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Abstract: This study examined the fracture and failed performance of foamed concrete materials
by testing normalized notched beams under three-point bending via three methods: inverse anal-
ysis, digital image correlation (DIC), and finite element modeling (FEM). It also discussed both
experimental and FEM characteristics. However, inverse analysis is only applicable for specimens
with a notch height of 30 mm. Bilinear softening of the tested beams was estimated to identify the
fracture energy (GF), critical crack length (ac), and elastic modulus (E). Additionally, the fracture
toughness was calculated by adopting the double-K method (initiation fracture, unstable fracture,
and cohesive fracture). Two-dimensional FEA modeling of the fracture was conducted using the
traction-separation law (TSL), incorporating the extended finite element method (XFEM) and cohesive
zone (CZM) techniques. A finite element sensitivity for the XFEM and CZM was performed, with the
global mesh size of 2 and the damage stabilization cohesion of 1 × 10−5 showed good convergence
and were used in other models. Further comparison of the DIC experiment findings with those from
the FEM demonstrated good agreement in terms of crack propagation simulation.
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1. Introduction

The structural design of buildings entails the determination of the best way to transmit
loads to the ground. However, the utilization of concrete is inevitable in construction due
to its moldability, impermeability, and favorable compression conditions; somehow, the
weight of normal concrete is relatively high and creates a significant dead load for the upper
structure. Regarding substructures, such as a foundation, the transfer of major loads affects
the foundation design more than the low soil-bearing capacity. This leads to high costs. The
introduction of lightweight materials, such as foamed concrete, is a promising solution to
counter this problem. The incorporation of voids into concrete limits its strength properties;
nevertheless, it has prominent potential as a structural material. The incorporation of
pozzolanic materials as replacements for cement not only reduces the production of CO2
but also enhances the strength properties of foamed concrete. Several studies utilized
silica fumes as pozzolanic materials, including those by Lee et al. [1], Gökçe et al. [2],
Ahmad et al. [3], and Wang et al. [4], with densities of 1700, 1424, 1300, and 1400 kg/m3,
respectively, and compression strengths of 27.12, 26.8, 24.3, and 20 MPa, respectively.

In conventional theory (stress–strain equilibrium), concrete tensile resistance is negli-
gible. However, knowledge of the fracture behavior of brittle materials, which can lead
to catastrophic failure, is essential, especially for critical buildings such as dams, tunnels,
and nuclear power plants. A drawback of the conventional theory is its inability to predict
the fracture behavior of materials, especially after the material’s resistance is reached. The
linear elastic fracture mechanic (LEFM) theory is only able to explain fracture behavior for
material has a relatively small plastic process zone. However, the development of a fracture
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process zone (FPZ) ahead of a crack tip prior to fracture [5] and the shape and dimensions
within the concrete material result in the use of improper methods to implement the LEFM
theory [6]. The stress transfer capability of the material, sometimes referred to as the
softening feature of concrete, is compromised by the presence of a FPZ. Various studies on
fundamental models were conducted, including those that investigated the fictitious crack
model (also known as the cohesive crack model) [5], crack band model [7], two-parameter
fracture model, effective crack band model [8], size effect model [9], and double-K fracture
model [10].

Fracture energy refers to the amount of energy used to open a unit area on a crack’s
surface. It is one of the parameters governing the damage-and-fracture mechanism. A study
conducted by Jaini et al. [11] investigated the fracture energy in foamed concretes with
different densities (1400–1600 kg/m3). Meanwhile, a similar investigation by Kozlowski
et al. [12] used the densities of 488–1024 kg/m3. Both studies showed that increases in the
density of foamed concrete resulted in increased fracture energy. According to Falliano
et al. [13], the fracture energy in foamed concrete is influenced by the selection of the curing
method. Xu et al. [14] investigated fracture energy by considering the boundary effect.
It was found that the weaker the local fracture energy, the closer it was to the element
boundary. Ding et al. [15] observed the fracture energy in a slag-based geopolymer (SG)
and Portland cement (PC) with various compressive strengths. As for the compressive
strength, the SG developed greater fracture energy compared to the PC.

