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Abstract: Banned pesticides are continuously preferred by the planters of the Idukki District irrespec-
tive of their toxicity. Among the banned pesticides, acephate is preferred because of its high solubility
in water and persistent character. Unfortunately, it detriments the biota, leading to neurogenic,
carcinogenic, and physiological disorders in fish. The plantation near the Periyar River basin is
contaminated with residues of pesticides, which eventually drain into the river. There is an urgent
need for the removal of acephate. Therefore, we have focused on the removal of acephate into the
lab scale. Batch adsorption studies were carried out for the removal of acephate. We selected a
material Fe-MMT (Fe3O4-montmorillonite), which is benign and possesses a high adsorption capacity
towards acephate. Adsorbent properties were examined by various analytical tools XRD, SEM, FTIR,
and a Surface area analyzer. Adsorption followed Langmuir with first-order kinetic. Kinetic plots
exhibited multistage adsorption, indicating film diffusion and pore diffusion during the adsorption
or the mechanism of adsorption is chemisorption, physisorption, and Lewis’s acid-base interaction.
Response surface methodology involving CCD (central composite design) was extracted to maximize
the adsorption of acephate onto Fe-MMT. Dosage and concentration seem to be the major parameters
that influenced the adsorption. Adsorption achieved a peak (83.18%) at optimum conditions corre-
sponding to pH 6, initial acephate concentration of 2 mg/L, and adsorbent dosage corresponding
to 0.5 g/L.

Keywords: acephate; magnetically modified montmorillonite; multistage adsorption; response
surface methodology

1. Introduction

Acephate, (O, S dimethyl acetyl phosphoroamidothioate) an organophosphorous
pesticide, and its metabolite have immense potential to harm the biota. Acephate residues
are present in the cardamom plantations of the Periyar River basin and are eventually
found in the river in ppb ranges [1]. Additionally, residues are present in blood and breast
milk, thereby transferring to the newborn [2]. Immediate removal is mandatory, as it affects
the biodata and causes death. Among several techniques, adsorption is preferred due to its
easy and cost-effective nature. Then, the selection of adsorbent paves another important
role in the adsorption process. Fe-MMT was selected as the adsorbent for the removal of
acephate, as it is environmentally benign in nature [3]. The paper focuses on the properties
of the adsorbent characterized by SEM, FTIR, and the surface area analyzer. Additionally,
the adsorbent performance for the removal of acephate was evaluated.
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2. Materials and Methods

FTIR spectra of the samples were obtained using a spectrometer (500–4000 cm−1).
XRD experiments were carried out using a diffractometer (Make: PAN Analytical Philips:
Almelo, Netherland, and Model: XPERT-PRO). Morphology was studied by SEM (Make:
TESCAN: Brno, Czech Republic, and Model: VEGA 3 LMU) and chemical composition
was evaluated (EDX). Surface area by surface area analyzer (Make: Micrometrics: Norcross,
GA, USA, and Model: Tristar II 3020 Version 3.02). The concentration of acephate was
measured with the help of a UV-Vis spectrophotometer (Make: Shimadzu, Japan, Model:
UV-1800). Montmorillonite was purchased from Sigma-Aldrich Company Response Model
and Central Composite Design were employed to investigate the effect of adsorption
efficiency of acephate onto Fe-MMT.

3. Results and Discussions

Montmorillonite exhibits typical diffraction peaks at 2θ = 19.5, 26.7, and 40.04, and ad-
ditional peaks at 2θ = 26.5 and 47 corresponding to silica and aluminum. Diffraction peaks
at 2θ of 36 and 42 indicate the presence of magnetite, suggesting that the modified phase is
magnetite (Figure 1a), which leads to a dramatic increase in the adsorption efficiency, up
to 87%, rather than the bare MMT possessing 60% adsorption capacity. FTIR interpreta-
tion revealed that Fe-MMT exhibited strong characteristic peaks at 536 cm−1, 1438 cm−1,
and 3377 cm−1. Bands at 520–570 cm−1 represent Fe-O stretching vibration (symmetri-
cal). Bands at 3377 cm−1 are due to Fe-OH (Figure 1b). SEM images indicate flower-like
morphology with EDX spectrum, indicating a rise in the content of Fe (Figure 1c), which
improved the material adsorption capacity. Figure 1d pictures the adsorption–desorption
isotherms of Fe-MMT. The BET surface area of MMT (256 m2/g) is higher than that of
the modified material (28 m2/g), highlighting chemical adsorption onto Fe-MMT rather
than physisorption.
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4. Batch Adsorption Studies
Optimization of Parameters for Acephate Adsorption

