

The synthesized CdSe QDs were characterized for their crystal structure and phase
using a Bruker D2 XRD instrument with radiation angle in the range of 0 to 60◦ at 2θ, using
Bruker Eva software, version 3.1. XRD spectra were used to provide information on the
phase of the QDs based on their diffraction pattern.

The nanostructure image of CdSe QD was observed with a transmission electron
microscope (Tecnai 20 G2 S–Twin TEM) at an accelerating voltage of 200 kV. The TEM
image obtained was used to provide information on the size, shape, and uniformity of the
QDs, as well as their crystal structure.

To observe the surface characteristics of the QDs, such as the presence of surface
ligands, the CdSe–MSP50 sample was prepared by drop-casting the QD-protein complex
onto a carbon-coated copper grid. The surface morphology of the resultant complexes
was then observed using a field-emission scanning electron microscope (JSM–IT300 SEM)
equipped with Energy-dispersive X-ray spectroscopy (EDX) at an accelerating voltage of
5.0 kV.

2.6. Investigation of the Interactions between CdSe QDs and MSPn Complexes

The absorption spectra of CdSe QDs and CdSe–MSP complex samples were performed
using a Perkin-Elmer Lambda 35 spectrometer to analyze the interference of MSPn in the
optical property of the CdSe sample. The particle size of CdSe QDs was estimated from the
UV–Vis absorption spectra recorded at 298 K temperature using Equation (1) [26]:

D =
(

9.8127 × 10−7
)

λ3 −
(

1.7147 × 10−3
)

λ2 + (1.0064)λ − 194.84 (1)

where D (nm) is the particle size of given CdSe QDs of 5.23 × 10−3 M and λ (nm) is the
first exciton absorption peak of 546 nm.
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The absorption coefficient (α) values were determined in the region of strong absorp-
tion using the relation derived from the fundamental absorption edge.

αhv = A
(
hv − Eg)

n (2)

where A is a constant, Eg is the optical band gap of the CdSe QDs, and the exponent n
depend on the type of transition. Respectively, the transition energies (band gaps) of given
CdSe QD and CdSe–MSPn complexes were obtained by the plot of (αhv)2 versus hv for
direct transition and (αhv)1/2 versus hv for indirect transition. The direct band gap and
indirect band gap were obtained by extrapolating the linear region to the energy X-axis
where (αhv)2 = 0 and (αhv)1/2 = 0, respectively.

The physical adsorption of nitrogen molecules and the surface area of the complexes
were studied using the Brunaver–Emmett–Teller (BET) technique under nitrogen gas (N2)
on the Micromeritics Trista 3000 instrument. Gas adsorption provides a distinct advantage
for many classical models for particle measurement and characterization. The surface area
and pore size of MSP were analyzed using the BET– surface area and the BET–isotherm
plots. The area covered was calculated by considering the amount of N2 molecules used to
form the monolayer, as well as the dimensions and the number of molecules.

The mechanisms of interaction between CdSe QDs and MSPn were investigated by
studying the physiochemical properties of the synthesized CdSe–MSP complexes. The
measurements for the emission spectra and intensity of steady-state fluorescence for CdSe
QDs before and after mixing with MSPn solutions were performed using a Perkin Elmer
LS 45 spectro-fluorophotometer with fast scan speed and low sensitivity. The CdSe–MSP
samples were excited at 280 nm and the emission range was 300–650 nm, the path length
of the cuvette was 1 cm. Fluorescence emission spectra were recorded at 298 K and
313 K temperatures.

The FTIR technique was used to analyze the surface functional groups of the MSP50
and CdSe QDs before and after mixing. This also provides information on the nature and
density of surface ligands on the CdSe QDs. The spectra were recorded in the range of
4000–500 cm−1 using Opus software (version 6.5.6) on a Bruker Platinum Tensor 27 ATR-IR
Spectrophotometer.

3. Results and Discussion

The description of the composition of the extract has already been reported by one of
our co-authors (described previously by Kwaambwa and Maikokera [15–17]). However, it
is worth mentioning that the composition of the extract used in the current investigations
has been isolated and characterised through the application of chromatography and mass
spectrometry [22]. The predominant protein species had a molecular weight ranging from
11.8 to 12.0 kDa. The protein extract in an aqueous solution at a neutral pH was determined
to have a zeta potential of 14 ± 2 mV [18]. The isoelectric point, which is the pH at which a
molecule has no net charge, is around pH 10–11. This value is significantly higher than the
neutral pH that was employed in the present investigation.