Non-contact monitoring methods, including acoustic emission (AE) and digital image
correlation (DIC), have been widely employed to better understand the fracture process
occurring before the crack tip [16–18]. Ohno et al. [19] investigated the FPZ in a notched
concrete beam under three-point bending (3PBT) with variously sized aggregates by apply-
ing AE. It was found that the fracture energy was correlated with the width of the AE cluster,
as the energy increased when the width of the FPZ expanded. Alam et al. [20] observed the
FPZ of a notched beam under 3PBT by using DIC and AE. The study concluded that DIC is
better compared to AE, particularly as DIC is based on crack opening while AE may cause
a loss of information as it is not possible to know exactly the crack tip. Meanwhile, Wu
et al. [21] observed the FPZ via DIC and stated that the length of the FPZ increased during
crack propagation and decreased after the FPZ was fully developed.

Finite elements (FEs) have been extensively utilized in previous studies to investigate
the damage and fracture mechanisms in structural engineering [22–26]. Finite element
analysis (FEA) is a simulation of any given physical phenomenon using a numerical
technique called the finite element method (FEM). There are three well-known methods
within the Traction–Separation Law (TSL): the extended finite element method (XFEM),
cohesive zone model (CZM), and virtual crack closure technique (VCCT). However, the
selection method within the TSL will determine the behavior and structural response [27].
An investigation by Yu et al. [28] observed a notched graphite nuclear beam using the
XFEM, CZM, and VCCT. The result showed that the VCCT is more sensitive compared to
the XFEM and CZM. Meanwhile, Omar et al. [29] worked on foam concrete beams using
the XFEM and CZM and found that there was less agreement within the CZM due to
the simplification of adopting a failure path. However, the LEFM theory adopted within
the ABAQUS software is only applicable for materials that have a relatively small plastic
process zone [30].

The novelty within this study is that the material constituent of foamed concrete is
different compared to normal concrete, such as having no coarse aggregate and a more
void presence, which affects the fracture process zone length (or critical crack). To the best
of our knowledge, there has been no previous research conducted on the matter. Inverse
analysis was adopted to estimate the critical crack length, which will be described further
in the following section. DIC was also conducted to observe the critical crack length at
the ultimate load. In addition, the TSL incorporated with the XFEM and CZM within two-
dimensional (2D) FEA Modeling was adopted. Later, It was followed by an observation of
the crack propagation at the ultimate load, which predicted the results.
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1.1. Bilinear Softening Law

The classical bilinear softening law is extensively adopted in fracture mechanics and
used as a cohesive zone model [5,31,32]. The model is based on the idea that concrete
softens gradually owing to microcracking and other energy dissipation processes in an
extended fracture process zone (FPZ) prior to a real traction-free crack. As for a real
traction-free crack, this portion of the crack cannot be continuous with complete separation
of its faces. The fictitious crack faces have certain residual amounts of stress that can be
transferred across them and are inconsistent along their length. An investigation by Hu
& Fan [33] stated that critical tip opening displacement (CTODc) reached its value at an
ultimate load while cohesive stress (σCTODc) was reached at the fracture tip, as depicted
in Figure 1a, whereas Figure 1b,c describe the condition where a crack is already formed.
Additionally, Roelfstra & Wittmann [34] emphasized that the determined kink point (σ1,
w1) of the bilinear softening law is the most essential component.
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1.2. Fracture Toughness

Prior to reaching the ultimate load, crack initiation is already present within the
concrete material [33]. However, this condition of crack propagation under an applied
load can be explained through fracture toughness (K). Since the use of the LEFM theory
is irrelevant due to the presence of the FPZ, several researchers have adopted the double-
K method [17,35–38]. The important parameters of fracture toughness are Kini (initial
cracking) and Kun (unstable cracking toughness). Such a case clearly indicates that in
quasi-brittle material, the fracture crack develops in three stages: initial cracking, stable
development, and failure development. The corresponding fracture criteria are that when
K < Kini

