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Abstract: The Agricultural Policy Environmental eXtender (APEX) model is used to study how
different agricultural practices, such as fertilizing, irrigation, and tillage, would affect water quality
and runoff in the Lake Karla watershed (Central Greece). The model was calibrated for the potential
evapotranspiration with satisfactory results for the period 1980–2008 and for the yields of the main
crops grown in the region (cotton, maize, and wheat) from 1980–2015.
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1. Introduction

The challenges that the agricultural sector must deal with are multidimensional and
large. On the one hand, the increase in production is intended to cover the nutritional needs
of the rapidly growing population. On the other hand, limiting the use of water, fertilizers,
and pesticides to protect the sustainability of agroecosystems while protecting the natural
environment from problems, such as nutrient losses with nitrogen losses, is often used
as a typical example. In recent years, the difficulties created by these challenges have
been aggravated by the projected climate change [1–4]. Scientists apply simulation models
to examine all the aforementioned challenges [4]. Simulation models are an approach
to represent quantitative knowledge about the system of interest and how the different
components of that system interact. Agroecosystem models can help agronomists to
understand crop growth, predict crop yields, and assess management for better water
and nutrients used. Climate data, soil, and information about the management of the
agroecosystem are used to inform these models. Such agroecosystem tools can normally
simulate many periods, locations, management styles, and scenarios and can provide useful
information to agricultural science and farming, exploring the changing aspects between
the atmosphere, plants, soil, and water, assisting in crop agronomy, pest management, plant
breeding, natural resources management, and evaluating the effect of climate change [5].
In this article, we present the activities that are currently carried out for an ongoing project
where the agricultural policy environmental extender (APEX) model is applied in a rural
region in Central Greece to assess crop production and water and nitrogen losses under
current and future weather conditions.
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2. Methodology

The APEX model has been implemented for the aquifer of the Karla Basin. APEX
was developed to help evaluate different land management strategies regarding their
environmental impact, erosion, cost, and possible water supplies. APEX simulates the
nitrogen and the water process, the crop yield, at the field, farm, or watershed levels,
subdividing the simulated area into several units with homogeneous soil, weather, land
use, and topography commonly defined subareas [6,7]. The Karla watershed is an area
with intense agricultural activity [8]. Figure 1 presents the land uses and crop classification
for the Karla aquifer, as displayed within the ArcAPEX interface. After the delineation
process, ArcAPEX separated the study area into 34 homogeneous subareas. The model was
set to simulate 46 years in total, with the first 10 years used as a spin-up period and not
considered in the calibration process. For the calibration, cumulative monthly data from
1961 to 2009 were used for the potential evapotranspiration (PET), while the crop yield of
the main crops was calibrated considering the period 1980–2015.
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Two statistical criteria were used to evaluate the results obtained for PET. The Nash–
Sutcliffe model efficiency (Ef) in Equation (1) and the coefficient of determination (R2)
in Equation (2) indicate how well the model describes adaptation in the observed and
estimated data:
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where YO is the mean observed value, Ym is the estimated value by the model, and Yo is
the observed at time t. Ef ranges from 1 (best result) to minus infinite.

R2 =

 ∑(x − x)− (y − y)√
∑(x − x)2 ∑(y − y)2

 (2)

where x and y are the observed and the estimated values by the model, x and y are the
mean observed and estimated values by the model, respectively. R2 ranges from 1 (best
result) to 0 (worst result).

3. Results

The APEX model was initially calibrated considering the PET. During the calibration
process, four methods for the PET estimation were examined using the Hargreaves ap-
proach resulting as the best method. The results for Ef and R2 are presented in Table 1.
Figure 2 shows the scatter plot where the observed and simulated values of PET are com-
pared. As reported in Table 1, the model was able to provide a good estimate of PET,
resulting in an Ef value of 0.85 and R2 of 0.90.

Table 1. Statistical Criteria Results.

Statistical Criteria Results

Ef 0.85
R2 0.90
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Figure 2. Comparison of the observed and simulated PET.

The work continued with the calibration of yields of the main crops grown in the
study area (cotton, maize, and winter wheat). It is worth noting that the calibration of crop
yields was based on the average crop yield of winter wheat, cotton, and maize provided by
the Greek Ministry of Rural Development and Food [9]. Due to the fact that APEX reports
the yield as dry weight, the reported yield data has been adjusted for moisture content. We
considered a moisture content between 6.5% to 8% for cotton [10] and 14% for maize and
wheat. After adjusting the average observed crop yield for the moisture content, the target
crop yield for calibration was 2.6–3.2 Mg ha−1 for cotton, 8.6–17.2 Mg ha−1 for maize, and
2.0–3.0 Mg ha−1 for wheat. Having only one average reported yield available, it was not
possible to conduct a statistical assessment of the performance in simulating crop yield.
Figures 3–5 show the simulated crop yield for all the simulated years after the calibration
process for wheat, cotton, and maize, respectively. The values reported are the average of
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the yield simulated by the APEX model in all the areas where each crop is cultivated within
the watershed.
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After the calibration process, the model was able to provide good results in simulating
crop yield. The average simulated yield for wheat was 2.6 Mg ha−1, which was in the range
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of the average reported yield. In some years, the yield was overestimated, probably due to
an overestimation of the crop-available water that, in turn, produced no water stress and
a very high crop yield. We will continue to analyze this aspect to improve the quality of
the results for this crop. The average simulated yield for cotton was 2.75 Mg ha−1, which
is within the range of the average reported yield with some years where the simulated
yield is below the minimum or above the maximum average reported yield. Results for
maize were better, with an average simulated yield of 13.1 Mg ha−1 and yielded within the
reported range for all examined years.

To calibrate crop yields, parameters that regulate the simulation of soil water content
(soil water lower limits and soil evaporation) and the effect of water stress and high
temperature on the harvest index were adjusted. Further, the harvest index for maize
was revised to consider the higher harvest index of the new maize hybrids, which were
obtained thanks to plant breeding and genetic improvement.

The calibration process will be continued considering the runoff and nitrate leaching.
In the final step, the APEX model will be used to study the impacts of climate change
scenarios on the agroecosystems of the Karla watershed.

4. Discussion

At the beginning of this research, we were able to design the Karla watershed within
the APEX model. The first step was based on the automatic delineation of the watershed
using the ArcAPEX interface. After this initial step, the input files generated by the interface
required some modification to better represent features of the watershed that were not
correctly captured by the ArcAPEX interface, such as the presence of a reservoir in the
lower part of the watershed. After setting up all the input data required by the model, we
started the calibration procedure. Beginning with the calibration of the PET, which we
consider as the starting point to have a good simulation of the water balance, we were able
to obtain good results with R2 of 0.9 and Ef of 0.85. The good results obtained for the PET
are followed by satisfactory results in the simulation of the yields of the three main crops
cultivated in the studied area. The APEX model was able to produce reasonable results for
maize, cotton, and wheat yields with some overestimation that required analysis for the
later harvest. The calibration process will be completed by including the analysis of runoff
and nitrate leaching, and the model will be used to assess how climate change will affect
crop production and water and nutrient losses.

5. Conclusions

This modeling study will allow us to better understand if the APEX model could be
considered a useful tool for studying agroecosystems in Mediterranean climates. Obtaining
good results in the calibration and validation process will allow us to use the APEX model
to assess the impact of land management and climate change in the Karla watershed.
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