3.1. The Structural and Morphological Characterization of CdSe QDs

The XRD pattern provides information about the crystalline phase of the synthesized
CdSe quantum dots. Figure 1 shows the XRD pattern of nanocrystalline CdSe QDs, contains
three broad peaks at a diffraction angle of 2θ = 26.55◦, 43.87◦ and 51.93◦ in correspondence
to the Miller indices or plane (111), (220) and (311), respectively, for the bulk-phase zinc
blende CdSe [41,42] The absence of reflections at 35.1◦ and 45.8◦ 2θ angles, specifically (102)
and (103) reflections, respectively, provides confirmation of the absence of the wurtzite
phase [41]. These quantum dots clearly have a surface rich in selenium, which results in
the manifestation of the zinc blende phase, as opposed to the wurtzite (hexagonal) phase.
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Figure 1. Powder X-ray diffraction pattern of CdSe QDs.

Figure 2 shows the EDX micrograph of CdSe QDs, which reveals the elemental com-
position present in CdSe QDs. The ratio in percentage by weight (%) of Cd:Se was found
to be 1:0.8 and also shows the presence of other elements, such as carbon, oxygen phos-
phorus and chlorine, which may have resulted from the organic solvents used, such as
trioctyl-n-phosphene oxide, trioctyl-phosphine and other chemical reagents used during
the synthesis of CdSe QDs. The elemental composition is summarized in the inserted table.
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Figure 2. EDX micrograph of CdSe QDs.

The TEM image presented in Figure 3 was used to visualize the morphology and
structure of CdSe QDs at the nanoscale level. This image provides information on the
shape, size, and uniformity of the QDs’ crystal structure. The TEM image shows an even
distribution of nearly spherical-shaped crystalline particles of CdSe QDs. The particle size
was in the range of 4–7 nm, which is similar to the crystal size of CdSe QDs reported [41,42].
Ideally, the CdSe QDs should be as uniform as possible to ensure consistent behaviour and
properties. The variation in particle size can be a result of the strain field [22]. The particle
size of CdSe QDs was further estimated using UV–Vis absorption spectra and was found to
be 3.0 nm. The same quantum dot material with different sizes showed distinct variations
in their properties [42].

3.2. The Morphological Characterization of MSP and CdSe–MSP Complexes

In the analysis of the surface area and pore size of MSP, the BET isotherm plot was
employed to understand the physico-chemical properties of the protein. Figure S1 depicts
the adsorption isotherm of N2 gas on MSP obtained using the data calculated and tabulated
in Table S1. The adsorption of N2 gas on MSP occurs in situations where interaction between
the adsorbate molecules approaches that between adsorbate and adsorbent, i.e., the heat of
adsorption is like the heat of condensation. Therefore, it is necessary to have a significant
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partial pressure of adsorbate before the adsorption process commences. Having the surface
covered with adsorbate, the favourable adsorbed–adsorbate interaction would then lead
to a very rapid adsorption process, as the partial pressure increases from 0.3 to 1.0 P/P0.
This type of isotherm is typically observed when there is a limited number of available
adsorption sites (MSP sites) on the surface, and the adsorbate molecules (N2) begin to
cluster or aggregate onto the surface, resulting in a lower adsorption capacity at higher
concentrations [43].
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From the surface area plot, a series of equations was obtained, Equations (S1)–(S5).
Table S2 presents the BET MSP surface area data obtained from the BET investigation of
MPS adsorption. Analysis of the experimental results using the BET equation gave a good
straight-line data fit, shown in Figure S2, over the partial pressure range 0.05–0.30. The
BET isotherm gives an accurate account of adsorption isotherm only within a restricted
pressure range, i.e., 0.05 ≤ P/P0 ≤ 0.30. From the plot, the data are considered acceptable,
since the square of a correlation coefficient, r2, is not less than 0.995 [43]. The BET surface
area of MSP was calculated to be 8.41 m2/g. The pore volume at single point adsorption
total pore volume of pores less than 302 nm in diameter at P/P0 = 0.9936 was obtained as
0.0245 cm3/g. The pore size of MSP50 was calculated to be 11.7 nm, thus the M. oleifera
seed coagulant protein is classified as mesoporous [31].