IC no crack appears, whereas the specimen is deemed to be in the failure stage when
Kini

IC ≤ K < Kun
IC , with the crack developing stably. When K ≥ Kun

IC , the crack develops
unstably. These parameters, therefore, have the following relationship: Kun
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where Pult is the ultimate load and Pini is obtained through the initial point of non-linearity
in the P–CMOD curve. B, H, and S are the width, height, and span of the beam, re-
spectively; H0 is the clip gauge holder thickness (2 mm in this study). Additionally, the
elastic modulus can be predicted using inverse analysis from the P–CMOD curve, where
α0 = (a0 + H0)/(H + H0) and Ci is the initial compliance of the P–CMOD curve. The sum
of the initial pre-cut crack length (a0) and fictitious crack extension length (∆ac) equals the
critical crack length (ac).

2. Experimental Investigations
2.1. Experimental Testing

A specific gravity mix design was utilized for batching the lightweight foamed con-
crete. The components of the lightweight foamed concrete were river sand with a maximum
3-mm grain size, Tasek Portland Cement I-42.5R manufactured in Ipoh, Malaysia, super-
plasticizers (SPs), water pH 7, and silica fume (SF). SF was manufactured by Shinjiang
Shengping Minerals Co., Ltd. from Shijiazhuang, China as a partial cement replacement.
A synthetic-based foaming agent, Sika Aer 50/50 manufactured in Nilai, Malaysia, with
a ratio of 1:20 was used to generate foam. As shown in Table 1, the water-to-binder ratio,
sand-to-binder ratio, SP-to-binder ratio, and SF replacement were 0.42%, 3%, 0.01%, and 5%,
respectively. Prior to foam addition, the base mix density was measured to be 1995 kg/m3,
and the addition of foam was intended to achieve a density of 1820 kg/m3. Casting was
conducted when the concrete achieved the desired density. The concrete was set for 24 h
before it was demolded and cured with water for 28 days. Each stage density of the foamed
concrete was measured as depicted in Figure 2.

Table 1. Mix design of foamed concrete for 1 m3.

Binder (kg/m3) Sand
(kg/m3)

SP
(kg/m3)

Water
(kg/m3)

Foam
(liter/m3)

f’c
(MPa)Cement SF

1043.91 54.94 366.28 10.99 461.52 105 42.3

Upon reaching the 28th day, the specimens were dried by placing them inside the oven
for 24 h. Three cubes of specimens were tested for compressive strength, f′c (see Table 1).
Painting and marking were conducted prior to testing, where contrast white and black
speckles were applied on the smooth surface to enable detection via the DIC software (GOM
Suite version 3.0.1101.1). The software is developed by Carl Zeiss located in Oberkochen,
Germany. Three specimens of each notched beam and cylinder were tested and recorded
using two configured cameras (Camera 1 was to detect deformation, while Camera 2 was
to show the applied load, see Figure 3d). Un-notched concrete beams were tested under
a four-point bending test following the ASTM-C78-02 standard [39]. The purpose of an
un-notched beam was to determine the indirect tensile strength without being affected by
stress concentration (or un-notched strength); such a value was required later in the FEM.
On the other hand, notched beams were tested under a three-point bending test based on
the JCI-S-001 standard [40] with a speed rate of 0.1 mm/min. The purpose of this notched
beam was to observe fracture characteristics and fracture energy (GF). The schematic test
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and geometry of specimens for the un-notched and notched concrete beams are shown in
Figure 4, whereas cylinder specimens were tested under a compression test following the
ASTM C469-02 standard [41] to determine the elastic modulus and Poison’s ratio required
for the FEM. Table 2 shows the testing series with the three specimens that was conducted
in this study (see Figure 3a,b).

Table 2. Testing series of each specimen.