RSM (Response surface methodology), based on the central composite design (CCD),
was employed to examine the performance of adsorption. CCD was opted to achieve
accurate predictions around extremes of the factors. Concentration, pH, and dosage were
the factors that were identified as key parameters contributing to adsorption. Response
surface plots were generated using a design expert for the determination of the effect of
the input factors on the responses. pH parameter was optimized for the batch adsorption
of acephate onto Fe-MMT by testing with pH (1–10) [4]. Figure 2a shows that the acidic
medium favored the adsorption and the peak of adsorption was achieved at 5. As the pH
increases from 5 to 8, the adsorption of acephate decreases. The reduced adsorption of
acephate onto clay may be due to the electrostatic repulsion between the adsorbent and the
adsorbate. Adsorption increased with an increase in the initial acephate. The amount of
adsorption increased with an increase in the initial acephate concentration and was found
to be 0.9, 2.175, 4.2, 5.925, and 7.4 mg/g for the initial acephate concentrations of 2, 5, 10, 15,
and 20 mg/L, respectively. Dosage was another vital factor that influenced the adsorption
of acephate onto Fe-MMT. As dosage increases (0.1–0.5), adsorption increases, and the peak
of adsorption is reached at 0.5g/L, with an efficiency of 90%. Temperature [5] is another
parameter that affects the adsorption. As the temperature increases, adsorption efficiency
is also enhanced (endothermic nature) [5].
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Fe-MMT.

5. 3D Response Surface Plots

pH, dosage, and concentration significantly influenced the adsorption of acephate by
Fe-MMT, summarized in Figure 3. Figure 3 reveals the synergistic effect of two parameters
on the adsorption capacity of acephate onto Fe-MMT. The other parameter was retained
at the zero level. According to Figure 3, the concentration and adsorbent dose are the
most influential factors in the adsorption capacity. Meanwhile, pH partly contributes to
the adsorption results. It was found that higher dosage and lower concentration gave the
highest adsorption capacity.



Environ. Sci. Proc. 2023, 25, 98 5 of 6

Environ. Sci. Proc. 2023, 25, 98 5 of 6 
 

 

 
Figure 3. Effect of (a) pH and (b) initial acephate concentration and (c) dosage on the adsorption of 
acephate onto Fe-MMT. 

6. Adsorption Kinetics, Isotherm, and Thermodynamic Parameters 
Lagergren’s pseudo-first-order, pseudo-second-order, Elovich, and Weber and Mor-

ris’s Intraparticle diffusion models were scrutinized to study the kinetics of adsorption. 
Kinetics of adsorption and the model of isotherm obeyed pseudo-first-order (R2 > 0.99) 
and the Langmuir model (adsorbed homogeneously on a monolayer surface of Fe-MMT). 
The maximum Langmuir capacity at pH 5 and 303 K is 13.66 mg/g. Thermodynamic pa-
rameters revealed that the adsorption is endothermic ሺ∆𝐻଴ = 22.855 kJ/mol, ∆𝑆଴ = 105.920 
J/K) and spontaneous in nature (∆G0 = −7.99, −8.087, 9.245, and −10.357 kJ/mol) 

7. Mechanism of Adsorption 
The mechanism of adsorption corresponds to chemisorption (positive group of phos-

phorous in acephate and deprotonated silanol group), physisorption (hydrogen-bearing 
amino group of acephate and the oxygen atoms of MMT), and Lewis’s acid–base interac-
tion nitrogen atom of the amino group of acephate and Al3+ montmorillonite. 

Author Contributions: R.S.R.: methodology, investigation, writing–original draft, resources, 
K.A.K.: conceptualization, writing-review & editing, supervision, funding acquisition. All authors 
have read and agreed to the published version of the manuscript. 

Funding: University Grants Commission, Awardee: R. Shiny Raj, Sr No: 2121410217, Ref No: 
21/12/2014(ii) EU-V. 
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6. Adsorption Kinetics, Isotherm, and Thermodynamic Parameters

Lagergren’s pseudo-first-order, pseudo-second-order, Elovich, and Weber and Morris’s
Intraparticle diffusion models were scrutinized to study the kinetics of adsorption. Kinetics
of adsorption and the model of isotherm obeyed pseudo-first-order (R2 > 0.99) and the
Langmuir model (adsorbed homogeneously on a monolayer surface of Fe-MMT). The
maximum Langmuir capacity at pH 5 and 303 K is 13.66 mg/g. Thermodynamic parameters
revealed that the adsorption is endothermic ∆H0 = 22.855 kJ/mol, ∆S0 = 105.920 J/K) and
spontaneous in nature (∆G0 = −7.99, −8.087, 9.245, and −10.357 kJ/mol).

7. Mechanism of Adsorption

The mechanism of adsorption corresponds to chemisorption (positive group of phos-
phorous in acephate and deprotonated silanol group), physisorption (hydrogen-bearing
amino group of acephate and the oxygen atoms of MMT), and Lewis’s acid–base interaction
nitrogen atom of the amino group of acephate and Al3+ montmorillonite.
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