This information can help to elucidate the surface characteristics of MSP and its
potential interactions with other molecules or nanoparticles. Instead, it is expected that
the mesoporous pores of MSP observed can be applied to host many guest molecules,
such as fluorescent imaging agents, including the recent synthesis CdSe QD (particle sizes
4–7 nm). Hence, the MSP has a higher adsorption capability toward other molecules, such
as surfactant and charged particles [3].

3.3. The Structural and Morphological Characterization of CdSe–MSCP Complexes

To evaluate the CdSe QD for the presence of surface MSPn, the surface morphology
of CdSe–MSP50 was investigated using the SEM image presented in Figure S3; the image
shows small particles of CdSe incorporated in the large MSP50 matrix. It was then observed
that there is no uniform distribution of the particles of CdSe–MSP, hence the complex is
not a crystalline structure. The presence of MSP provides a protective layer around the
nanoparticle, preventing aggregation and degradation and improving CdSE QD stability
and biocompatibility [44]. MSP has a natural cationic protein [18] that can bind to the
surface of CdSe QDs, stabilizing them and preventing aggregation or degradation. This
binding is due to electrostatic interactions between the positively charged protein and
the negatively charged surface of the QDs [45]. Thus, the MSP has a protective effect,
preventing the CdSe QDs from interacting with other molecules or surfaces that may
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cause them to degrade or aggregate. In addition to improving stability, the presence of
MSP has enhanced the biocompatibility of CdSe QDs [28], making them more suitable
for biological applications. This is because MSP is a natural protein that is non-toxic and
biocompatible, and, therefore, its presence on the surface of CdSe QDs can reduce their
toxicity and improve their biocompatibility [46].

3.4. Interaction between CdSe QDs and MSP Using the UV–Vis Absorption and
Fluorescence Spectra

Figure 4 shows the well-defined absorption spectra of the CdSe QDs in the presence
and absence of MSP at different concentrations. No peak is observed by MSP sample.
The well-defined spectra indicate that the QD dispersions are homogeneous and contain
mono-dispersity nanocrystals. Presence of any peak at around 330 nm and 550 nm confirms
the presence of nanoparticle aggregation [47]. The first excitonic absorption peak center is
at 546 nm, corresponding to an absorption energy of 2.27 eV of CdSe QD. The absorption
energy can be different as compared to pieces in the literature, depending on particle size
and shape [30,48]. Upon the mixing of the CdSe solution with the different concentrations
of MSP (10, 50 and 100 g/L), there was no new band observed. However, blue shifts
in the absorption peaks and changes in the intensity of the maximum absorption band
of CdSe QDs were observed. The shifts in the absorption spectra indicate the presence
of strong interaction between CdSe QDs and MSP, which can be attributed to molecular
complexation in the formation of the CdSe–MSP stable conjugates. The resultant change
in absorption intensity may indicate that the protein residues in the MSP were in the
hydrophobic environment [36].
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of MSPn where n = 0, 10 and 50 mg/mL, respectively.

The band gap structure of CdSe QDs and CdSe–MSPn was studied using the Tauc
plot, to determine the energy of direct and indirect band gaps. As shown in Table 1, it was
found that the direct band gap of CdSe QDs is 2.27 eV, and the indirect band gap is 2.20 eV.
The CdSe band gap decreased with the increase in the concentration of MSP. The formation
of this complex can modify the electronic structure of the QDs, resulting in a change in
their band gap energy [49]. These results indicate that CdSE QD interacts with MSP. The
quenching of fluorescence emission results from the dynamic or static interaction between
a quencher and fluorophore [50]. The quenching mechanisms between MSP and CdSe QDs



Photochem 2024, 4 32

were found to be dynamic, which is confirmed by the changes observed in the absorption
spectra of the UV–Vis absorption analysis. This was further evaluated by fluorescence
quenching experiments, discussed as follows.

Table 1. Direct and indirect band gaps of CdSe QDs and CdSe–MSP complexes.