Testing Series Dimension (mm)
(l × b × h) Notch Height (mm) Standard Speed Rate

Control 400 × 100 × 100 Un-notched ASTM-C78-02 [39] 0.5 mm/min

GF-0

400 × 100 × 100

0

JCI-S-001 [40] 0.1 mm/min
GF-30 30
GF-50 50
GF-70 70

E D150 × 300 - ASTM C469-02 [41] 3 kN/sec
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2.2. Experimental Results

The shape of the bilinear softening law is determined using four parameters: ft, σ1,
w1, and w2 (see Figures 1c and 5a). In this study, the indirect tensile strength (ft) was
obtained using the classical theory (moment–section modulus). Compared to the previous
study [15], this study obtained different kink points (σ1, w1) and zero stress points (w2)
in the expression of a cohesive law (see Table 3). According to [42], kink points (σ1, w1)
are assumed to occur at 0.15–0.33; such a result is similar to this study. Nevertheless,
the zero-stress point (w2) was compared to other studies [15,33] (with values of 0.284
and 0.239 mm, respectively) on normal concrete, but the foamed concrete in our study
developed a value of more than 2.0 mm (see w2 in Table 3). This condition was due to
the presence of a void, which allowed for the arresting of the crack during propagation.
Regarding the initiation crack obtained from a second non-linear P–CMOD curve [16,33],
initiation within the foamed concrete was relatively close to the ultimate load. This is
because the foamed concrete contained no coarse aggregate to provide bridging. The
presence of stress concentration due to of notch influenced the height of the FPZ above
the crack tip, which reduced the tensile strength (ft), including at the kink points (σ1, w1)
(see Table 3).
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In this study, fracture energy (GF) was estimated using the classical Hillerborg model [43]
based on the load–displacement (Equation (8)). Similar previous studies have used the
Hillerborg model to estimate the fracture energy of foamed concrete material [11,12], achiev-
ing values of 0.018–0.025 N/mm for densities of 1400–1600 kg/m3 and 0.001–0.012 N/mm
for densities of 488–1024 kg/m3. Falliano et al. [13] estimated the fracture energy using the
JCI-S-001 equation [40] (based on load–CMOD curve), giving a value of 0.003–0.010 N/mm
for 800 kg/m3 of density. Figure 5b depicts the softening area (U0) within this model, where
mg is the specimen weight, do is deflection at the failure, W is the specimen width, H is the
specimen height, and a0 is the notch height. Compared to other studies on normal concrete,
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the foamed concrete fracture energy in this study was relatively lower. Additionally, in-
verse analysis (from the notched beam) and conventional analysis (from the cylinder) were
conducted; however, only the GF-30 testing series showed good agreement in terms of the
elastic modulus (E) (see Table 4), as the Ci value was significantly influenced by the notch
height. Double-K was used to observe the fracture toughness, and the critical tip open-
ing displacement (CTODc) was computed from the critical mouth opening displacement
(CMODc) at the ultimate load. It was found that inverse analysis with the GF-70 testing
series was incapable of identifying unstable fracture toughness Kun

IC and cohesive fracture
toughness Kc

IC due to the absence of a FPZ.

GF =

(
U0 + mgd0

)
W(H − a0)

(8)

Table 3. Parameters of the bilinear softening curve for the experimental observation.

Testing
Series

Pini
(kN)

Pult
(kN)

ft
(MPa)

σ1
(MPa)

w1
(mm)

w2
(mm)

a1
(mm−1)

a2
(mm−1)

b2
(MPa)

GF-0
3.333 4.101 2.153 0.380 0.820 2.250 2.623 0.214 0.550
±0.075 ±0.089 ±0.105 ±0.034 ±0.098 ±0.052 ±0.398 ±0.025 ±0.104

GF-30
1.384 1.752 1.877 0.317 0.650 2.000 2.612 0.240 0.433
±0.135 ±0.142 ±0.159 ±0.057 ±0.153 ±0.288 ±0.398 ±0.038 ±0.088

GF-50
0.595 0.786 1.650 0.270 0.700 2.310 2.118 0.187 0.350
±0.075 ±0.052 ±0.095 ±0.045 ±0.115 ±0.288 ±0.086 ±0.045 ±0.093

GF-70
0.244 0.254 1.303 0.270 0.670 2.203 2.082 0.200 0.345
±0.021 ±0.015 ±0.058 ±0.031 ±0.124 ±0.288 ±0.152 ±0.018 ±0.101

Table 4. Characterization of foamed concrete.

Testing
Series

ac
(mm)

Enotched beam
(GPa)

Ecylinder
(GPa)

KIC (MPa mm0.5) CMODc
(mm)

CTODc
(mm)

GF
(N/mm)Kini

IC Kun
IC KC

IC

GF-0
30.213

13.1

0.426 20.557 20.131 0.178 0.178 0.016
±1.145 ±0.135 ±0.847 ±2.175 ±1.231 ±0.011 ±0.011 ±0.002

GF-30
54.459 13.2 6.907 23.186 16.278 0.123 0.075 0.015
±2.288 ±0.231 ±1.172 ±4.212 ±3.210 ±0.015 ±0.009 ±0.001

GF-50
62.716 2.363

±1.353

4.875 6.963 2.088 0.149 0.024 0.014
±1.145 ±0.135 ±0.847 ±2.175 ±1.231 ±0.011 ±0.011 ±0.003

GF-70
- −0.018 3.697 - - 0.157 - 0.014

±0.000 ±0.000 ±0.746 ±0.001 ±0.231 ±0.005 ±0.000 ±0.002

2.3. Digital Image Correlation

This study analyzed the deformation represented by a microcrack using the DIC
software GOM Suite. Figure 6a depicts the deformation of each stage within foamed
concrete by referring to Figure 3d. The initiation crack began with a microcrack above the
notch tip. The occurrence of the initiation crack was identified using the second linear of
CMOD in Figure 5a. Meanwhile, Figure 5c shows the presence of a notch that influenced
the tensile resistance of the specimens, whereas a higher notch exhibited a smaller FPZ.
Also, a higher notch allowed the specimens to bend more, as depicted in Figure 5d. The
microcrack developed and became longer until the ultimate load. At this stage, the length
of the microcrack was assumed to be a critical crack. However, both inverse analysis and
the DIC method showed good agreement. After reaching the ultimate load, the crack was
visible to the naked eye within the softening phase (SF). During the first softening (SF1),
the traction started becoming weaker from the notched tip. The traction disappeared along
the crack propagation, as seen during the second softening (SF2). Nevertheless, the traction
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length was shorter when the crack was propagated until fully separated. Figure 6e–h shows
the opening distance along the notch height, which stands as a verification of the inverse
analysis (or superposition method) for CTODc. The CTODc value from the DIC observation
was slightly lower, 0.07 mm (Figure 6f), compared to CTODc from the inverse analysis
which had a value of 0.075 mm. In addition, the CMODc value from the experimental
observation was recorded as 0.123 mm (see Table 4), which was slightly higher compared
to the DIC method, which gave a value of 0.120 mm (Figure 6f).
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Figure 6. Deformation observation using DIC (with testing series GF-30). (a) DIC deformation at
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3. Finite Element Study

In this study, the XFEM and CZM were adopted to perform strength prediction and
crack propagation at an ultimate load, which will be described in the following section. The
ABAQUS software was utilized to conduct the FEM. Furthermore, a 2D-deformable plain
strain was adopted in this study by considering the computational effort, time, and accuracy.
Table 5 describes the materials (elastic modulus (E), Poisson’s ratio (v), un-notched strength
(σ0), and fracture energy mode I (GI)) and geometry properties of the foamed concrete
beam used in FEA Modeling. On the other hand, Figure 7 illustrates the XFEM and CZM
implementation areas (red zone) within the notched concrete beam, while Table 6 shows
details of the elements, nodes, and integration point finite elements for each model.
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Table 5. Materials and geometry properties.