Direct Band Gap Indirect Band Gap

CdSe QDs 2.27 2.20

CdSe–MSP10 2.19 2.12

CdSe–MSP50 2.20 0.85

CdSe–MSP100 2.21 0.87

The intrinsic fluorescence intensity of the sample decreases due to the quenching of
protein [16]. In this study, the intrinsic fluorescence of a protein originates mainly from
tryptophan, phenylalanine, and tyrosine amino acid residues, which often change upon
interaction with nanocrystals [51]. To confirm this assertion, the interaction between CdSe
QDs and MSP ligand was further studied using fluorescence quenching spectra. Figure 5
shows the fluorescence quenching spectra of the CdSe–MSP complexes at different concen-
trations. The result reflects that non-florescent CdSe–MSP complexes were formed due to
quenching [52]. The inset figure demonstrates that the spectra have two emission peaks
in the range of 280–400 nm wavelength, suggesting the presence of only two fluorescing
proteins type in the solutions. The tyrosine residue emission can be seen in the spectra at
301 nm and the emission of MSP is dominated by tryptophan which absorbs at 343 nm [16].
This implies that the excitation of 280 nm selectively excites tryptophan and a minimum
amount of tyrosine fluorescence. The contributors to the fluorescence of proteins are usually
tryptophan, tyrosine and phenylalanine residues [16]. However, in this case, phenylalanine
is not a significant contributor to the fluorescence spectra, since there is no emission peak
at 280 nm. The fluorescence intensity reduced gradually with increased concentration of
MSP, and a blue shift was also observed suggesting that the fluorescent CdSe nanocrystals
are placed in a more hydrophobic environment after the addition of MSP, hence energy
transfer occurred [51]. Fluorescence quenching was therefore due to the formation of a
non-florescent complex [50].
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The fluorescence spectra of CdSe QDs in the absence and presence of MSP at different
concentrations are shown in Figure 5 (the main spectra). The CdSe QD emission can be
seen in the spectra at 598 nm [53]. At a very low concentration of 10 gL−1 (MSP10), there
was a minimal decrease in fluorescence intensity compared to pure CdSe QD. However,
sudden decreases in fluorescence intensities were observed at a higher concentration of
MSP (MSP100). Thus, fluorescence quenching is higher at high concentrations of MSP.
The quenching of fluorescence emission results from the dynamic interaction between a
quencher and fluorophore [50]. In many interaction studies of quantum dots and protein,
QDs have quenched the protein [53]. When QDs are near a protein, their fluorescence
emission can be quenched due to energy transfer from the QD to the MSP.

In many interaction studies of quantum dots and protein, QDs have quenched the
protein [52,53]. In the previous studies, we have used standard quenchers, viz. acrylamide,
iodide and nitrate, to quench the fluorescence of the Moringa seed proteins [15], whereas,
in the present study, the FL spectra showed a strong quenching effect of MSP in the
fluorescence of CdSe QDs, which is higher at MSP100. According to the study by Yan et al.,
2012 [54], the combination of protein with QD interaction changes the external environment
and structure of a protein, which yields decreased fluorescence intensity. Hence, a similar
explanation can be applied in the quenching between MSP and CdSe QDs. There exists
a strong interaction between CdSe QDs and MSP as reflected by the steady decrease in
fluorescence intensity that give rise to the quenching mechanisms [49]. The quenching
effect may result from many molecular interaction mechanisms, such as surface-bound
complexation equilibrium, ground state complex formation, molecular rearrangement, the
electrostatic interaction and the energy transfer process [35,37,38,49] between the CdSe
QDs and MSP

3.5. Stern–Volmer Analysis of the CdSe QDs–MSP System Interactions

The Stern–Volmer plot of F0/F against the CdSe–MSP system with different concentra-
tions of MSP was employed to provide valuable insights into the nature and strength of
the interaction and determine the binding constant and quenching constants between a
fluorophore (in this case, CdSe quantum dots) and a quencher (MSP) [19]. To perform the
Stern–Volmer analysis, the fluorescence quenching intensity (F0) of the CdSe QDs in the
absence and presence of different concentrations of MSP (F10,25,50,80,100) was extracted from
Figure 5, and the data was plotted on a Stern–Volmer plot shown in Figure 6, based on the
Stern–Volmer equation presented in Equation (3):

F0

F
= 1 + kqτ0[Q] = 1 + Ksv [Q] (3)

where F0 is the fluorescence intensity of CdSe QDs in the absence of the quencher, F is the
fluorescence intensity of CdSe QD in the presence of the quencher, Ksv is the Stern–Volmer
quenching constant, [Q] is the concentration of the quencher and Kq is protein quenching
rate constant, and τ0 is the average lifetime of the fluorophore in the excited state; usually,
for a biomolecule, this is 10−8 s. By plotting F/F0 against [Q], the Stern–Volmer constant
(Ksv) was determined from the slope of the linear fit.

The Stern–Volmer plot presented establishes that there is a linear relationship between
the relative fluorescence of a fluorophore (CdSE nanocrystals) intensity and concentration
of quencher (MSP). At a very low concentration of the MSP (10 and 25 gL−1), there was no
significant change in the quenching effect, which suggests that there is minimal quenching
to nearly stationed fluorescence quenching [39]. Therefore, at low concentrations and a
very rare chance of conformational change, it shows stationary fluorescence quenching
then, at higher concentrations due to structural rigidity, steric hindrance may occur against
acquiring electrostatic interaction with CdTe QDs because of high affinity towards them [3].
A steady increase in the quenching effect was observed upon the increase in the concentra-
tion of MSP (50 g/L to 100 g/L), which suggests a strong interaction and conformational
change in the MSP structure and hence indicates the possible existence of more binding
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sites and a higher affinity of MSP toward the CdSe QDs [40]. The Stern–Volmer quenching
constant (Ksv) was obtained as 0.0235. The complex formation was further confirmed from
the value of rate constant Kq, using Equation (4):

Kq =
Ksv

τ
(4)

The binding constant (Kb) and the quenching constant (Kq) were also determined as
1.78 × 105 mL/mg and 1.97 × 107 Lg−1, respectively. The fluorescence lifetime ( τ0) of the
excited state of CdSe QDs in the absence of MSP was also derived from a Stern–Volmer
analysis and was found to be τ0 = 1.91 × 10−9 s−1.
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Figure 6. Stern–Volmer equation analysis of the CdSe–MSP system: the figure shows the plot of the
ratio for relative fluorescence (F0/F) versus increasing concentration of MSP [Q] in mg/mL.

The quenching mechanisms of MSP with CdSe QDs were analysed using the modified
Stern–Volmer equation known as the Scatchard method (Equations (5)–(9)) [30]. The
number of binding sites (n) and the static quenching constant (K), which is the equilibrium
constant in this present paper, were calculated using the Scatchard relation approximation.
The thermodynamic parameter, the Gibbs free energy ∆Gθ , the enthalpy change ∆Hθ , and
the entropy change ∆Sθ were calculated using the equations below:

log
(

F0 − F
F

)
= LogK + nlog [Q] (5)

∆Gθ = −RT InK (6)

In
(

K2

K1

)
=

(
1
T2

− 1
1

)
∆Hθ

R
(7)

InKθ = −∆Hθ

RT
+

∆Sθ

R
(8)

∆Gθ = ∆Hθ − T∆Sθ (9)

where T is the temperature in (K) and R is the gas constant 8.314 JK−1mol−1. The interaction
was carried at temperatures of 298.15 K and 313.15 K.

From the Scatchard relation plot [33], Equation (5) was equated to the equation of
a straight line, thus the slope is equal to n and the y-intercept is a log. Therefore, the
number of binding sites (n), and the binding constant, which is also referred to as the
equilibrium constant (K), was obtained. The Scatchard relation is represented by plotting of
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log ((F0 − F)/F) versus log (Q) at temperature 298.1 K and 313.15 K, respectively, as shown
in Figure 7.
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Figure 7. Scatchard relation represented by the plot of log ((F0 − F)/F)) versus log (Q) at temperature
298.1 K and 313.15 K, respectively.

The steady decrease in the fluorescence of CdTe QDs after interaction with MSP
strongly indicates that some conformational changes are occurring due to the interaction,
suggesting the availability of more binding sites for CdTe QDs [3]. The number of binding
sites was found to be 1.50 and 2.00 at temperature 298.15 K and 313.15 K, respectively. The
quenching constant was determined as K = 1.45 × 108 and 7.21 × 1010 at temperature (T)
298.15 K and 313.15 K, respectively. This implies that the system is dynamic quenching,
since the quenching constants tend to increase with temperature, as higher temperature
results in a larger diffusion coefficient. The enthalpy change

(
∆Hθ

)
was calculated to

be −321.3 JK−1mol−1, a negative value, and ∆Sθ was found to be 156.0 JK−1mol−1, a
positive value; based on these values, there is an indication that the binding mechanisms
of MSP with CdSe QDs are entropically driven [40]. The change in Gibbs free energy
(∆Gθ) was calculated to be −46.6 × 103 Jmol−1 at 298.15 K and −65.1 × 103 Jmol−1 at
313.15 K; a negative value indicates that the binding interaction is spontaneous [48]. The
negative values of both ∆Hθ and ∆Gθ reveal that the major interaction mechanisms are the
electrostatic interaction, van der Waals forces and hydrophobic interaction [37–40].