E
(GPa) v σ0

(MPa)
GI

(N/mm) TSL

13.0 0.28 1.652 0.015 MaxPS
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Figure 7. Schematic and implementation of XFEM and CZM in FEM.

Table 6. Elements, nodes, and integration points of the FEM models.

Testing
Series

FEM XFEM Number of FEM CZM Number of

Elements Nodes Integration
Points Elements Nodes Integration

Points

GF-0 10,302 10,050 4 10,100 10,404 4
GF-30 10,135 10,404 4 10,170 10,476 4
GF-50 10,125 10,404 4 10,150 10,456 4
GF-70 10,115 10,404 4 10,130 10,436 4

3.1. Sensitivity Study

Sensitivity analysis was conducted to evaluate the effects of mesh and damage
stabilization-cohesive dependence on FEA Modeling. Munjiza et al. [44] stated that the
size of a finite element near the crack tip must be smaller than the actual plastic zone
size. Nevertheless, the shell-based formulation within this study was modeled using a
four-noded shell element named CPE4R. More & Bindu [45] stated that an FE model with
a larger mesh might lead to less accurate results but a faster computational time; a finer
mesh would yield high accuracy but take more computational effort. Therefore, the global
mesh size ranged from coarse to a fine mesh size (i.e., mesh density 5 to 0.5) in this study.
Figure 8 shows the global mesh size 2 and damage stabilization cohesive with a value of
1 × 10−5. The model showed good consistency at the ultimate load for both the the XFEM
and CZM methods. Similar findings with global mesh size 2 were also reported by [46],
while investigations by [47–49] involved global meshes with sizes of 0.01 mm, 0.125 mm,
and between 0.5–1 mm, respectively. Meanwhile, a damage stabilization cohesive with a
value of 1 × 10−5 was also reported in [28,50,51].
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3.2. Damage Plot

Figure 9 depicts a schematic damage plot of each stage of damage from the beginning
until it completely failed. During Stage 1, the crack started to initiate after reaching the
maximum principal tensile stress of the material as depicted in Figure 9a. Nevertheless,
compared to the crack initiation exhibited in the experiment, the FEM results indicated
propagation at a lower load. The crack was propagated until Stage 2 by increasing the
load until the ultimate load was reached. At this stage, the length of the crack was named
as a critical crack (see Figure 9b). However, the FEM results were shorter compared to
the experimental (DIC observation) or inverse analysis. In Stage 3 (Figure 9c), the beam
was under the softening condition and the crack remained propagated until the beam was
fully separated, as shown in Stage 4 (Figure 9d). Meanwhile, Table 7 shows the bilinear
parameter from the FEM (referred to as a load–CMOD curve in Figure 6). In comparison to
the experimental output in Table 3, it was found that the characters within the FEM were
unable to fully represent the experimental results. Regarding the critical crack length (ac) at
the ultimate load, both experimental (DIC and the FEM) methods showed good agreement
(see Figure 10), with the presence of the notch height influencing the height of the critical
crack length (known as the fracture process zone at the ultimate load). However, the CZM
provided better agreement with the experimental method compared to the XFEM. It is
worth highlighting that the LEFM theory adopted within the ABAQUS software is only
applicable for materials with relatively small plastic process zones [30], whereas concrete
material has a large plastic process zone commonly known as the fracture process zone.
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Table 7. Parameter of the bilinear softening curve for FEM.