3.6. FTIR Analysis of the CdSe QDs–MSP System Interactions

To study the mechanism of electrostatic interactions of CdSe QDs with proteins at dif-
ferent concentrations, FTIR spectra of MSP, CdSe QDs, and CdSe–MSP50, were determined,
as shown in Figure 8.

In the case of MSP, Figure 8a shows notable absorption peaks of the phenol group at
3293.85 cm−1, primary amine at 1648.76 cm−1, nitro group at 1535.75 cm−1 and an aliphatic
amine at 1234 cm−1. The functional group of the two absorption bands at 1648.76 cm−1

and 1535.75 cm−1 can also be related and shows the presence of the amide I and amide
II functional groups. The band at 1535.75 cm−1 can also indicate the presence of the
α-helices [43]. In comparison, Kwaambwa and Maikokera [44] showed the presence of
the α-helix secondary structure given by the band at 1291 cm−1, which is absent in the
FTIR spectrum of MSP, thus phenylalanine residues were not detected in the PL spectra in
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this study. The difference in the extracted structures of MSPs depends on the method of
extraction and purification techniques used.
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Figure 8b shows the spectrum of CdSe–MSP at a concentration of 50 mg/mL of protein.
The spectrum is identical to that of MSP, hence a conclusion can be drawn that there is
no new functional group between the CdSe QDs and MSP [45]. The formation of the new
bond could have changed the CdSe–MSP spectrum, thus the CdSe QDs did not influence
the chemical structure of MSP. CdSe QDs are adsorbed into the MSP utilizing electrostatic
interaction and surface-bound complexation equilibrium attractions, which correlate to
the fluorescence quenching mechanisms and the UV–Vis absorption spectra results [34].
The alkyl chains of methanol molecules in CdSe QDs exhibit C–H stretching vibrations, as
indicated by distinct bands at 2931 and 2855 cm−1 in Figure 8c [45,55].

4. Conclusions

The CdSe QDs were synthesized using the organic solvent trioctyl-n-phosphene oxide
(TOPO) and trioctylphosphine (TOP). The crystalline size of CdSe QDs was determined
by UV–Vis absorption to be in the range pf 3.0 nm. XRD analysis revealed that CdSe QDs
have a hexagonal phase with a particle size of 3.0–8.0 nm. The TEM image showed an
even distribution and the spherical surface of CdSe QDs and confirmed the crystalline
size CdSe QDs at a 10 nm scale. The BET analysis determined the surface area and pore
size of MSP and it was classified as mesoporous. The SEM image indicated that the
CdSe–MSP complex is not a crystalline structure. The interaction of CdSe QDs with the
increasing concentration of MSP showed a decrease in fluorescence intensity, which is
classified as dynamic quenching. The Stern–Volmer quenching constant (Ksv), binding
constant (Kb), quenching constant (Kq) and the number of binding sites (n) were determined,
demonstrating the formation of CdSe–MSP complex, which proved the UV–Vis absorption
spectra. The thermodynamic potentials were calculated using the Scatchard equation,
∆G◦ < 0, ∆H◦ < 0 and ∆S◦ > 0, which indicates that the binding mechanisms in entropically
favoured and spontaneous; it further demonstrated that the stable CdSe–MSP complex is
a result of electrostatic interaction, molecular complexation and presence of hydrophobic
interaction and Van der Waals forces. From the Scatchard relation plot of log ((Fo − F)/F))
versus log (Q) at temperature 298.1 K and 313.15 K, respectively, the slopes (Ksv) obtained do
not depend on the concentration of MSP in dynamic quenching, whereas they do not change
at any concentration of MSP in static quenching. The results obtained here confirm that the
quenching of the CdSe by MSP is a dynamic process. Overall, the study of the interaction
between MSP and CdSe QDs can contribute to the development of safer and more efficient
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nanoparticles for various applications, as well as providing a deeper understanding of the
complex processes involved in the interaction between natural proteins and nanoparticles.
Through the application of bioengineering, there is a potential that MSP can still retain
coagulation/flocculation properties, while the CdSe acts as a photocatalyst response in
killing the waterborne bacteria, since it can enhance light harvesting efficiency.
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Table S2: BET MSP Surface Area plot.
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