Series TSL Pini
(kN)

Pult
(kN)

ft
(MPa)

σ1
(MPa)

w1
(mm)

w2
(mm)

a1
(mm−1)

a2
(mm−1)

b2
(MPa)

GF-0
XFEM 2.563 3.974 2.086 0.230 0.070 2.217 33.030 0.424 0.250
CZM 2.985 4.928 2.587 0.350 0.150 2.274 15.830 0.467 0.500

GF-30
XFEM 0.938 1.832 1.963 0.220 0.080 2.215 22.956 0.350 0.241
CZM 1.125 2.455 2.338 0.250 0.140 2.341 33.973 0.452 0.300

GF-50
XFEM 0.552 0.945 1.985 0.210 0.090 1.659 21.562 0.325 0.236
CZM 0.589 1.040 2.185 0.240 0.130 2.547 22.867 0.441 0.280

GF-70
XFEM 0.215 0.330 1.928 0.200 0.190 1.348 21.795 0.375 0.268
CZM 0.258 0.340 2.166 0.235 0.160 2.942 22.207 0.410 0.410
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(c) CZM deformation of all series.

Figure 11 shows the FEM output for both the XFEM and CZM in relation to the load
prediction (Figure 11a,b) and opening crack (Figure 11c,d). It can be seen that the XFEM
exhibited better load prediction than the CZM (see Table 7). Both the experimental method
and the FEM (XFEM and CZM) exhibited a similar trend in tensile strength, in which a
higher notch required less material for load resistance due to stress concentration—this was
the outcome of the fracture process zone length, which was influenced by the notch height.
During softening after reaching the ultimate load, the CZM was more representative of the
experimental method than the XFEM in the crack opening. As shown by the kink points (σ1,
w1) in Table 7, the CZM was relatively higher (for σ1) and larger (for w1). Nevertheless, both
the XFEM and CZM recorded a zero-stress point (w2) in comparison to the experimental
method, subsequently indicating a good agreement for the GF-0 and GF-30 series.
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4. Conclusions

In this study, three specimens of un-notched beams, normalized notched beams, and
cylinders of foamed concrete material were experimentally investigated. All of the methods
(DIC, XFEM, and CZM) had good agreement in predicting the critical crack length (ac).
However, the use of inverse analysis to predict the critical crack length (ac) was inapplicable
with the GF-70 testing series due to the absence of a FPZ. The elastic modulus obtained
from the P–CMOD inverse analysis and the conventional method showed good agreement,
giving a value of 13 GPa (only with the GF-30 testing series). In terms of softening, a
comparison of findings by previous studies on normal concrete indicated that foamed
concrete exhibited longer openings in zero-stress points (w2) up to 2 mm. The model
showed independence from sensitivity with global mesh size 2 and damage stabilization
cohesive with 1 × 10−5. Fracture toughness for initiation, instability, and cohesiveness was
only applicable for materials with a FPZ. Prior to the ultimate load, the traction length
(known as the FPZ) increased but later decreased after the ultimate load. Fracture energy
(GF) from the Hillerborg model (with a value of 0.015 N/mm) was adopted within the
FEM for foamed concrete materials. While the foamed concrete exhibited relatively lower
fracture energy than normal concrete, the material has better resistance during fracture in
terms of flexibility and zero-stress points (w2).
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Nomenclature

σ1 kink point tensile stress
σ0 un-notched strength
∆ac fictitious crack extension length
a0 pre-cut crack length
ac the critical crack length
w1 kink point CMOD opening
w2 zero stress point
a1 first softening compliance
a2 second softening compliance
b2 stress of second softening intercept
CTOD crack tip opening displacement
CTODc critical crack tip opening displacement
CMOD crack mouth opening displacement
CMODc critical crack mouth opening displacement
Ci initial compliance of the P–CMOD curve
E elastic modulus
ft tensile strength
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GF fracture energy
GI Fracture energy mode I
GF-0 specimen without notches
GF-30 specimen with a 30-millimeter notch height
GF-50 specimen with a 50-millimeter notch height
GF-70 specimen with a 70-millimeter notch height
H specimen height
H0 clip gauge holder thickness
K cracking toughness
Kini

IC initial cracking toughness
Kun

IC unstable cracking toughness
Pult ultimate load
Pini initial crack load
v Poisson’s ratio
U0 softening area
mg specimen weight
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